Sengxian пре 2 година
родитељ
комит
43bada17a4
1 измењених фајлова са 12 додато и 11 уклоњено
  1. 12 11
      evaluation/model.py

+ 12 - 11
evaluation/model.py

@@ -80,20 +80,21 @@ class ModelForEvaluation(torch.nn.Module):
         super().__init__()
 
         self.model = model
+        self.device = next(self.model.parameters()).device
 
     @staticmethod
-    def process_data(batch):
+    def process_data(batch, device):
         return (
-            batch["tokens"].to(device=torch.cuda.current_device()).long(),
-            batch["position_ids"].to(device=torch.cuda.current_device()).long(),
-            batch["attention_mask"].to(device=torch.cuda.current_device()).bool().unsqueeze(1),
+            batch["tokens"].to(device=device).long(),
+            batch["position_ids"].to(device=device).long(),
+            batch["attention_mask"].to(device=device).bool().unsqueeze(1),
         )
 
     def cond_log_prob(self, batch) -> List[List[float]]:
         """
         @return: Conditional log probability of each option
         """
-        tokens, position_ids, attention_mask = self.process_data(batch)
+        tokens, position_ids, attention_mask = self.process_data(batch, self.device)
         choices_batch, choice_target_ids_batch = batch["choices"], batch["choice_target_ids"]
         is_single_token = batch["is_single_token"]
 
@@ -123,7 +124,7 @@ class ModelForEvaluation(torch.nn.Module):
         @return: A list of text model generated, sorted by score in descending order
         """
 
-        seqs = sample["tokens"].to(device=torch.cuda.current_device()).long()
+        seqs = sample["tokens"].to(device=self.device).long()
         context_lengths = sample["context_length"].long()
 
         def get_masks_and_position_ids(seq):
@@ -131,8 +132,8 @@ class ModelForEvaluation(torch.nn.Module):
             max_gen_length = sample['target_position_ids'].shape[-1]
             tokens = torch.nn.functional.pad(seq, (0, max_gen_length), mode='constant', value=-1)
             position_ids = torch.cat((sample['position_ids'], sample['target_position_ids']), dim=-1)
-            position_ids = position_ids.to(device=torch.cuda.current_device()).long()
-            attention_mask = sample["attention_mask"].to(device=torch.cuda.current_device())
+            position_ids = position_ids.to(device=self.device).long()
+            attention_mask = sample["attention_mask"].to(device=self.device)
             context_mask = attention_mask[torch.arange(batch_size), context_lengths - 1].unsqueeze(1).repeat(1,
                                                                                                              max_gen_length,
                                                                                                              1)
@@ -178,10 +179,10 @@ class ModelForEvaluation(torch.nn.Module):
 
 
     def calculate_loss(self, batch) -> List[float]:
-        tokens, position_ids, attention_mask = self.process_data(batch)
+        tokens, position_ids, attention_mask = self.process_data(batch, self.device)
         targets, loss_masks = (
-            batch["targets"].to(device=torch.cuda.current_device()).long(),
-            batch["loss_masks"].to(device=torch.cuda.current_device()).long(),
+            batch["targets"].to(device=self.device).long(),
+            batch["loss_masks"].to(device=self.device).long(),
         )
 
         original_parallel_output = self.model.transformer.parallel_output