import torch import time from initialize import initialize, initialize_model_and_tokenizer if __name__ == "__main__": args = initialize(extra_args_provider=lambda parser: None) model, tokenizer = initialize_model_and_tokenizer(args) for seq_len in [512, 1024, 2048]: torch.distributed.barrier() start = time.time() with torch.no_grad(): _, *_ = model( torch.ones(1, seq_len, device=torch.cuda.current_device(), dtype=torch.int64), torch.arange(seq_len, device=torch.cuda.current_device(), dtype=torch.int64).view(1, -1), torch.randn(1, 1, seq_len, seq_len, device=torch.cuda.current_device()) < 0.5, ) torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(f"Encode {seq_len}: {(time.time() - start) * 1000:.2f} ms")