dataset.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. import os
  2. import math
  3. import json
  4. import numpy as np
  5. import torch
  6. from typing import List, Union
  7. from abc import ABC, abstractmethod
  8. from scipy.linalg import block_diag
  9. from itertools import accumulate
  10. from bisect import bisect_right
  11. from SwissArmyTransformer import get_tokenizer
  12. from .configs import BaseConfig, MultiChoiceTaskConfig, GenerationTaskConfig, LanguageModelTaskConfig
  13. from .utils import get_tokenized_input
  14. def pad_batch(tokens, position_ids, attention_mask, max_seq_length):
  15. attention_mask = np.pad(
  16. attention_mask,
  17. pad_width=((0, max_seq_length - len(tokens)),),
  18. mode="constant",
  19. constant_values=0,
  20. )
  21. tokens = np.concatenate((tokens, np.zeros(max_seq_length - len(tokens), dtype=np.int64)))
  22. position_ids = np.concatenate((position_ids, np.zeros(max_seq_length - len(position_ids), dtype=np.int64)))
  23. return tokens, position_ids, attention_mask
  24. class EvaluationDataset(torch.utils.data.Dataset, ABC):
  25. """
  26. Jsonlines of {
  27. "text": context
  28. "choices": [choice_id1,...], if not None, len(target) == 1
  29. "label": If generation task -1, else [0, len(choices))
  30. }
  31. If [MASK] not in context, will append [MASK] after text
  32. """
  33. def __init__(self, path: Union[str, List[str]], config: BaseConfig):
  34. self.path = path if isinstance(path, list) else [path]
  35. self.config = config
  36. self.max_seq_length = self.config.max_seq_length
  37. self.dtype = np.int64
  38. self.tokenizer = get_tokenizer()
  39. self.mask_id = self.tokenizer.get_command("[MASK]")
  40. self.gmask_id = self.tokenizer.get_command("[gMASK]")
  41. self.data = []
  42. for p in self.path:
  43. self.process_single_file(p)
  44. @property
  45. def has_collate_fn(self) -> bool:
  46. return False
  47. def collate_fn(self, samples):
  48. return None
  49. def process_single_file(self, path):
  50. with open(os.path.join(path), "r", encoding="utf-8") as file:
  51. for line in file:
  52. item = json.loads(line)
  53. self.data.append(self.process_single_item(item))
  54. @abstractmethod
  55. def process_single_item(self, item) -> dict:
  56. pass
  57. def __len__(self):
  58. return len(self.data)
  59. class GenerationTaskDataset(EvaluationDataset):
  60. config: GenerationTaskConfig
  61. def process_single_item(self, item):
  62. text, targets = get_tokenized_input(item, "inputs"), get_tokenized_input(item, "targets")
  63. if len(text) + self.config.max_gen_length + 2 > self.config.max_seq_length:
  64. text_length = self.config.max_seq_length - self.config.max_gen_length - 2
  65. text = text[len(text) - text_length : len(text)]
  66. return {"text": text, "targets": targets}
  67. @staticmethod
  68. def build_generation_sample(text, max_gen_length, use_task_mask, unidirectional=True):
  69. tokenizer = get_tokenizer()
  70. sop_id = tokenizer.get_command("sop")
  71. mask_id = tokenizer.get_command("[gMASK]") if use_task_mask else tokenizer.get_command("[MASK]")
  72. token = np.array(text, dtype=np.int64)
  73. blank_filling = mask_id in text
  74. if blank_filling:
  75. assert not unidirectional, "Unidirectional attention doesn't support blank filling"
  76. assert not use_task_mask, "Unidirectional attention doesn't support task mask"
  77. mask_position = text.index(mask_id)
  78. token = np.concatenate((token, [sop_id]))
  79. else:
  80. mask_position = len(token)
  81. if unidirectional:
  82. token = np.concatenate(([mask_id, sop_id], token))
  83. else:
  84. token = np.concatenate((token, [mask_id, sop_id]))
  85. context_length = len(token)
  86. max_seq_length = context_length + max_gen_length
  87. position_id = np.arange(0, max_seq_length, dtype=np.int64)
  88. if not use_task_mask:
  89. position_id[context_length - 1 :] = mask_position
  90. attention_mask = np.tril(np.ones((max_seq_length, max_seq_length), dtype=np.int64))
  91. if not unidirectional:
  92. attention_mask[: context_length - 1, : context_length - 1] = 1
  93. item = {
  94. "tokens": np.concatenate((token, np.zeros(max_seq_length - len(token), dtype=np.int64))),
  95. "position_ids": position_id,
  96. "attention_mask": attention_mask < 0.5,
  97. "context_length": context_length,
  98. }
  99. return item
  100. def __getitem__(self, idx):
  101. item = self.data[idx]
  102. sample = self.build_generation_sample(
  103. item["text"],
  104. max_gen_length=self.config.max_gen_length,
  105. use_task_mask=self.config.use_task_mask,
  106. unidirectional=self.config.unidirectional,
  107. )
  108. sample["targets"] = [np.array(target, dtype=self.dtype) for target in item["targets"]]
  109. return sample
  110. class MultiChoiceTaskDataset(EvaluationDataset):
  111. config: MultiChoiceTaskConfig
  112. def __init__(self, path, config: MultiChoiceTaskConfig):
  113. self.is_single_token = True # set to False later in process_single_item func
  114. super().__init__(path, config)
  115. @property
  116. def has_collate_fn(self) -> bool:
  117. return True
  118. def collate_fn(self, samples):
  119. TILE = 32
  120. length_to_pad = (max(map(lambda spl: len(spl["token"]), samples)) + TILE - 1) // TILE * TILE
  121. token_batch, position_id_batch, attention_mask_batch = [], [], []
  122. choices_batch, choice_target_ids_batch = [], []
  123. for sample in samples:
  124. token, position_id, attention_mask = pad_batch(
  125. sample["token"], sample["position_id"], sample["attention_mask"], length_to_pad
  126. )
  127. token_batch.append(token)
  128. position_id_batch.append(position_id)
  129. attention_mask_batch.append(attention_mask)
  130. choices_batch.append(sample["choices"])
  131. choice_target_ids_batch.append(sample["choice_target_ids"])
  132. return {
  133. "tokens": torch.tensor(np.array(token_batch), dtype=torch.int64),
  134. "position_ids": torch.tensor(np.array(position_id_batch), dtype=torch.int64),
  135. "attention_mask": torch.tensor(np.array(attention_mask_batch), dtype=torch.int64) < 0.5,
  136. "choices": choices_batch,
  137. "choice_target_ids": choice_target_ids_batch,
  138. "is_single_token": self.is_single_token,
  139. }
  140. def process_single_item(self, item):
  141. text, choices, label = get_tokenized_input(item, "inputs"), get_tokenized_input(item, "choices"), item["label"]
  142. tgt_seq_length = sum([len(choice) for choice in choices])
  143. if tgt_seq_length == len(choices):
  144. # For single token, we only insert one [sop]
  145. tgt_seq_length = 1
  146. assert tgt_seq_length < self.config.max_seq_length
  147. if len(text) + tgt_seq_length + 2 > self.config.max_seq_length:
  148. text_length = self.config.max_seq_length - tgt_seq_length - 2
  149. text = text[len(text) - text_length : len(text)]
  150. assert not (
  151. self.mask_id in text and self.config.use_multitask_encoding
  152. ), "Unified multitask encoding don't support blank filling"
  153. if tgt_seq_length != 1:
  154. self.is_single_token = False
  155. return {
  156. "text": text,
  157. "choices": choices,
  158. "label": label,
  159. }
  160. @staticmethod
  161. def build_multiple_choice_sample(text, choices, is_single_token, unified_multitask_encoding=False):
  162. tokenizer = get_tokenizer()
  163. sop_id = tokenizer.get_command("sop")
  164. mask_id = tokenizer.get_command("[MASK]")
  165. token = np.array(text, dtype=np.int64)
  166. target = np.array(text, dtype=np.int64)
  167. position_id = np.arange(len(text), dtype=np.int64)
  168. choice_target_id = []
  169. blank_filling = mask_id in text
  170. if not blank_filling:
  171. mask_position = len(token)
  172. token = np.concatenate((token, [mask_id]))
  173. target = np.concatenate((target, [mask_id]))
  174. position_id = np.concatenate((position_id, [mask_position]))
  175. else:
  176. mask_position = text.index(mask_id)
  177. division = len(token)
  178. attention_mask = [np.ones((len(token), len(token)), dtype=np.int64)]
  179. for choice in choices:
  180. position_id = np.concatenate(
  181. (
  182. position_id,
  183. [mask_position] * len(choice)
  184. if blank_filling or not unified_multitask_encoding
  185. else np.arange(mask_position, mask_position + len(choice), dtype=np.int64),
  186. )
  187. )
  188. choice_target_id.append(np.arange(len(token), len(token) + len(choice), dtype=np.int64))
  189. attention_mask.append(np.tril(np.ones((len(choice), len(choice)), dtype=np.int64)))
  190. token = np.concatenate((token, [sop_id], choice[:-1]))
  191. target = np.concatenate((target, choice))
  192. if is_single_token:
  193. break
  194. attention_mask = block_diag(*attention_mask)
  195. attention_mask[: len(token), :division] = 1
  196. if is_single_token:
  197. choices = np.array(choices, dtype=np.int64).squeeze().tolist()
  198. item = {
  199. "token": token,
  200. "position_id": position_id,
  201. "attention_mask": attention_mask,
  202. "choices": choices,
  203. "choice_target_ids": choice_target_id[0] if is_single_token else choice_target_id,
  204. }
  205. return item
  206. def __getitem__(self, idx):
  207. item = self.data[idx]
  208. sample = self.build_multiple_choice_sample(
  209. item["text"],
  210. item["choices"],
  211. is_single_token=self.is_single_token,
  212. unified_multitask_encoding=self.config.use_multitask_encoding,
  213. )
  214. sample["label"] = item["label"]
  215. return sample
  216. class LanguageModelTaskDataset(EvaluationDataset):
  217. config: LanguageModelTaskConfig
  218. left_weights: List[int]
  219. weights: List[int]
  220. def process_single_file(self, path):
  221. num_sequences = []
  222. with open(os.path.join(path), "r", encoding="utf-8") as file:
  223. raw_text = file.read()
  224. tokens = self.tokenizer.tokenize(raw_text)
  225. self.data.append(
  226. {
  227. "raw_text": tokens,
  228. "num_original_tokens": len(raw_text.strip().split(" ")),
  229. "num_sequences": max(
  230. math.ceil(
  231. max(len(tokens) - (self.config.max_seq_length - 1), 0) / self.config.generation_length
  232. )
  233. + 1,
  234. 1,
  235. ),
  236. }
  237. )
  238. num_sequences.append(self.data[-1]["num_sequences"])
  239. self.weights = list(accumulate(num_sequences))
  240. self.left_weights = [0] + self.weights[:-1]
  241. def process_single_item(self, item):
  242. pass
  243. def __len__(self):
  244. return self.data[0]["num_sequences"]
  245. def __getitem__(self, idx):
  246. document_idx = bisect_right(self.weights, idx)
  247. idx = idx - self.left_weights[document_idx]
  248. start_idx = idx * self.config.generation_length
  249. end_idx = start_idx + self.config.max_seq_length - 1 # for additional [gMASK]
  250. tokens = self.data[document_idx]["raw_text"][start_idx:end_idx]
  251. mask_id = self.gmask_id if self.config.use_task_mask else self.mask_id
  252. sop_id = self.tokenizer.get_command("sop")
  253. if idx == 0 or self.config.unidirectional:
  254. prompt, text = [], tokens
  255. else:
  256. prompt_length = self.config.max_seq_length - 1 - self.config.generation_length
  257. prompt, text = tokens[:prompt_length], tokens[prompt_length:]
  258. seq_length = len(prompt) + len(text) + 1
  259. attention_mask = np.tril(np.ones((seq_length, seq_length), dtype=np.int64))
  260. attention_mask[: len(prompt) + 1, : len(prompt) + 1] = 1
  261. return {
  262. "tokens": np.array(prompt + [mask_id, sop_id] + text[:-1], dtype=np.int64),
  263. "targets": np.array(prompt + [mask_id] + text, dtype=np.int64),
  264. "position_ids": np.arange(0, seq_length, dtype=np.int64),
  265. "attention_mask": attention_mask < 0.5,
  266. "loss_masks": np.array([0] * (len(prompt) + 1) + [1] * len(text), dtype=np.int64),
  267. }