2
0

initialize.py 2.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. import argparse
  2. import torch
  3. import time
  4. from quantization import quantize
  5. from SwissArmyTransformer import get_args, get_tokenizer
  6. from SwissArmyTransformer.arguments import initialize_distributed
  7. from SwissArmyTransformer.training import load_checkpoint
  8. from SwissArmyTransformer.model import GLM130B
  9. def add_bminf_args(parser):
  10. """Arguments for BMInf"""
  11. group = parser.add_argument_group("BMInf")
  12. group.add_argument("--bminf", action="store_true", help="Use BMInf to support low resource evaluation")
  13. group.add_argument("--bminf-memory-limit", type=int, default=20, help="Max memory for model per GPU (in GB)")
  14. return parser
  15. def add_quantization_args(parser):
  16. group = parser.add_argument_group("Quantization")
  17. group.add_argument("--quantization-bit-width", type=int, default=None)
  18. group.add_argument(
  19. "--load-from-quantized-checkpoint", action="store_true", help="Loading from a quantized checkpoint"
  20. )
  21. def initialize(extra_args_provider):
  22. parser = argparse.ArgumentParser(add_help=False)
  23. add_bminf_args(parser)
  24. add_quantization_args(parser)
  25. GLM130B.add_model_specific_args(parser)
  26. extra_args_provider(parser)
  27. known, args_list = parser.parse_known_args()
  28. args = get_args(args_list)
  29. args = argparse.Namespace(**vars(args), **vars(known))
  30. args.do_train = False
  31. initialize_distributed(args)
  32. return args
  33. def initialize_model_and_tokenizer(args):
  34. tokenizer = get_tokenizer(args)
  35. # Initialize model
  36. model = GLM130B(args).half()
  37. if args.load_from_quantized_checkpoint:
  38. assert not args.bminf and args.quantization_bit_width is not None
  39. # Quantize model before moving to GPU
  40. model = quantize(model, args.quantization_bit_width)
  41. # Load checkpoint
  42. torch.distributed.barrier()
  43. start = time.time()
  44. load_checkpoint(model, args)
  45. torch.distributed.barrier()
  46. if torch.distributed.get_rank() == 0:
  47. print(f"> Checkpoint loaded in {time.time() - start:.1f}s")
  48. if args.bminf:
  49. import bminf
  50. with torch.cuda.device(args.device):
  51. model = bminf.wrapper(model, quantization=False, memory_limit=args.bminf_memory_limit << 30)
  52. else:
  53. if args.quantization_bit_width is not None and not args.load_from_quantized_checkpoint:
  54. # Quantize model before moving to GPU
  55. model = quantize(model, args.quantization_bit_width)
  56. model = model.to(args.device)
  57. torch.cuda.empty_cache()
  58. model.eval()
  59. # generate rotary embedding cache
  60. with torch.no_grad():
  61. _, *_ = model(
  62. torch.ones(1, 1, device=torch.cuda.current_device(), dtype=torch.int64),
  63. torch.ones(1, 1, device=torch.cuda.current_device(), dtype=torch.int64) * args.max_sequence_length,
  64. torch.ones(1, 1, 1, 1, device=torch.cuda.current_device(), dtype=torch.bool),
  65. )
  66. torch.distributed.barrier()
  67. return model, tokenizer