dataset.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353
  1. import os
  2. import math
  3. import json
  4. import numpy as np
  5. import torch
  6. from typing import List, Union
  7. from abc import ABC, abstractmethod
  8. from scipy.linalg import block_diag
  9. from itertools import accumulate
  10. from bisect import bisect_right
  11. from SwissArmyTransformer import get_tokenizer
  12. from .configs import BaseConfig, MultiChoiceTaskConfig, GenerationTaskConfig, LanguageModelTaskConfig
  13. from .utils import get_tokenized_input
  14. def pad_batch(tokens, position_ids, attention_mask, max_seq_length):
  15. attention_mask = np.pad(
  16. attention_mask,
  17. pad_width=((0, max_seq_length - len(tokens)),),
  18. mode="constant",
  19. constant_values=0,
  20. )
  21. tokens = np.concatenate((tokens, np.zeros(max_seq_length - len(tokens), dtype=np.int64)))
  22. position_ids = np.concatenate((position_ids, np.zeros(max_seq_length - len(position_ids), dtype=np.int64)))
  23. return tokens, position_ids, attention_mask
  24. class EvaluationDataset(torch.utils.data.Dataset, ABC):
  25. """
  26. Jsonlines of {
  27. "text": context
  28. "choices": [choice_id1,...], if not None, len(target) == 1
  29. "label": If generation task -1, else [0, len(choices))
  30. }
  31. If [MASK] not in context, will append [MASK] after text
  32. """
  33. def __init__(self, path: Union[str, List[str]], config: BaseConfig):
  34. self.path = path if isinstance(path, list) else [path]
  35. self.config = config
  36. self.max_seq_length = self.config.max_seq_length
  37. self.dtype = np.int64
  38. self.tokenizer = get_tokenizer()
  39. self.mask_id = self.tokenizer.get_command("[MASK]")
  40. self.gmask_id = self.tokenizer.get_command("[gMASK]")
  41. self.data = []
  42. for p in self.path:
  43. self.process_single_file(p)
  44. @property
  45. def has_collate_fn(self) -> bool:
  46. return False
  47. @staticmethod
  48. def collate_fn(self, samples):
  49. return None
  50. def process_single_file(self, path):
  51. with open(os.path.join(path), "r", encoding="utf-8") as file:
  52. for line in file:
  53. item = json.loads(line)
  54. self.data.append(self.process_single_item(item))
  55. @abstractmethod
  56. def process_single_item(self, item) -> dict:
  57. pass
  58. def __len__(self):
  59. return len(self.data)
  60. class GenerationTaskDataset(EvaluationDataset):
  61. config: GenerationTaskConfig
  62. def process_single_item(self, item):
  63. text, targets = get_tokenized_input(item, "inputs"), get_tokenized_input(item, "targets")
  64. if len(text) + self.config.max_gen_length + 2 > self.config.max_seq_length:
  65. text_length = self.config.max_seq_length - self.config.max_gen_length - 2
  66. text = text[len(text) - text_length : len(text)]
  67. return {"text": text, "targets": targets}
  68. @property
  69. def has_collate_fn(self) -> bool:
  70. return True
  71. @staticmethod
  72. def collate_fn(samples):
  73. TILE = 32
  74. length_to_pad = (max(map(lambda spl: len(spl["token"]), samples)) + TILE - 1) // TILE * TILE
  75. token_batch, position_id_batch, attention_mask_batch = [], [], []
  76. context_length_batch, target_position_id_batch = [], []
  77. for sample in samples:
  78. token, position_id, attention_mask = pad_batch(
  79. sample["token"], sample["position_id"], sample["attention_mask"], length_to_pad
  80. )
  81. token_batch.append(token)
  82. position_id_batch.append(position_id)
  83. attention_mask_batch.append(attention_mask)
  84. context_length_batch.append(sample["context_length"])
  85. target_position_id_batch.append(sample["target_position_id"])
  86. return {
  87. "tokens": torch.tensor(np.array(token_batch), dtype=torch.int64),
  88. "position_ids": torch.tensor(np.array(position_id_batch), dtype=torch.int64),
  89. "attention_mask": torch.tensor(np.array(attention_mask_batch), dtype=torch.int64) < 0.5,
  90. "context_length": torch.tensor(context_length_batch, dtype=torch.int64),
  91. "target_position_ids": torch.tensor(np.array(target_position_id_batch), dtype=torch.int64),
  92. }
  93. @staticmethod
  94. def build_generation_sample(text, max_gen_length, use_task_mask, unidirectional=True):
  95. tokenizer = get_tokenizer()
  96. sop_id = tokenizer.get_command("sop")
  97. mask_id = tokenizer.get_command("[gMASK]") if use_task_mask else tokenizer.get_command("[MASK]")
  98. token = np.array(text, dtype=np.int64)
  99. blank_filling = mask_id in text
  100. if blank_filling:
  101. assert not unidirectional, "Unidirectional attention doesn't support blank filling"
  102. assert not use_task_mask, "Unidirectional attention doesn't support task mask"
  103. mask_position = text.index(mask_id)
  104. token = np.concatenate((token, [sop_id]))
  105. else:
  106. mask_position = len(token)
  107. if unidirectional:
  108. token = np.concatenate(([mask_id, sop_id], token))
  109. else:
  110. token = np.concatenate((token, [mask_id, sop_id]))
  111. context_length = len(token)
  112. position_id = np.arange(0, context_length, dtype=np.int64)
  113. target_position_id = np.arange(context_length, context_length + max_gen_length, dtype=np.int64)
  114. if not use_task_mask:
  115. position_id[context_length - 1 :] = mask_position
  116. target_position_id[:] = mask_position
  117. attention_mask = np.tril(np.ones((context_length, context_length), dtype=np.int64))
  118. if not unidirectional:
  119. attention_mask[: context_length - 1, : context_length - 1] = 1
  120. item = {
  121. "token": token,
  122. "position_id": position_id,
  123. "target_position_id": target_position_id,
  124. "attention_mask": attention_mask,
  125. "context_length": context_length,
  126. }
  127. return item
  128. def __getitem__(self, idx):
  129. item = self.data[idx]
  130. return self.build_generation_sample(
  131. item["text"],
  132. max_gen_length=self.config.max_gen_length,
  133. use_task_mask=self.config.use_task_mask,
  134. unidirectional=self.config.unidirectional,
  135. )
  136. class MultiChoiceTaskDataset(EvaluationDataset):
  137. config: MultiChoiceTaskConfig
  138. def __init__(self, path, config: MultiChoiceTaskConfig):
  139. self.is_single_token = True # set to False later in process_single_item func
  140. super().__init__(path, config)
  141. @property
  142. def has_collate_fn(self) -> bool:
  143. return True
  144. @staticmethod
  145. def collate_fn(samples):
  146. TILE = 32
  147. length_to_pad = (max(map(lambda spl: len(spl["token"]), samples)) + TILE - 1) // TILE * TILE
  148. token_batch, position_id_batch, attention_mask_batch = [], [], []
  149. choices_batch, choice_target_ids_batch = [], []
  150. is_single_token = True
  151. for sample in samples:
  152. token, position_id, attention_mask = pad_batch(
  153. sample["token"], sample["position_id"], sample["attention_mask"], length_to_pad
  154. )
  155. token_batch.append(token)
  156. position_id_batch.append(position_id)
  157. attention_mask_batch.append(attention_mask)
  158. choices_batch.append(sample["choices"])
  159. choice_target_ids_batch.append(sample["choice_target_ids"])
  160. if isinstance(sample["choice_target_ids"], list):
  161. is_single_token = False
  162. return {
  163. "tokens": torch.tensor(np.array(token_batch), dtype=torch.int64),
  164. "position_ids": torch.tensor(np.array(position_id_batch), dtype=torch.int64),
  165. "attention_mask": torch.tensor(np.array(attention_mask_batch), dtype=torch.int64) < 0.5,
  166. "choices": choices_batch,
  167. "choice_target_ids": choice_target_ids_batch,
  168. "is_single_token": is_single_token,
  169. }
  170. def process_single_item(self, item):
  171. text, choices, label = get_tokenized_input(item, "inputs"), get_tokenized_input(item, "choices"), item["label"]
  172. tgt_seq_length = sum([len(choice) for choice in choices])
  173. if tgt_seq_length == len(choices):
  174. # For single token, we only insert one [sop]
  175. tgt_seq_length = 1
  176. assert tgt_seq_length < self.config.max_seq_length
  177. if len(text) + tgt_seq_length + 2 > self.config.max_seq_length:
  178. text_length = self.config.max_seq_length - tgt_seq_length - 2
  179. text = text[len(text) - text_length : len(text)]
  180. assert not (
  181. self.mask_id in text and self.config.use_multitask_encoding
  182. ), "Unified multitask encoding don't support blank filling"
  183. if tgt_seq_length != 1:
  184. self.is_single_token = False
  185. return {
  186. "text": text,
  187. "choices": choices,
  188. "label": label,
  189. }
  190. @staticmethod
  191. def build_multiple_choice_sample(text, choices, is_single_token, unified_multitask_encoding=False):
  192. tokenizer = get_tokenizer()
  193. sop_id = tokenizer.get_command("sop")
  194. mask_id = tokenizer.get_command("[MASK]")
  195. token = np.array(text, dtype=np.int64)
  196. target = np.array(text, dtype=np.int64)
  197. position_id = np.arange(len(text), dtype=np.int64)
  198. choice_target_id = []
  199. blank_filling = mask_id in text
  200. if not blank_filling:
  201. mask_position = len(token)
  202. token = np.concatenate((token, [mask_id]))
  203. target = np.concatenate((target, [mask_id]))
  204. position_id = np.concatenate((position_id, [mask_position]))
  205. else:
  206. mask_position = text.index(mask_id)
  207. division = len(token)
  208. attention_mask = [np.ones((len(token), len(token)), dtype=np.int64)]
  209. for choice in choices:
  210. position_id = np.concatenate(
  211. (
  212. position_id,
  213. [mask_position] * len(choice)
  214. if blank_filling or not unified_multitask_encoding
  215. else np.arange(mask_position, mask_position + len(choice), dtype=np.int64),
  216. )
  217. )
  218. choice_target_id.append(np.arange(len(token), len(token) + len(choice), dtype=np.int64))
  219. attention_mask.append(np.tril(np.ones((len(choice), len(choice)), dtype=np.int64)))
  220. token = np.concatenate((token, [sop_id], choice[:-1]))
  221. target = np.concatenate((target, choice))
  222. if is_single_token:
  223. break
  224. attention_mask = block_diag(*attention_mask)
  225. attention_mask[: len(token), :division] = 1
  226. if is_single_token:
  227. choices = np.array(choices, dtype=np.int64).squeeze().tolist()
  228. item = {
  229. "token": token,
  230. "position_id": position_id,
  231. "attention_mask": attention_mask,
  232. "choices": choices,
  233. "choice_target_ids": choice_target_id[0] if is_single_token else choice_target_id,
  234. }
  235. return item
  236. def __getitem__(self, idx):
  237. item = self.data[idx]
  238. return self.build_multiple_choice_sample(
  239. item["text"],
  240. item["choices"],
  241. is_single_token=self.is_single_token,
  242. unified_multitask_encoding=self.config.use_multitask_encoding,
  243. )
  244. class LanguageModelTaskDataset(EvaluationDataset):
  245. config: LanguageModelTaskConfig
  246. def process_single_file(self, path):
  247. with open(os.path.join(path), "r", encoding="utf-8") as file:
  248. raw_text = file.read()
  249. tokens = self.tokenizer.tokenize(raw_text)
  250. self.data.append(
  251. {
  252. "raw_text": tokens,
  253. "num_original_tokens": len(raw_text.strip().split(" ")),
  254. "num_sequences": max(
  255. math.ceil(
  256. max(len(tokens) - (self.config.max_seq_length - 1), 0) / self.config.generation_length
  257. )
  258. + 1,
  259. 1,
  260. ),
  261. }
  262. )
  263. def process_single_item(self, item):
  264. pass
  265. def __len__(self):
  266. return self.data[0]["num_sequences"]
  267. def __getitem__(self, idx):
  268. start_idx = idx * self.config.generation_length
  269. end_idx = start_idx + self.config.max_seq_length - 1 # for additional [gMASK]
  270. tokens = self.data[0]["raw_text"][start_idx:end_idx]
  271. mask_id = self.gmask_id if self.config.use_task_mask else self.mask_id
  272. sop_id = self.tokenizer.get_command("sop")
  273. if idx == 0 or self.config.unidirectional:
  274. prompt, text = tokens[:1], tokens[1:]
  275. else:
  276. prompt_length = self.config.max_seq_length - 1 - self.config.generation_length
  277. prompt, text = tokens[:prompt_length], tokens[prompt_length:]
  278. seq_length = len(prompt) + len(text) + 1
  279. attention_mask = np.tril(np.ones((seq_length, seq_length), dtype=np.int64))
  280. attention_mask[: len(prompt) + 1, : len(prompt) + 1] = 1
  281. return {
  282. "tokens": np.array(prompt + [mask_id, sop_id] + text[:-1], dtype=np.int64),
  283. "targets": np.array(prompt + [mask_id] + text, dtype=np.int64),
  284. "position_ids": np.arange(0, seq_length, dtype=np.int64),
  285. "attention_mask": attention_mask < 0.5,
  286. "loss_masks": np.array([0] * (len(prompt) + 1) + [1] * len(text), dtype=np.int64),
  287. }