dataset.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. import os
  2. import math
  3. import json
  4. import numpy as np
  5. import torch
  6. from typing import List, Union
  7. from abc import ABC, abstractmethod
  8. from scipy.linalg import block_diag
  9. from itertools import accumulate
  10. from bisect import bisect_right
  11. from SwissArmyTransformer import get_tokenizer
  12. from SwissArmyTransformer.mpu import get_model_parallel_rank
  13. from .configs import BaseConfig, MultiChoiceTaskConfig, GenerationTaskConfig, LanguageModelTaskConfig
  14. from .utils import get_tokenized_input
  15. def pad_batch(tokens, position_ids, attention_mask, max_seq_length):
  16. attention_mask = np.pad(
  17. attention_mask,
  18. pad_width=((0, max_seq_length - len(tokens)),),
  19. mode="constant",
  20. constant_values=0,
  21. )
  22. tokens = np.concatenate((tokens, np.zeros(max_seq_length - len(tokens), dtype=np.int64)))
  23. position_ids = np.concatenate((position_ids, np.zeros(max_seq_length - len(position_ids), dtype=np.int64)))
  24. return tokens, position_ids, attention_mask
  25. class EvaluationDataset(torch.utils.data.Dataset, ABC):
  26. """
  27. Jsonlines of {
  28. "text": context
  29. "choices": [choice_id1,...], if not None, len(target) == 1
  30. "label": If generation task -1, else [0, len(choices))
  31. }
  32. If [MASK] not in context, will append [MASK] after text
  33. """
  34. def __init__(self, path: Union[str, List[str]], config: BaseConfig):
  35. self.path = path if isinstance(path, list) else [path]
  36. self.config = config
  37. self.max_seq_length = self.config.max_seq_length
  38. self.dtype = np.int64
  39. self.tokenizer = get_tokenizer()
  40. self.mask_id = self.tokenizer.get_command("[MASK]")
  41. self.gmask_id = self.tokenizer.get_command("[gMASK]")
  42. self.data = []
  43. for p in self.path:
  44. self.process_single_file(p)
  45. @property
  46. def has_collate_fn(self) -> bool:
  47. return False
  48. @staticmethod
  49. def collate_fn(self, samples):
  50. return None
  51. def process_single_file(self, path):
  52. with open(os.path.join(path), "r", encoding="utf-8") as file:
  53. for line in file:
  54. item = json.loads(line)
  55. self.data.append(self.process_single_item(item))
  56. @abstractmethod
  57. def process_single_item(self, item) -> dict:
  58. pass
  59. def __len__(self):
  60. return len(self.data)
  61. class GenerationTaskDataset(EvaluationDataset):
  62. config: GenerationTaskConfig
  63. def process_single_item(self, item):
  64. text, targets = get_tokenized_input(item, "inputs"), get_tokenized_input(item, "targets")
  65. if len(text) + self.config.max_gen_length + 2 > self.config.max_seq_length:
  66. text_length = self.config.max_seq_length - self.config.max_gen_length - 2
  67. text = text[len(text) - text_length : len(text)]
  68. return {"text": text, "targets": targets}
  69. @property
  70. def has_collate_fn(self) -> bool:
  71. return True
  72. @staticmethod
  73. def collate_fn(samples):
  74. TILE = 32
  75. length_to_pad = (max(map(lambda spl: len(spl["token"]), samples)) + TILE - 1) // TILE * TILE
  76. token_batch, position_id_batch, attention_mask_batch = [], [], []
  77. context_length_batch, target_position_id_batch = [], []
  78. for sample in samples:
  79. token, position_id, attention_mask = pad_batch(
  80. sample["token"], sample["position_id"], sample["attention_mask"], length_to_pad
  81. )
  82. token_batch.append(token)
  83. position_id_batch.append(position_id)
  84. attention_mask_batch.append(attention_mask)
  85. context_length_batch.append(sample["context_length"])
  86. target_position_id_batch.append(sample["target_position_id"])
  87. return {
  88. "tokens": torch.tensor(np.array(token_batch), dtype=torch.int64),
  89. "position_ids": torch.tensor(np.array(position_id_batch), dtype=torch.int64),
  90. "attention_mask": torch.tensor(np.array(attention_mask_batch), dtype=torch.int64) < 0.5,
  91. "context_length": torch.tensor(context_length_batch, dtype=torch.int64),
  92. "target_position_ids": torch.tensor(np.array(target_position_id_batch), dtype=torch.int64),
  93. }
  94. @staticmethod
  95. def build_generation_sample(text, max_gen_length, use_task_mask, unidirectional=True):
  96. tokenizer = get_tokenizer()
  97. sop_id = tokenizer.get_command("sop")
  98. mask_id = tokenizer.get_command("[gMASK]") if use_task_mask else tokenizer.get_command("[MASK]")
  99. token = np.array(text, dtype=np.int64)
  100. blank_filling = mask_id in text
  101. if blank_filling:
  102. assert not unidirectional, "Unidirectional attention doesn't support blank filling"
  103. assert not use_task_mask, "Unidirectional attention doesn't support task mask"
  104. mask_position = text.index(mask_id)
  105. token = np.concatenate((token, [sop_id]))
  106. else:
  107. mask_position = len(token)
  108. if unidirectional:
  109. token = np.concatenate(([mask_id, sop_id], token))
  110. else:
  111. token = np.concatenate((token, [mask_id, sop_id]))
  112. context_length = len(token)
  113. position_id = np.arange(0, context_length, dtype=np.int64)
  114. target_position_id = np.arange(context_length, context_length + max_gen_length, dtype=np.int64)
  115. if not use_task_mask:
  116. position_id[context_length - 1 :] = mask_position
  117. target_position_id[:] = mask_position
  118. attention_mask = np.tril(np.ones((context_length, context_length), dtype=np.int64))
  119. if not unidirectional:
  120. attention_mask[: context_length - 1, : context_length - 1] = 1
  121. item = {
  122. "token": token,
  123. "position_id": position_id,
  124. "target_position_id": target_position_id,
  125. "attention_mask": attention_mask,
  126. "context_length": context_length,
  127. }
  128. return item
  129. def __getitem__(self, idx):
  130. item = self.data[idx]
  131. return self.build_generation_sample(
  132. item["text"],
  133. max_gen_length=self.config.max_gen_length,
  134. use_task_mask=self.config.use_task_mask,
  135. unidirectional=self.config.unidirectional,
  136. )
  137. class MultiChoiceTaskDataset(EvaluationDataset):
  138. config: MultiChoiceTaskConfig
  139. def __init__(self, path, config: MultiChoiceTaskConfig):
  140. self.is_single_token = True # set to False later in process_single_item func
  141. super().__init__(path, config)
  142. @property
  143. def has_collate_fn(self) -> bool:
  144. return True
  145. @staticmethod
  146. def collate_fn(samples):
  147. TILE = 32
  148. length_to_pad = (max(map(lambda spl: len(spl["token"]), samples)) + TILE - 1) // TILE * TILE
  149. token_batch, position_id_batch, attention_mask_batch = [], [], []
  150. choices_batch, choice_target_ids_batch = [], []
  151. is_single_token = True
  152. for sample in samples:
  153. token, position_id, attention_mask = pad_batch(
  154. sample["token"], sample["position_id"], sample["attention_mask"], length_to_pad
  155. )
  156. token_batch.append(token)
  157. position_id_batch.append(position_id)
  158. attention_mask_batch.append(attention_mask)
  159. choices_batch.append(sample["choices"])
  160. choice_target_ids_batch.append(sample["choice_target_ids"])
  161. if isinstance(sample["choice_target_ids"], list):
  162. is_single_token = False
  163. return {
  164. "tokens": torch.tensor(np.array(token_batch), dtype=torch.int64),
  165. "position_ids": torch.tensor(np.array(position_id_batch), dtype=torch.int64),
  166. "attention_mask": torch.tensor(np.array(attention_mask_batch), dtype=torch.int64) < 0.5,
  167. "choices": choices_batch,
  168. "choice_target_ids": choice_target_ids_batch,
  169. "is_single_token": is_single_token,
  170. }
  171. def process_single_item(self, item):
  172. text, choices, label = get_tokenized_input(item, "inputs"), get_tokenized_input(item, "choices"), item["label"]
  173. tgt_seq_length = sum([len(choice) for choice in choices])
  174. if tgt_seq_length == len(choices):
  175. # For single token, we only insert one [sop]
  176. tgt_seq_length = 1
  177. assert tgt_seq_length < self.config.max_seq_length
  178. if len(text) + tgt_seq_length + 2 > self.config.max_seq_length:
  179. text_length = self.config.max_seq_length - tgt_seq_length - 2
  180. text = text[len(text) - text_length : len(text)]
  181. assert not (
  182. self.mask_id in text and self.config.use_multitask_encoding
  183. ), "Unified multitask encoding don't support blank filling"
  184. if tgt_seq_length != 1:
  185. self.is_single_token = False
  186. return {
  187. "text": text,
  188. "choices": choices,
  189. "label": label,
  190. }
  191. @staticmethod
  192. def build_multiple_choice_sample(
  193. text, choices, is_single_token, unified_multitask_encoding=False, use_task_mask=False
  194. ):
  195. tokenizer = get_tokenizer()
  196. sop_id = tokenizer.get_command("sop")
  197. mask_id = tokenizer.get_command("[gMASK]") if use_task_mask else tokenizer.get_command("[MASK]")
  198. token = np.array(text, dtype=np.int64)
  199. target = np.array(text, dtype=np.int64)
  200. position_id = np.arange(len(text), dtype=np.int64)
  201. choice_target_id = []
  202. blank_filling = mask_id in text
  203. if not blank_filling:
  204. mask_position = len(token)
  205. token = np.concatenate((token, [mask_id]))
  206. target = np.concatenate((target, [mask_id]))
  207. position_id = np.concatenate((position_id, [mask_position]))
  208. else:
  209. mask_position = text.index(mask_id)
  210. division = len(token)
  211. attention_mask = [np.ones((len(token), len(token)), dtype=np.int64)]
  212. for choice in choices:
  213. if len(choice) == 0:
  214. if get_model_parallel_rank() == 0:
  215. print("Empty choice found")
  216. choice = [0]
  217. if use_task_mask == False:
  218. position_id = np.concatenate(
  219. (
  220. position_id,
  221. [mask_position] * len(choice)
  222. if blank_filling or not unified_multitask_encoding
  223. else np.arange(mask_position, mask_position + len(choice), dtype=np.int64),
  224. )
  225. )
  226. else:
  227. position_id = np.concatenate(
  228. (
  229. position_id,
  230. np.arange(division, division + len(choice), dtype=np.int64),
  231. )
  232. )
  233. choice_target_id.append(np.arange(len(token), len(token) + len(choice), dtype=np.int64))
  234. attention_mask.append(np.tril(np.ones((len(choice), len(choice)), dtype=np.int64)))
  235. token = np.concatenate((token, [sop_id], choice[:-1]))
  236. target = np.concatenate((target, choice))
  237. if is_single_token:
  238. break
  239. attention_mask = block_diag(*attention_mask)
  240. attention_mask[: len(token), :division] = 1
  241. if is_single_token:
  242. choices = np.array(choices, dtype=np.int64).squeeze().tolist()
  243. item = {
  244. "token": token,
  245. "position_id": position_id,
  246. "attention_mask": attention_mask,
  247. "choices": choices,
  248. "choice_target_ids": choice_target_id[0] if is_single_token else choice_target_id,
  249. }
  250. return item
  251. def __getitem__(self, idx):
  252. item = self.data[idx]
  253. return self.build_multiple_choice_sample(
  254. item["text"],
  255. item["choices"],
  256. is_single_token=self.is_single_token,
  257. unified_multitask_encoding=self.config.use_multitask_encoding,
  258. use_task_mask=self.config.use_task_mask,
  259. )
  260. class LanguageModelTaskDataset(EvaluationDataset):
  261. config: LanguageModelTaskConfig
  262. left_weights: List[int]
  263. weights: List[int]
  264. def process_single_file(self, path):
  265. num_sequences = []
  266. with open(os.path.join(path), "r", encoding="utf-8") as file:
  267. raw_text = file.read()
  268. tokens = self.tokenizer.tokenize(raw_text)
  269. self.data.append(
  270. {
  271. "raw_text": tokens,
  272. "num_original_tokens": len(raw_text.strip().split(" ")),
  273. "num_sequences": max(
  274. math.ceil(
  275. max(len(tokens) - (self.config.max_seq_length - 1), 0) / self.config.generation_length
  276. )
  277. + 1,
  278. 1,
  279. ),
  280. }
  281. )
  282. num_sequences.append(self.data[-1]["num_sequences"])
  283. self.weights = list(accumulate(num_sequences))
  284. self.left_weights = [0] + self.weights[:-1]
  285. def process_single_item(self, item):
  286. pass
  287. def __len__(self):
  288. return self.data[0]["num_sequences"]
  289. def __getitem__(self, idx):
  290. document_idx = bisect_right(self.weights, idx)
  291. idx = idx - self.left_weights[document_idx]
  292. start_idx = idx * self.config.generation_length
  293. end_idx = start_idx + self.config.max_seq_length - 1 # for additional [gMASK]
  294. tokens = self.data[document_idx]["raw_text"][start_idx:end_idx]
  295. mask_id = self.gmask_id if self.config.use_task_mask else self.mask_id
  296. sop_id = self.tokenizer.get_command("sop")
  297. if idx == 0 or self.config.unidirectional:
  298. prompt, text = [], tokens
  299. else:
  300. prompt_length = self.config.max_seq_length - 1 - self.config.generation_length
  301. prompt, text = tokens[:prompt_length], tokens[prompt_length:]
  302. seq_length = len(prompt) + len(text) + 1
  303. attention_mask = np.tril(np.ones((seq_length, seq_length), dtype=np.int64))
  304. attention_mask[: len(prompt) + 1, : len(prompt) + 1] = 1
  305. return {
  306. "tokens": np.array(prompt + [mask_id, sop_id] + text[:-1], dtype=np.int64),
  307. "targets": np.array(prompt + [mask_id] + text, dtype=np.int64),
  308. "position_ids": np.arange(0, seq_length, dtype=np.int64),
  309. "attention_mask": attention_mask < 0.5,
  310. "loss_masks": np.array([0] * (len(prompt) + 1) + [1] * len(text), dtype=np.int64),
  311. }