2
0

tasks.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. import torch
  2. import time
  3. import numpy as np
  4. import torch.distributed as dist
  5. from typing import Dict, Callable, Type, Tuple, List, Any
  6. from abc import ABC, abstractmethod
  7. from glob import glob
  8. from os.path import join, relpath
  9. from collections import defaultdict
  10. from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy
  11. from SwissArmyTransformer.tokenization.icetk_glm_130B.ice_tokenizer import _IceTokenizer
  12. from generation import BeamSearchStrategy
  13. from .configs import BaseConfig, GenerationTaskConfig, MultiChoiceTaskConfig
  14. from .model import ModelForEvaluation
  15. from .dataset import EvaluationDataset, GenerationTaskDataset, MultiChoiceTaskDataset
  16. from .utils import build_data_loader, gather_result, print_rank_0
  17. from .metrics import DEFAULT_METRICS
  18. class BaseTask(ABC):
  19. model: ModelForEvaluation
  20. tokenizer: _IceTokenizer
  21. config: BaseConfig
  22. file_groups: Dict[str, List[str]]
  23. @classmethod
  24. def config_class(cls) -> Type[BaseConfig]:
  25. return BaseConfig
  26. @property
  27. def metrics(self) -> Dict[str, Callable]:
  28. return {metric: DEFAULT_METRICS[metric] for metric in self.config.metrics}
  29. def __init__(self, model: ModelForEvaluation, tokenizer: _IceTokenizer, config: BaseConfig):
  30. self.model = model
  31. self.tokenizer = tokenizer
  32. self.config = config
  33. self.config.metrics = list(self.metrics.keys())
  34. self.file_groups = self.get_file_groups()
  35. self.verbose = dist.get_rank() == 0
  36. def get_file_groups(self):
  37. pattern_group = {}
  38. if isinstance(self.config.file_pattern, str):
  39. pattern_group["all"] = self.config.file_pattern
  40. else:
  41. pattern_group = self.config.file_pattern
  42. return {
  43. name: [
  44. relpath(path, start=self.config.path)
  45. for path in sorted(glob(join(self.config.path, pattern), recursive=True))
  46. ]
  47. for name, pattern in pattern_group.items()
  48. }
  49. def evaluate(self):
  50. dist.barrier()
  51. start = time.time()
  52. print_rank_0("\n")
  53. print_rank_0(f"{self.config}")
  54. print_rank_0(f"Evaluating task {self.config.name}:")
  55. result_dict_all = {}
  56. for group_name, filelist in self.file_groups.items():
  57. print_rank_0(f" Evaluating group {group_name}:")
  58. result_dict_group = {}
  59. for file in filelist:
  60. dataset = self.build_dataset(file)
  61. dataloader = build_data_loader(
  62. dataset,
  63. micro_batch_size=self.config.micro_batch_size,
  64. num_workers=1,
  65. drop_last=False,
  66. collate_fn=dataset.collate_fn if dataset.has_collate_fn else None,
  67. )
  68. prediction = []
  69. with torch.no_grad():
  70. for _, batch in enumerate(dataloader):
  71. prediction.append(self.predict_single_batch(batch))
  72. prediction = gather_result(prediction, len(dataset), self.config.micro_batch_size)
  73. result_dict = {key: metric(prediction, dataset.data) for key, metric in self.metrics.items()}
  74. result_dict_group[file] = (result_dict, len(dataset))
  75. if self.verbose:
  76. self.report_single_metrics(file, result_dict)
  77. result_dict_all[group_name] = result_dict_group
  78. print_rank_0(f"Evaluation results of task {self.config.name}:")
  79. if self.verbose:
  80. for group_name, result_dict_group in result_dict_all.items():
  81. self.report_group_metrics(group_name, result_dict_group)
  82. self.report_overall_metrics(
  83. {k: v for result_dict_group in result_dict_all.values() for k, v in result_dict_group.items()},
  84. )
  85. print_rank_0(f"Finish task {self.config.name} in {time.time() - start:.1f}s.")
  86. def report_single_metrics(self, file: str, result_dict: Dict[str, float]):
  87. output_str = f" Finish {file}"
  88. for key, value in result_dict.items():
  89. output_str += f", {key} = {value:.3f}"
  90. print_rank_0(output_str)
  91. @staticmethod
  92. def calc_group_metrics(result_dict_group: Dict[str, Tuple[Dict[str, float], int]]):
  93. metrics_dict = defaultdict(lambda: [])
  94. weight = []
  95. for file, (result_dict, length) in result_dict_group.items():
  96. for key, value in result_dict.items():
  97. metrics_dict[key].append(value)
  98. weight.append(length)
  99. return {
  100. name: {
  101. "max": np.max(value),
  102. "median": np.median(value),
  103. "average": np.average(value, weights=weight),
  104. }
  105. for name, value in metrics_dict.items()
  106. }
  107. def report_group_metrics(self, group_name, result_dict_group: Dict[str, Tuple[Dict[str, float], int]], level=1):
  108. stats_dict = self.calc_group_metrics(result_dict_group)
  109. if len(stats_dict) == 1:
  110. name, stats = next(iter(stats_dict.items()))
  111. print_rank_0(
  112. " " * level + f"Group {group_name} {name}: max = {stats['max']:.3f}, "
  113. f"median = {stats['median']:.3f}, average = {stats['average']:.3f}"
  114. )
  115. else:
  116. print_rank_0(" " * level + f" Group {group_name}: ")
  117. for name, stats in stats_dict.items():
  118. print(
  119. " " * (level + 1) + f"Metric {name}: max = {stats['max']:.3f}, "
  120. f"median = {stats['median']:.3f}, average = {stats['average']:.3f}"
  121. )
  122. def report_overall_metrics(self, result_dict_all: Dict[str, Tuple[Dict[str, float], int]]):
  123. pass
  124. @abstractmethod
  125. def predict_single_batch(self, batch) -> List[Any]:
  126. pass
  127. @abstractmethod
  128. def build_dataset(self, relative_path: str) -> EvaluationDataset:
  129. pass
  130. class GenerationTask(BaseTask, ABC):
  131. config: GenerationTaskConfig
  132. @classmethod
  133. def config_class(cls):
  134. return GenerationTaskConfig
  135. def build_dataset(self, relative_path):
  136. return GenerationTaskDataset(join(self.config.path, relative_path), self.config)
  137. def __init__(self, model: ModelForEvaluation, tokenizer: _IceTokenizer, config: GenerationTaskConfig):
  138. super(GenerationTask, self).__init__(model, tokenizer, config)
  139. end_tokens = [tokenizer.get_command("eop"), tokenizer.get_command("eos")]
  140. if self.config.sampling_strategy == "BaseStrategy":
  141. self.strategy = BaseStrategy(temperature=1.0, top_k=1, end_tokens=end_tokens)
  142. elif self.config.sampling_strategy == "BeamSearchStrategy":
  143. self.strategy = BeamSearchStrategy(
  144. self.config.num_beams,
  145. length_penalty=self.config.length_penalty,
  146. consider_end=True,
  147. end_tokens=end_tokens,
  148. no_repeat_ngram_size=self.config.no_repeat_ngram_size,
  149. min_gen_length=self.config.min_gen_length,
  150. deterministic=True, # For evaluation, we need a determined generation strategy
  151. )
  152. else:
  153. raise ValueError(f"unknown strategy {self.config.sampling_strategy}")
  154. def predict_single_batch(self, batch) -> List[List[int]]:
  155. # micro batch size = 1 for generation task,
  156. # but we still need to return a list of predictions for consistency
  157. output = self.model.generate_text(batch, self.strategy, return_all_beams=False)
  158. return [output]
  159. class MultiChoiceTask(BaseTask, ABC):
  160. config: MultiChoiceTaskConfig
  161. @classmethod
  162. def config_class(cls):
  163. return MultiChoiceTaskConfig
  164. def build_dataset(self, relative_path):
  165. return MultiChoiceTaskDataset(join(self.config.path, relative_path), self.config)
  166. def predict_single_batch(self, batch) -> List[int]:
  167. log_probs = self.model.cond_log_prob(batch)
  168. return [np.argmax(log_probs_single).item() for log_probs_single in log_probs]