123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- import torch
- import torch.nn.functional as F
- class BeamSearchStrategy:
- def __init__(
- self,
- num_beams,
- length_penalty=1.0,
- consider_end=False,
- end_tokens=[],
- invalid_slices=[],
- no_repeat_ngram_size=0,
- min_gen_length=0,
- deterministic=False,
- ):
- self.num_beams = num_beams
- self.length_penalty = length_penalty
- self.end_tokens = end_tokens
- self.ngram = no_repeat_ngram_size
- self.min_gen_length = min_gen_length
- self.invalid_slices = invalid_slices
- self.consider_end = consider_end
- self.deterministic = deterministic
- self._init_cache()
- def _init_cache(self):
- self.end_beams = [] # list of LongTensors
- self.end_beams_penalized_scores = [] # list of LongTensors
- self.cached_beam_scores = 0 # [batch_size]
- self.cached_beam_ngram_bans = [{} for i in range(self.num_beams)]
- self.length_generated = 0
- self.is_done = False
- def _add_end_beams(self, score, beam):
- score = score / ((5.0 + len(beam)) / 6) ** self.length_penalty # Magic number for OpenNMT
- for i in range(len(self.end_beams), -1, -1):
- if i == 0 or score < self.end_beams_penalized_scores[i - 1]:
- break
- self.end_beams.insert(i, beam)
- self.end_beams_penalized_scores.insert(i, score)
- self.end_beams = self.end_beams[: self.num_beams]
- self.end_beams_penalized_scores = self.end_beams_penalized_scores[: self.num_beams]
- def forward(self, logits, tokens, mems):
- batch_size, vocab_size = logits.shape
- seq_len = tokens.shape[-1]
- logits = logits.float()
- for invalid_slice in self.invalid_slices:
- logits[..., invalid_slice] = -65504
- if self.min_gen_length > self.length_generated:
- for end_token in self.end_tokens:
- logits[..., end_token] = -65504
- if self.ngram > 0 and seq_len > self.ngram:
- for i in range(batch_size):
- ngram_prefix = tokens[i, -(self.ngram - 1) :].tolist() # TODO ngram=1
- for banned_index in self.cached_beam_ngram_bans[i].get(tuple(ngram_prefix), []):
- logits[i, banned_index] = -65504
- next_token_scores = F.log_softmax(logits, dim=-1) # [batch_size, vocab_size]
- prev_scores = self.cached_beam_scores
- if isinstance(self.cached_beam_scores, torch.Tensor):
- prev_scores = prev_scores[:, None].expand_as(next_token_scores)
- next_token_scores = next_token_scores + prev_scores
- next_token_scores = next_token_scores.view(batch_size * vocab_size)
- probs = F.softmax(next_token_scores, dim=0)
- if self.deterministic:
- if mems.shape[1] < batch_size: # First token
- probs = probs[:vocab_size]
- next_tokens = torch.topk(probs, k=(max(1, len(self.end_tokens)) + 1) * self.num_beams).indices # [2*nb]
- else:
- next_tokens = torch.multinomial(
- probs, num_samples=(max(1, len(self.end_tokens)) + 1) * self.num_beams
- ) # [2*nb]
- next_token_scores = next_token_scores[next_tokens]
- next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=0)
- next_tokens = next_tokens[_indices]
- next_indices = torch.div(next_tokens, vocab_size, rounding_mode="trunc")
- next_tokens = next_tokens % vocab_size
- # select out end beams or continue beams
- if mems.shape[1] < batch_size:
- mems = mems.expand(-1, batch_size, -1, -1)
- beam_continue = []
- scores_continue = []
- bans_continue = []
- mems_contiue = []
- for i in range(len(next_tokens)):
- beam = torch.cat((tokens[next_indices[i]], next_tokens[i : i + 1]))
- if int(next_tokens[i]) in self.end_tokens:
- self._add_end_beams(next_token_scores[i], beam)
- elif len(beam_continue) < self.num_beams:
- beam_continue.append(beam)
- mems_contiue.append(mems[:, next_indices[i]])
- # update caches
- scores_continue.append(next_token_scores[i])
- if self.ngram > 0:
- bans = self.cached_beam_ngram_bans[next_indices[i]].copy()
- ngram_prefix = tuple(tokens[next_indices[i], -(self.ngram - 1) :].tolist()) # TODO ngram=1
- bans[ngram_prefix] = bans.get(ngram_prefix, tuple()) + (next_tokens[i],)
- bans_continue.append(bans)
- else:
- break
- tokens = torch.stack(beam_continue)
- mems = torch.stack(mems_contiue, dim=1)
- self.cached_beam_scores = torch.tensor(scores_continue, device=logits.device)
- self.cached_beam_ngram_bans = bans_continue
- self.length_generated += 1
- if (
- len(self.end_beams) == self.num_beams
- and self.end_beams_penalized_scores[-1]
- >= self.cached_beam_scores.max() / ((5.0 + (seq_len + 1)) / 6) ** self.length_penalty
- ): # We're done if none of current tokens will better than the worst in end_beams
- self.is_done = True
- return tokens, mems
- def finalize(self, tokens, mems):
- if self.consider_end:
- for i in range(tokens.shape[0]):
- self._add_end_beams(self.cached_beam_scores[i], tokens[i])
- mems = None
- ret = self.end_beams
- else:
- ret = tokens
- self._init_cache()
- return ret, mems
|