123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- import argparse
- import torch
- import time
- from SwissArmyTransformer import get_args, get_tokenizer
- from SwissArmyTransformer.arguments import initialize_distributed
- from SwissArmyTransformer.training import load_checkpoint
- from SwissArmyTransformer.model import GLM130B
- def add_bminf_args(parser):
- """Arguments for BMInf"""
- group = parser.add_argument_group("BMInf")
- group.add_argument("--bminf", action="store_true", help="Use BMInf to support low resource evaluation")
- group.add_argument("--bminf-memory-limit", type=int, default=20, help="Max memory for model per GPU (in GB)")
- return parser
- def initialize(extra_args_provider):
- parser = argparse.ArgumentParser(add_help=False)
- add_bminf_args(parser)
- GLM130B.add_model_specific_args(parser)
- extra_args_provider(parser)
- known, args_list = parser.parse_known_args()
- args = get_args(args_list)
- args = argparse.Namespace(**vars(args), **vars(known))
- args.do_train = False
- initialize_distributed(args)
- return args
- def initialize_model_and_tokenizer(args):
- tokenizer = get_tokenizer(args)
- model = GLM130B(args).half()
- if args.bminf:
- import bminf
- with torch.cuda.device(args.device):
- model = bminf.wrapper(model, quantization=False, memory_limit=args.bminf_memory_limit << 30)
- else:
- model = model.to(args.device)
- torch.distributed.barrier()
- start = time.time()
- load_checkpoint(model, args)
- torch.distributed.barrier()
- if torch.distributed.get_rank() == 0:
- print(f"> Checkpoint loaded in {time.time() - start:.1f}s")
- model.eval()
- # generate rotary embedding cache
- with torch.no_grad():
- _, *_ = model(
- torch.ones(1, 1, device=torch.cuda.current_device(), dtype=torch.int64),
- torch.ones(1, 1, device=torch.cuda.current_device(), dtype=torch.int64) * args.max_sequence_length,
- torch.ones(1, 1, 1, 1, device=torch.cuda.current_device(), dtype=torch.bool),
- )
- torch.distributed.barrier()
- return model, tokenizer
|