initialize.py 2.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. import argparse
  2. import torch
  3. import time
  4. from quantization import quantize
  5. from SwissArmyTransformer import get_args, get_tokenizer
  6. from SwissArmyTransformer.arguments import initialize_distributed
  7. from SwissArmyTransformer.training import load_checkpoint
  8. from SwissArmyTransformer.model import GLM130B
  9. def add_bminf_args(parser):
  10. """Arguments for BMInf"""
  11. group = parser.add_argument_group("BMInf")
  12. group.add_argument("--bminf", action="store_true", help="Use BMInf to support low resource evaluation")
  13. group.add_argument("--bminf-memory-limit", type=int, default=20, help="Max memory for model per GPU (in GB)")
  14. return parser
  15. def add_quantization_args(parser):
  16. group = parser.add_argument_group("Quantization")
  17. group.add_argument("--quantization-bit-width", type=int, default=None)
  18. def initialize(extra_args_provider):
  19. parser = argparse.ArgumentParser(add_help=False)
  20. add_bminf_args(parser)
  21. add_quantization_args(parser)
  22. GLM130B.add_model_specific_args(parser)
  23. extra_args_provider(parser)
  24. known, args_list = parser.parse_known_args()
  25. args = get_args(args_list)
  26. args = argparse.Namespace(**vars(args), **vars(known))
  27. args.do_train = False
  28. initialize_distributed(args)
  29. return args
  30. def initialize_model_and_tokenizer(args):
  31. tokenizer = get_tokenizer(args)
  32. # Initialize model
  33. model = GLM130B(args).half()
  34. # Load checkpoint
  35. torch.distributed.barrier()
  36. start = time.time()
  37. load_checkpoint(model, args)
  38. torch.distributed.barrier()
  39. if torch.distributed.get_rank() == 0:
  40. print(f"> Checkpoint loaded in {time.time() - start:.1f}s")
  41. if args.bminf:
  42. import bminf
  43. with torch.cuda.device(args.device):
  44. model = bminf.wrapper(model, quantization=False, memory_limit=args.bminf_memory_limit << 30)
  45. else:
  46. if args.quantization_bit_width is not None:
  47. # Quantize model before moving to GPU
  48. model = quantize(model, args.quantization_bit_width)
  49. model = model.to(args.device)
  50. torch.cuda.empty_cache()
  51. model.eval()
  52. # generate rotary embedding cache
  53. with torch.no_grad():
  54. _, *_ = model(
  55. torch.ones(1, 1, device=torch.cuda.current_device(), dtype=torch.int64),
  56. torch.ones(1, 1, device=torch.cuda.current_device(), dtype=torch.int64) * args.max_sequence_length,
  57. torch.ones(1, 1, 1, 1, device=torch.cuda.current_device(), dtype=torch.bool),
  58. )
  59. torch.distributed.barrier()
  60. return model, tokenizer