tasks.py 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231
  1. import torch
  2. import time
  3. import numpy as np
  4. import torch.distributed as dist
  5. from typing import Dict, Callable, Type, Tuple, List, Any
  6. from abc import ABC, abstractmethod
  7. from glob import glob
  8. from os.path import join, relpath
  9. from collections import defaultdict
  10. from SwissArmyTransformer.tokenization.icetk_glm_130B.ice_tokenizer import _IceTokenizer
  11. from generation import BaseStrategy, BeamSearchStrategy
  12. from .configs import BaseConfig, GenerationTaskConfig, MultiChoiceTaskConfig, LanguageModelTaskConfig
  13. from .model import ModelForEvaluation
  14. from .dataset import EvaluationDataset, GenerationTaskDataset, MultiChoiceTaskDataset, LanguageModelTaskDataset
  15. from .utils import build_data_loader, gather_result, print_rank_0
  16. from .metrics import DEFAULT_METRICS
  17. class BaseTask(ABC):
  18. model: ModelForEvaluation
  19. tokenizer: _IceTokenizer
  20. config: BaseConfig
  21. file_groups: Dict[str, List[str]]
  22. @classmethod
  23. def config_class(cls) -> Type[BaseConfig]:
  24. return BaseConfig
  25. @property
  26. def metrics(self) -> Dict[str, Callable]:
  27. return {metric: DEFAULT_METRICS[metric] for metric in self.config.metrics}
  28. def __init__(self, model: ModelForEvaluation, tokenizer: _IceTokenizer, config: BaseConfig):
  29. self.model = model
  30. self.tokenizer = tokenizer
  31. self.config = config
  32. self.config.metrics = list(self.metrics.keys())
  33. self.file_groups = self.get_file_groups()
  34. self.verbose = dist.get_rank() == 0
  35. self.save_prediction = config.save_prediction
  36. def save_prediction_to_file(self, file, prediction, data):
  37. pass
  38. def get_file_groups(self):
  39. pattern_group = {}
  40. if isinstance(self.config.file_pattern, str):
  41. pattern_group["all"] = self.config.file_pattern
  42. else:
  43. pattern_group = self.config.file_pattern
  44. return {
  45. name: [
  46. relpath(path, start=self.config.path)
  47. for path in sorted(glob(join(self.config.path, pattern), recursive=True))
  48. ]
  49. for name, pattern in pattern_group.items()
  50. }
  51. def evaluate(self):
  52. dist.barrier()
  53. start = time.time()
  54. print_rank_0("\n")
  55. print_rank_0(f"{self.config}")
  56. print_rank_0(f"Evaluating task {self.config.name}:")
  57. result_dict_all = {}
  58. for group_name, filelist in self.file_groups.items():
  59. print_rank_0(f" Evaluating group {group_name}:")
  60. result_dict_group = {}
  61. for file in filelist:
  62. dataset = self.build_dataset(file)
  63. dataloader = build_data_loader(
  64. dataset,
  65. micro_batch_size=self.config.micro_batch_size,
  66. num_workers=1,
  67. drop_last=False,
  68. collate_fn=dataset.collate_fn if dataset.has_collate_fn else None,
  69. )
  70. prediction = []
  71. with torch.no_grad():
  72. for _, batch in enumerate(dataloader):
  73. prediction.append(self.predict_single_batch(batch))
  74. prediction = gather_result(prediction, len(dataset), self.config.micro_batch_size)
  75. result_dict = {key: metric(prediction, dataset.data) for key, metric in self.metrics.items()}
  76. result_dict_group[file] = (result_dict, len(dataset))
  77. if torch.distributed.get_rank() == 0 and self.save_prediction:
  78. self.save_prediction_to_file(file, prediction, dataset.data)
  79. if self.verbose:
  80. self.report_single_metrics(file, result_dict)
  81. result_dict_all[group_name] = result_dict_group
  82. print_rank_0(f"Evaluation results of task {self.config.name}:")
  83. if self.verbose:
  84. for group_name, result_dict_group in result_dict_all.items():
  85. self.report_group_metrics(group_name, result_dict_group)
  86. self.report_overall_metrics(
  87. {k: v for result_dict_group in result_dict_all.values() for k, v in result_dict_group.items()},
  88. )
  89. print_rank_0(f"Finish task {self.config.name} in {time.time() - start:.1f}s.")
  90. def report_single_metrics(self, file: str, result_dict: Dict[str, float]):
  91. output_str = f" Finish {file}"
  92. for key, value in result_dict.items():
  93. output_str += f", {key} = {value:.3f}"
  94. print_rank_0(output_str)
  95. @staticmethod
  96. def calc_group_metrics(result_dict_group: Dict[str, Tuple[Dict[str, float], int]]):
  97. metrics_dict = defaultdict(lambda: [])
  98. weight = []
  99. for file, (result_dict, length) in result_dict_group.items():
  100. for key, value in result_dict.items():
  101. metrics_dict[key].append(value)
  102. weight.append(length)
  103. return {
  104. name: {
  105. "max": np.max(value),
  106. "median": np.median(value),
  107. "average": np.average(value, weights=weight),
  108. }
  109. for name, value in metrics_dict.items()
  110. }
  111. def report_group_metrics(self, group_name, result_dict_group: Dict[str, Tuple[Dict[str, float], int]], level=1):
  112. stats_dict = self.calc_group_metrics(result_dict_group)
  113. if len(stats_dict) == 1:
  114. name, stats = next(iter(stats_dict.items()))
  115. print_rank_0(
  116. " " * level + f"Group {group_name} {name}: max = {stats['max']:.3f}, "
  117. f"median = {stats['median']:.3f}, average = {stats['average']:.3f}"
  118. )
  119. else:
  120. print_rank_0(" " * level + f" Group {group_name}: ")
  121. for name, stats in stats_dict.items():
  122. print(
  123. " " * (level + 1) + f"Metric {name}: max = {stats['max']:.3f}, "
  124. f"median = {stats['median']:.3f}, average = {stats['average']:.3f}"
  125. )
  126. def report_overall_metrics(self, result_dict_all: Dict[str, Tuple[Dict[str, float], int]]):
  127. pass
  128. @abstractmethod
  129. def predict_single_batch(self, batch) -> List[Any]:
  130. pass
  131. @abstractmethod
  132. def build_dataset(self, relative_path: str) -> EvaluationDataset:
  133. pass
  134. class GenerationTask(BaseTask, ABC):
  135. config: GenerationTaskConfig
  136. @classmethod
  137. def config_class(cls):
  138. return GenerationTaskConfig
  139. def build_dataset(self, relative_path):
  140. return GenerationTaskDataset(join(self.config.path, relative_path), self.config)
  141. def __init__(self, model: ModelForEvaluation, tokenizer: _IceTokenizer, config: GenerationTaskConfig):
  142. super(GenerationTask, self).__init__(model, tokenizer, config)
  143. end_tokens = [tokenizer.get_command("eop"), tokenizer.get_command("eos")]
  144. if self.config.end_tokens:
  145. for token in self.config.end_tokens:
  146. end_tokens.append(self.tokenizer.tokenize(token)[-1])
  147. print_rank_0(f"End tokens {end_tokens}")
  148. if self.config.sampling_strategy == "BaseStrategy":
  149. self.strategy = BaseStrategy(batch_size=self.config.micro_batch_size, temperature=1.0, top_k=1,
  150. end_tokens=end_tokens)
  151. elif self.config.sampling_strategy == "BeamSearchStrategy":
  152. self.strategy = BeamSearchStrategy(
  153. self.config.micro_batch_size,
  154. self.config.num_beams,
  155. length_penalty=self.config.length_penalty,
  156. consider_end=True,
  157. end_tokens=end_tokens,
  158. no_repeat_ngram_size=self.config.no_repeat_ngram_size,
  159. min_gen_length=self.config.min_gen_length,
  160. deterministic=True, # For evaluation, we need a determined generation strategy
  161. )
  162. else:
  163. raise ValueError(f"unknown strategy {self.config.sampling_strategy}")
  164. def predict_single_batch(self, batch) -> List[List[int]]:
  165. output = self.model.generate_text(batch, self.strategy, return_all_beams=False)
  166. return output
  167. class MultiChoiceTask(BaseTask, ABC):
  168. config: MultiChoiceTaskConfig
  169. @classmethod
  170. def config_class(cls):
  171. return MultiChoiceTaskConfig
  172. def build_dataset(self, relative_path):
  173. return MultiChoiceTaskDataset(join(self.config.path, relative_path), self.config)
  174. def predict_single_batch(self, batch) -> List[int]:
  175. log_probs = self.model.cond_log_prob(batch)
  176. return [np.argmax(log_probs_single).item() for log_probs_single in log_probs]
  177. class LanguageModelTask(BaseTask, ABC):
  178. config: LanguageModelTaskConfig
  179. @classmethod
  180. def config_class(cls):
  181. return LanguageModelTaskConfig
  182. def build_dataset(self, relative_path):
  183. return LanguageModelTaskDataset(join(self.config.path, relative_path), self.config)
  184. def predict_single_batch(self, batch) -> List[float]:
  185. return self.model.calculate_loss(batch)