123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- import numpy as np
- import torch
- import torch.nn.functional as F
- from SwissArmyTransformer.generation.sampling_strategies.base_strategy import top_k_logits
- class BaseStrategy:
- def __init__(self, batch_size, invalid_slices=[], temperature=1.0, top_k=200, eps=1e-4, top_p=0.0, end_tokens=None):
- self.batch_size = batch_size
- self.invalid_slices = invalid_slices
- self.temperature = temperature
- self.topk = top_k
- self.top_p = top_p
- self.eps = eps
- if end_tokens is None:
- end_tokens = []
- self.end_tokens = end_tokens
- self._is_done = np.zeros(self.batch_size, dtype=np.bool)
- @property
- def is_done(self) -> bool:
- return self._is_done.all()
- def forward(self, logits, tokens, mems, temperature=None):
- logits = logits.view(-1, logits.size(-1))
- batch_size = tokens.shape[0]
- if temperature is None:
- temperature = self.temperature
- logits = logits / temperature
- for invalid_slice in self.invalid_slices:
- logits[..., invalid_slice] = -65504
- logits = top_k_logits(logits, self.topk, self.top_p)
- probs = F.softmax(logits.float(), dim=-1) # float is essetial, due to a bug in Pytorch
- pred = torch.multinomial(probs, num_samples=1)
- for i in range(self.batch_size):
- if i >= batch_size:
- self._is_done[i] = True
- elif self._is_done[i]:
- pred[i] = -1
- elif pred[i].item() in self.end_tokens:
- self._is_done[i] = True
- tokens = torch.cat((tokens, pred.view(tokens.shape[:-1] + (1,))), dim=-1)
- return tokens, mems
- def finalize(self, tokens, mems):
- self._is_done = np.zeros(self.batch_size, dtype=np.bool)
- return tokens, mems
- class BeamSearchStrategy:
- def __init__(
- self,
- batch_size,
- num_beams,
- length_penalty=1.0,
- consider_end=False,
- end_tokens=[],
- invalid_slices=[],
- no_repeat_ngram_size=0,
- min_gen_length=0,
- deterministic=False,
- ):
- self.batch_size = batch_size
- self.num_beams = num_beams
- self.length_penalty = length_penalty
- self.end_tokens = end_tokens
- self.ngram = no_repeat_ngram_size
- self.min_gen_length = min_gen_length
- self.invalid_slices = invalid_slices
- self.consider_end = consider_end
- self.deterministic = deterministic
- self._init_cache()
- def _init_cache(self):
- self.end_beams = [[] for _ in range(self.batch_size)] # list of LongTensors
- self.end_beams_penalized_scores = [[] for _ in range(self.batch_size)] # list of LongTensors
- self.cached_beam_scores = 0 # [batch_size]
- self.cached_beam_ngram_bans = [[{} for _ in range(self.num_beams)] for _ in range(self.batch_size)]
- self.length_generated = 0
- self._is_done = np.zeros(self.batch_size, dtype=np.bool)
- def _add_end_beams(self, score, beam, batch_idx):
- score = score / ((5.0 + len(beam)) / 6) ** self.length_penalty # Magic number for OpenNMT
- for i in range(len(self.end_beams[batch_idx]), -1, -1):
- if i == 0 or score < self.end_beams_penalized_scores[batch_idx][i - 1]:
- break
- self.end_beams[batch_idx].insert(i, beam)
- self.end_beams_penalized_scores[batch_idx].insert(i, score)
- self.end_beams[batch_idx] = self.end_beams[batch_idx][: self.num_beams]
- self.end_beams_penalized_scores[batch_idx] = self.end_beams_penalized_scores[batch_idx][: self.num_beams]
- @property
- def is_done(self) -> bool:
- return self._is_done.all()
- def forward(self, logits, tokens, mems):
- batch_size, num_beams, vocab_size = logits.shape
- seq_len = tokens.shape[-1]
- logits = logits.float()
- for invalid_slice in self.invalid_slices:
- logits[..., invalid_slice] = -65504
- if self.min_gen_length > self.length_generated:
- for end_token in self.end_tokens:
- logits[..., end_token] = -65504
- if self.ngram > 0 and seq_len > self.ngram:
- for batch_idx in range(batch_size):
- for i in range(num_beams):
- ngram_prefix = tokens[batch_idx, i, -(self.ngram - 1) :].tolist() # TODO ngram=1
- for banned_index in self.cached_beam_ngram_bans[batch_idx][i].get(tuple(ngram_prefix), []):
- logits[batch_idx, i, banned_index] = -65504
- next_token_scores = F.log_softmax(logits, dim=-1) # [batch_size, vocab_size]
- prev_scores = self.cached_beam_scores
- if isinstance(prev_scores, torch.Tensor):
- prev_scores = prev_scores[..., None].expand_as(next_token_scores)
- next_token_scores = next_token_scores + prev_scores
- next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
- probs = F.softmax(next_token_scores, dim=-1)
- if num_beams < self.num_beams: # First token
- probs = probs[..., :vocab_size]
- if self.deterministic:
- next_tokens = torch.topk(probs, k=(max(1, len(self.end_tokens)) + 1) * self.num_beams).indices # [2*nb]
- else:
- next_tokens = torch.multinomial(
- probs, num_samples=(max(1, len(self.end_tokens)) + 1) * self.num_beams
- ) # [2*nb]
- next_token_scores = next_token_scores[torch.arange(batch_size).unsqueeze(1), next_tokens]
- next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1)
- next_tokens = next_tokens[torch.arange(batch_size).unsqueeze(1), _indices]
- next_indices = torch.div(next_tokens, vocab_size, rounding_mode="trunc")
- next_tokens = next_tokens % vocab_size
- # select out end beams or continue beams
- beam_continue_batch, score_continue_batch, mems_continue_batch = [], [], []
- for batch_idx in range(batch_size):
- beam_continue = []
- scores_continue = []
- bans_continue = []
- mems_contiue = []
- for i in range(len(next_tokens[batch_idx])):
- beam = torch.cat((tokens[batch_idx, next_indices[batch_idx, i]], next_tokens[batch_idx, i : i + 1]))
- if not self._is_done[batch_idx] and int(next_tokens[batch_idx, i]) in self.end_tokens:
- self._add_end_beams(next_token_scores[batch_idx, i], beam, batch_idx)
- elif len(beam_continue) < self.num_beams:
- beam_continue.append(beam)
- mems_contiue.append(mems[:, batch_idx, next_indices[batch_idx, i]])
- # update caches
- scores_continue.append(next_token_scores[batch_idx, i])
- if self.ngram > 0:
- bans = self.cached_beam_ngram_bans[batch_idx][next_indices[batch_idx, i]].copy()
- # TODO ngram=1
- ngram_prefix = tuple(
- tokens[batch_idx, next_indices[batch_idx, i], -(self.ngram - 1) :].tolist()
- )
- bans[ngram_prefix] = bans.get(ngram_prefix, tuple()) + (next_tokens[batch_idx, i],)
- bans_continue.append(bans)
- else:
- break
- beam_continue_batch.append(torch.stack(beam_continue))
- mems_continue_batch.append(torch.stack(mems_contiue, dim=1))
- score_continue_batch.append(scores_continue)
- self.cached_beam_ngram_bans[batch_idx] = bans_continue
- tokens = torch.stack(beam_continue_batch)
- mems = torch.stack(mems_continue_batch, dim=1)
- self.cached_beam_scores = torch.tensor(score_continue_batch, device=logits.device)
- self.length_generated += 1
- for batch_idx in range(self.batch_size):
- if batch_idx >= batch_size:
- self._is_done[batch_idx] = True
- elif (
- len(self.end_beams[batch_idx]) == self.num_beams
- and self.end_beams_penalized_scores[batch_idx][-1]
- >= self.cached_beam_scores[batch_idx].max() / ((5.0 + (seq_len + 1)) / 6) ** self.length_penalty
- ): # We're done if none of current tokens will better than the worst in end_beams
- self._is_done[batch_idx] = True
- return tokens, mems
- def finalize(self, tokens, mems):
- if self.consider_end:
- batch_size, num_beams = tokens.shape[:2]
- for batch_idx in range(batch_size):
- if not self._is_done[batch_idx]:
- for i in range(num_beams):
- self._add_end_beams(self.cached_beam_scores[batch_idx, i], tokens[batch_idx, i], batch_idx)
- mems = None
- ret = self.end_beams[:batch_size]
- else:
- ret = tokens
- self._init_cache()
- return ret, mems
|