Преглед изворни кода

Sync unity.cpp

Co-authored-by: Tuan Tran <1254753+antoine-tran@users.noreply.github.com>
Co-authored-by: Guillaume Wenzek <5920036+gwenzek@users.noreply.github.com>
Co-authored-by: Ning <7022920+cndn@users.noreply.github.com>
cndn пре 1 година
родитељ
комит
5d9863544d

+ 2 - 5
ggml/README.md

@@ -11,8 +11,7 @@ To build the interactive console for S2TT & ASR,
 
 cd seamless_communication/ggml
 mkdir build; cd build
-cmake \
-    -DGGML_OPENBLAS=ON \
+cmake -DGGML_OPENBLAS=ON \
     -DBUILD_SHARED_LIBS=On \
 	  -DCMAKE_BUILD_TYPE=Release \
 	  -DCMAKE_CXX_FLAGS="-g2 -fno-omit-frame-pointer" \
@@ -20,8 +19,6 @@ cmake \
 make -j4 unity # Interactive Console
 
 ```
-Note that `-DGGML_OPENBLAS=ON` is not necessary on macOS.
-
 For more build commands see [Makefile](Makefile). 
 
 ## CLI usage
@@ -34,7 +31,7 @@ In the console, enter the path of local waveform file and target language, separ
 Converted ggml models could be downloaded from 
 |SeamlessM4T_large | SeamlessM4T_medium | 
 |-------- | -------- | 
-| [model](https://dl.fbaipublicfiles.com/seamless/models/seamlessM4T_large.ggml) | [model](https://dl.fbaipublicfiles.com/seamless/models/seamlessM4T_medium.ggml) |  
+| [model](dl.fbaipublicfiles.com/seamless/models/seamlessM4T_large.ggml) | [model](dl.fbaipublicfiles.com/seamless/models/seamlessM4T_medium.ggml) |  
 
 ## Fairseq2 model conversion 
 Models from fairseq2 checkpoints could be converted to ggml automatically with [ggml_convert.py](ggml_convert.py). 

+ 5 - 1
ggml/examples/common.h

@@ -37,8 +37,12 @@ struct gpt_params {
     int32_t n_gpu_layers     = 0;
 };
 
+bool unity_params_parse(int argc, char ** argv, unity_params & params);
+
 bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
 
+void unity_print_usage(int /*argc*/, char ** argv, const unity_params & params);
+
 void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
 
 
@@ -175,4 +179,4 @@ struct sam_params {
 
 bool sam_params_parse(int argc, char ** argv, sam_params & params);
 
-void sam_print_usage(int argc, char ** argv, const sam_params & params);
+void sam_print_usage(int argc, char ** argv, const sam_params & params);

+ 14 - 2
ggml/examples/unity/CMakeLists.txt

@@ -7,12 +7,24 @@ target_sources(fairseq2_cpp
         fairseq2.cpp
         model_loader.cpp
 )
+add_library(unity_lib)
+target_include_directories(unity_lib PRIVATE ${CMAKE_CURRENT_SOURCE_DIR})
+target_link_libraries(unity_lib PRIVATE ggml kaldi-native-fbank fairseq2_cpp)
+target_sources(unity_lib
+    PRIVATE
+        lib/unity_lib.h
+        lib/unity_lib.cpp
+)
+
 add_executable(unity unity.cpp)
 find_package(PkgConfig REQUIRED)
-pkg_check_modules(SNDFILE REQUIRED IMPORTED_TARGET sndfile)
-target_link_libraries(unity PRIVATE ggml PkgConfig::SNDFILE)
+pkg_check_modules(SNDFILE REQUIRED sndfile)
+target_include_directories(unity PRIVATE ${CMAKE_CURRENT_SOURCE_DIR} ${SNDFILE_INCLUDE_DIRS})
+target_link_libraries(unity PRIVATE ggml unity_lib ${SNDFILE_LIBRARIES})
 target_sources(unity
     PRIVATE
         fairseq2.cpp
         model_loader.cpp
+        lib/unity_lib.h
+        lib/unity_lib.cpp
 )

+ 160 - 51
ggml/examples/unity/fairseq2.cpp

@@ -11,6 +11,8 @@
 #include "ggml.h"
 #include "ggml-alloc.h"
 
+#include <numeric>
+
 ggml_tensor* ggml_detach(ggml_tensor* a) {
     a->op = GGML_OP_NONE;
     std::fill(a->src, a->src + GGML_MAX_SRC, nullptr);
@@ -56,7 +58,6 @@ extern "C" void fairseq2_kv_cache_alloc(fairseq2_model& model, ggml_context* kv_
     // Note: we only allocate the masks, proper kv cache allocation is delayed.
     GGML_ASSERT(kv_cache_ctx);
     GGML_ASSERT(!ggml_get_no_alloc(kv_cache_ctx));  // We need to be able to alloc the kv_cache buffers
-    model.kv_cache_ctx = kv_cache_ctx;
     auto attn_glob = "text_decoder.*_attn.k_proj.weight";
     FORCE_ALLOC(self_attn_mask, kv_cache_ctx, ggml_new_tensor_2d(kv_cache_ctx, GGML_TYPE_F32, max_seq_len, max_seq_len));
     self_attn_mask = ggml_diag_mask_inf_inplace(kv_cache_ctx, self_attn_mask, 0);
@@ -107,7 +108,7 @@ inline ggml_tensor* ggml_unsqueeze(ggml_context* ctx, ggml_tensor* x, int dim) {
 void append_to_prev_kv(const fairseq2_model& model, const std::string& prefix, ggml_tensor** k, ggml_tensor** v, ggml_tensor** self_attn_mask) {
     KeyValueTensor& kv = model.kv_cache[prefix];
     int step_nr = kv.step_nr;
-    ggml_context* ctx = model.kv_cache_ctx ? model.kv_cache_ctx : model.ctx;
+    ggml_context* ctx = model.ctx;
     // We need to force allocation here, otherwise the kv_cache buffers can be reused
     bool no_alloc_save = ggml_get_no_alloc(ctx);
     ggml_set_no_alloc(ctx, false);
@@ -214,7 +215,7 @@ extern "C" std::int64_t fairseq2_model_layer_config_int(const fairseq2_model& mo
 
 extern "C" void fairseq2_model_free(fairseq2_model* model) {
     if (model->tensors_ctx) ggml_free(model->tensors_ctx);
-    delete model;
+    // delete model;
 }
 
 extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
@@ -429,7 +430,7 @@ extern "C" ggml_tensor* MultiheadAttention_forward(
             if (kv_cache.step_nr == 0) {
                 // If possible we use the ctx dedicated to kv_cache here,
                 // because the enc dec attention is typically long lived.
-                if (model.kv_cache_ctx) model.ctx = model.kv_cache_ctx;
+                if (model.enc_kv_cache_ctx) model.ctx = model.enc_kv_cache_ctx;
                 k = Linear_forward(model, prefix + ".k_proj", keys);
                 ggml_set_name(k, "k");
                 v = Linear_forward(model, prefix + ".v_proj", values);
@@ -594,11 +595,7 @@ extern "C" ggml_tensor* WaveformToFbank_forward(
     output = ggml_norm(ctx, output, 1e-5);
     output = ggml_dup(ctx, ggml_transpose(ctx, output));
     if (output->ne[1] % 2 == 1) {
-        ggml_tensor* remove_last = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, output->ne[1]-1);
-        for (int i = 0; i < output->ne[1]-1; ++i) {
-            ((int32_t *) remove_last->data)[i] = i;
-        }
-        output = ggml_get_rows(ctx, output, remove_last);
+        output = ggml_dup(ctx, ggml_slice(ctx, output, 1, 0, output->ne[1]-1));
     }
     output = ggml_reshape_2d(ctx, output, output->ne[0] * 2, output->ne[1] / 2);
     return output;
@@ -714,7 +711,9 @@ extern "C" ggml_tensor* ConvModule_forward(
         seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
 
         // S x C -> (S+K-1) x C -> K x S x C -> S x C
-        seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".depthwise_conv.weight"], seqs, 1, 15, 1);
+        int K = model.tensors[prefix + ".depthwise_conv.weight"]->ne[0];
+
+        seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".depthwise_conv.weight"], seqs, 1, K / 2, 1, seqs->ne[1]);
 
         // conv: Custom implementation of batch norm
         seqs = ggml_batch_norm(ctx, seqs, model.tensors[prefix + ".batch_norm.weight"], model.tensors[prefix + ".batch_norm.bias"], model.tensors[prefix + ".batch_norm.running_mean"], model.tensors[prefix + ".batch_norm.running_var"], 1e-5);
@@ -813,14 +812,14 @@ extern "C" ggml_tensor* StandardConformerEncoderAdaptorLayer_forward(
     ggml_tensor* residual = seqs;
     residual = LayerNorm_forward(model, prefix + ".residual_layer_norm", residual);
     residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
-    residual = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".residual_conv.weight"], residual, 8, 4, 1);
+    residual = ggml_conv_1d(ctx, model.tensors[prefix + ".residual_conv.weight"], residual, 8, 4, 1, 1);
     residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
     residual = ggml_add_inplace(ctx, ggml_repeat(ctx, model.tensors[prefix + ".residual_conv.bias"], residual), residual);
     residual = ggml_glu(ctx, residual);
 
     seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
     seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
-    seqs = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".self_attn_conv.weight"], seqs, 8, 4, 1);
+    seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".self_attn_conv.weight"], seqs, 8, 4, 1, 1);
     seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
     seqs = ggml_add_inplace(ctx, seqs, ggml_repeat(ctx, model.tensors[prefix + ".self_attn_conv.bias"], seqs));
     seqs = ggml_glu(ctx, seqs);
@@ -1160,23 +1159,31 @@ ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int6
     return y;
 }
 
-extern "C" void _bootstrap_seqs_and_scores(
+void _bootstrap_seqs_and_scores(
     fairseq2_model& model,
     const SequenceGeneratorJob& job,
     ggml_tensor* full_seqs,
     ggml_tensor* scores,
     ggml_tensor* encoder_output,
     ggml_tensor* encoder_padding_mask,
-    int n_threads
+    ggml_tensor* lid_scores,
+    int n_threads,
+    const std::vector<int>& lang_ids
 ) {
+    // Returns LID score map
     int prefix_seq_len = job.prefix_seq->ne[0];
     int max_seq_len = scores->ne[0];
     int beam_size = scores->ne[1];
     GGML_ASSERT(prefix_seq_len > 0);
-    if (prefix_seq_len == 1)
-        return;
-
     ggml_context* ctx = model.ctx;
+    if (prefix_seq_len == 1) {
+        // We only have one token in prefix, we won't compute decoding scores,
+        // we just need to copy the token to seqs.
+        // Note: it also means the enc_kv_cache will be populated later.
+        ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
+        ggml_set_i32(seqs, ggml_get_i32_1d(job.prefix_seq, 0));
+        return;
+    }
 
     // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
     ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
@@ -1202,14 +1209,33 @@ extern "C" void _bootstrap_seqs_and_scores(
     ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
     int vocab_size = logits->ne[0];
     ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
-
-    ggml_cgraph gf = ggml_build_forward(lprobs);
-    ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
+    struct ggml_cgraph * gf = ggml_new_graph(ctx);
+    ggml_build_forward_expand(gf, lprobs);
+    ggml_graph_compute_with_ctx(ctx, gf, n_threads);
+
+    full_seqs->type = GGML_TYPE_I32;
+    job.prefix_seq->type = GGML_TYPE_I32;
+    // For LID
+    for (size_t i = 0; i < lang_ids.size(); ++i) {
+        ggml_set_f32_1d(lid_scores, i, std::exp(ggml_get_f32_1d(lprobs, lang_ids[i])));
+    }
 
     // Fetch scores of next steps from "lprobs"
     float p_score = 0;
     for (int i = 1; i < prefix_seq_len; ++i) {
-        int p = ggml_get_i32_1d(job.prefix_seq, i);
+        int p;
+        if (ggml_get_i32_1d(job.prefix_seq, i) == model.vocab.token_to_id["<unk>"]) {
+            // If tgt_lang is unk, use the most probable lang tag predicted by model
+            int max_value = std::numeric_limits<float>::min();
+            for (int j = 0; j < lang_ids.size(); j++) {
+                if(ggml_get_f32_1d(lprobs, lang_ids[j]) > max_value) {
+                    max_value = ggml_get_f32_1d(lprobs, lang_ids[j]);
+                    p = lang_ids[j];
+                }
+            }
+        } else {
+            p = ggml_get_i32_1d(job.prefix_seq, i);
+        }
         p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
         for (int b = 0; b < beam_size; ++b) {
             // scores: (N, S)
@@ -1290,6 +1316,7 @@ void _finalize_hypothesis(
     float eos_score,
     ggml_tensor* seqs, // (beam_size, seq_len)
     ggml_tensor* scores, // (beam_size, seq_len)
+    ggml_tensor* lid_scores,
     Hypothesis* hypothesis
 ) {
     ggml_tensor* seq = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
@@ -1317,6 +1344,7 @@ void _finalize_hypothesis(
         // Skip first EOS since it is always 0 and skews normalization.
         eos_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
     hypothesis->score = eos_score;
+    hypothesis->lid_scores = lid_scores;
 }
 
 // Uses ggml_context to store any object.
@@ -1366,6 +1394,15 @@ extern "C" Hypothesis* generate_sequence(
     };
     ggml_allocr* step_alloc = new_arena_allocr(local_bufs[3]);
 
+    std::vector<int> lang_ids;
+    if (job.prefix_seq->ne[0] > 1) {
+        for (const auto& kv : model.vocab.token_to_id) {
+            if (kv.first.substr(0, 2) == "__" && kv.first.substr(kv.first.size() - 2) == "__") {
+                lang_ids.push_back(kv.second);
+            }
+        }
+        std::sort(lang_ids.begin(), lang_ids.end());
+    }
     ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
     size_t vocab_size = embed->ne[1];
     std::size_t beam_size = job.opts.beam_size;
@@ -1395,22 +1432,20 @@ extern "C" Hypothesis* generate_sequence(
     ggml_tensor* scores = ggml_new_tensor_2d(search_ctx, GGML_TYPE_F32, max_seq_len, beam_size);
     ggml_set_name(scores, "scores_0");
     ggml_set_f32(scores, 0.0);
-
     int prefix_seq_len = job.prefix_seq->ne[0];
     int start_step = prefix_seq_len - 1;
-
-    ggml_context* prev_step_ctx = ctx_from_buffer(local_bufs[(start_step - 1) % 2]);
+    ggml_context* prev_step_ctx = ctx_from_buffer(local_bufs[(start_step + 1) % 2]);
     ggml_context* step_ctx = ctx_from_buffer(local_bufs[start_step % 2]);
     GGML_ASSERT(step_ctx != search_ctx);
-    GGML_ASSERT(prev_step_ctx != step_ctx);
-    model.ctx = prev_step_ctx;
-    // search_ctx because we need encoder_decoder_attn.k_cache to survive for the full search
-    model.kv_cache_ctx = search_ctx;
+    model.enc_kv_cache_ctx = search_ctx;
+    ggml_tensor* lid_scores;
+    if (lang_ids.size()) {
+        lid_scores = ggml_new_tensor_1d(result_ctx, GGML_TYPE_F32, lang_ids.size());
+    } 
+    // Multilingual models: Bootstrap LID scores
     _bootstrap_seqs_and_scores(
-        model, job, seqs, scores, encoder_output, encoder_padding_mask, n_threads
+        model, job, seqs, scores, encoder_output, encoder_padding_mask, lid_scores, n_threads, lang_ids
     );
-    // Now we will only add self_attn.k_cache and those need to be resorted and copied at every step.
-    model.kv_cache_ctx = nullptr;
 
     // Holds the indices of beams (a beam can occur more than once) that we
     // should continue with in the next step.
@@ -1428,6 +1463,24 @@ extern "C" Hypothesis* generate_sequence(
     for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
         model.ctx = step_ctx;
         ggml_set_no_alloc(step_ctx, true); // Use allocr for the model forward pass
+        float max_lprob;
+        int p;
+        if (step_nr == start_step) {
+            // Find the most probable lang_tok and assign it to all beams, when prefix_seq[1] is <unk>
+            if (lang_ids.size() && ggml_get_i32_1d(job.prefix_seq, 1) == model.vocab.token_to_id["<unk>"]) {
+                float max_lprob = std::numeric_limits<float>::min();
+                for(int j = 0; j < lang_ids.size(); j++) {
+                    auto val = ggml_get_f32_1d(lid_scores, j);
+                    if (val > max_lprob) {
+                        max_lprob = val;
+                        p = lang_ids[j];
+                    }
+                }
+                for (int k = 0; k < beam_size; k++) {
+                    ggml_set_i32_1d(seqs, k * vocab_size + step_nr, p);
+                }
+            }
+        }
         ggml_tensor* prev_token = ggml_slice(step_ctx, seqs, 0, step_nr, step_nr + 1);
 
         ggml_tensor* decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", prev_token);
@@ -1448,10 +1501,11 @@ extern "C" Hypothesis* generate_sequence(
 
         // Compute lprobs here so we can modify it in place in the lprob tweaking phase
         // TODO: use ggml properly compute the tweaks
-        ggml_cgraph gf = ggml_build_forward(lprobs);
-        size_t fwd_mem = ggml_allocr_alloc_graph(step_alloc, &gf);
+        struct ggml_cgraph * gf = ggml_new_graph(step_ctx);
+        ggml_build_forward_expand(gf, lprobs);
+        size_t fwd_mem = ggml_allocr_alloc_graph(step_alloc, gf);
         GGML_UNUSED(fwd_mem);
-        ggml_graph_compute_with_ctx(step_ctx, &gf, n_threads);
+        ggml_graph_compute_with_ctx(step_ctx, gf, n_threads);
         ggml_detach(lprobs);
         ggml_allocr_reset(step_alloc);
 #if DEBUG_MEM_USAGE
@@ -1476,9 +1530,8 @@ extern "C" Hypothesis* generate_sequence(
             // Make probabilities contain cumulative scores for each hypothesis.
             lprobs = ggml_add_inplace(step_ctx, lprobs, ggml_repeat(step_ctx, last_scores, lprobs));
         }
-
-        gf = ggml_build_forward(lprobs);
-        ggml_graph_compute_with_ctx(step_ctx, &gf, n_threads);
+        ggml_build_forward_expand(gf, lprobs);
+        ggml_graph_compute_with_ctx(step_ctx, gf, n_threads);
 
         // Determine (beam, token) candidates for the next step.
         // (N, 2 x B)
@@ -1497,7 +1550,7 @@ extern "C" Hypothesis* generate_sequence(
             bool eos = token == job.eos_idx;
             eos &= tok_score != -INFINITY;
             if (eos) {
-                _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, finished_searches++);
+                _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, lid_scores, finished_searches++);
                 if (finished_searches == finished_searches_end)
                     goto end_of_beam_search;
                 continue;
@@ -1517,10 +1570,11 @@ extern "C" Hypothesis* generate_sequence(
         ggml_set_no_alloc(step_ctx, false);
         ggml_tensor* new_seqs = ggml_get_rows(step_ctx, seqs, beam_indices);
         ggml_tensor* new_scores = ggml_get_rows(step_ctx, scores, beam_indices);
-        ggml_cgraph gf_reorder = ggml_build_forward(new_seqs);
-        ggml_build_forward_expand(&gf_reorder, new_scores);
-        reorder_kv_cache(model, step_ctx, &gf_reorder, beam_indices);
-        ggml_graph_compute_with_ctx(step_ctx, &gf_reorder, n_threads);
+        struct ggml_cgraph * gf_reorder = ggml_new_graph(step_ctx);
+        ggml_build_forward_expand(gf_reorder, new_seqs);
+        ggml_build_forward_expand(gf_reorder, new_scores);
+        reorder_kv_cache(model, step_ctx, gf_reorder, beam_indices);
+        ggml_graph_compute_with_ctx(step_ctx, gf_reorder, n_threads);
         seqs = ggml_detach(new_seqs);
         scores = ggml_detach(new_scores);
 
@@ -1531,7 +1585,7 @@ extern "C" Hypothesis* generate_sequence(
             ((float*)scores->data)[step_nr + 1 + i * max_seq_len] = ggml_get_f32_1d(next_scores, i);
         }
 
-        printf_mem_usage(step_ctx, "  step_ctx");
+        printf_mem_usage(step_ctx, "step_ctx");
         ggml_free(prev_step_ctx);
         prev_step_ctx = step_ctx;
 #if DEBUG_MEM_USAGE
@@ -1607,7 +1661,7 @@ struct llm_bigram_spm {
 struct llm_tokenizer_spm {
     llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
 
-    void tokenize(const std::string& input_text, ggml_tensor& output) {
+    void tokenize(const std::string& input_text, ggml_tensor* output) {
         llama_vocab::id unk_idx = vocab.token_to_id.at("<unk>");
 
         // split string into utf8 chars
@@ -1675,8 +1729,8 @@ struct llm_tokenizer_spm {
             try_add_bigram(bigram.left, left_sym.next);
         }
 
-        llama_vocab::id* out = (llama_vocab::id*)output.data;
-        int out_step = sizeof(llama_vocab::id) / output.nb[0];
+        llama_vocab::id* out = (llama_vocab::id*)output->data;
+        int out_step = sizeof(llama_vocab::id) / output->nb[0];
         int num_tokens = 0;
         for (int i = 0; i > -1; i = symbols[i].next) {
             llm_symbol& symbol = symbols[i];
@@ -1685,7 +1739,7 @@ struct llm_tokenizer_spm {
         }
         *(out + num_tokens * out_step) = vocab.token_to_id.at("</s>");
         num_tokens += 1;
-        output.ne[0] = num_tokens;
+        output->ne[0] = num_tokens;
     }
 
 private:
@@ -1724,21 +1778,23 @@ private:
 };
 
 
-extern "C" void fairseq2_spm_tokenize(fairseq2_model* model, const char* text, ggml_tensor& out) {
+extern "C" void fairseq2_spm_tokenize(fairseq2_model* model, const char* text, ggml_tensor* out) {
     llm_tokenizer_spm spm = {model->vocab};
     spm.tokenize(std::string(text), out);
 }
 
+
 extern "C" std::size_t fairseq2_spm_detokenize(fairseq2_model* model, ggml_tensor* tokens, char* out) {
-    int eos_idx = model->vocab.token_to_id["</s>"];
+    bool no_tgt_vocab = model->tgt_vocab.id_to_token.empty();
+    int eos_idx = no_tgt_vocab ? model->vocab.token_to_id["</s>"] : model->tgt_vocab.token_to_id["</s>"];
     int sent_len = tokens->ne[0];
     std::size_t written = 0;
+    std::vector<llama_vocab::token_data> id_to_token = no_tgt_vocab ? model->vocab.id_to_token : model->tgt_vocab.id_to_token;
     for (int i = 0; i < sent_len; ++i) {
         int id = ggml_get_i32_1d(tokens, i);
         // Don't print the EOS token but only if it appear at the end.
         if (i == sent_len - 1 && eos_idx == id) break;
-
-        std::string token = model->vocab.id_to_token.at(id).text;
+        std::string token = no_tgt_vocab ? model->vocab.id_to_token.at(id).text : model->tgt_vocab.id_to_token.at(id).text;
         // Skip the first space outputted.
         auto begin = token.begin();
         if (i == 0 && token.size() > 0 && token[0] == ' ') begin += 1;
@@ -1750,3 +1806,56 @@ extern "C" std::size_t fairseq2_spm_detokenize(fairseq2_model* model, ggml_tenso
     *out = '0';
     return written;
 }
+
+
+// TODO: Unify with the above?
+std::pair<std::vector<std::string>, std::vector<float>> fairseq2_spm_detokenize(
+        fairseq2_model* model,
+        ggml_tensor* tokens,
+        ggml_tensor* scores,
+        char* out) {
+    bool no_tgt_vocab = model->tgt_vocab.id_to_token.empty();
+    int eos_idx = no_tgt_vocab ? model->vocab.token_to_id["</s>"] : model->tgt_vocab.token_to_id["</s>"];
+    int sent_len = tokens->ne[0];
+    std::size_t written = 0;
+    std::vector<float> word_scores;
+    std::vector<float> subword_scores;
+    std::vector<std::string> result_text;
+    std::string curr_token = "";
+    for (int i = 0; i < sent_len; ++i) {
+        int id = ggml_get_i32_1d(tokens, i);
+        // Don't print the EOS token but only if it appear at the end.
+        if (i == sent_len - 1 && eos_idx == id) break;
+
+        std::string token = no_tgt_vocab ? model->vocab.id_to_token.at(id).text : model->tgt_vocab.id_to_token.at(id).text;
+        float score = ggml_get_f32_1d(scores, i+2); // 2 is prefix size
+        if(token[0] == ' ') {
+            // reset word score
+            if(subword_scores.size() > 0) {
+                float avg = std::accumulate(subword_scores.begin(), subword_scores.end(), 0.0f) / subword_scores.size();
+                word_scores.push_back(avg);
+                subword_scores.clear();
+                result_text.push_back(curr_token);
+            }
+            curr_token = token.substr(1);
+        } else {
+            curr_token += token;
+        }
+        subword_scores.push_back(score);
+        // Skip the first space outputted.
+        auto begin = token.begin();
+        if (i == 0 && token.size() > 0 && token[0] == ' ') begin += 1;
+        std::copy(begin, token.end(), out);
+        std::size_t n = token.end() - begin;
+        written += n;
+        out += n;
+
+    }
+    if(subword_scores.size() > 0) {
+        word_scores.push_back(*std::min_element(subword_scores.begin(), subword_scores.end()));
+        subword_scores.clear();
+        result_text.push_back(curr_token);
+    }
+    *out = '0';
+    return std::make_pair(result_text, word_scores);
+}

+ 19 - 3
ggml/examples/unity/fairseq2.h

@@ -97,8 +97,12 @@ struct fairseq2_model {
     // Normally those can be inferred from hparams, but it avoids doing this logic in GGML
     std::unordered_map<std::string, std::int64_t> layer_config = {};
 
+    // Vocabulary for text transcription and translation APIs
     llama_vocab vocab;
 
+    // Optional target vocabulary for bilingual models
+    llama_vocab tgt_vocab;
+
     // KV cache for attention layers
     mutable std::unordered_map<std::string, KeyValueTensor> kv_cache = {};
 
@@ -106,7 +110,7 @@ struct fairseq2_model {
     // TODO: is this the best place to store this or should we also pass this to all forward methods ?
     ggml_context* ctx = nullptr;
 
-    ggml_context* kv_cache_ctx = nullptr;
+    ggml_context* enc_kv_cache_ctx = nullptr;
 };
 
 double fairseq2_model_layer_config_double(const fairseq2_model& model, std::string name);
@@ -199,6 +203,13 @@ extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
     ggml_tensor* padding_mask
 );
 
+extern "C" ggml_tensor* StandardTransformerEncoder_forward(
+    fairseq2_model& model,
+    const std::string& prefix,
+    ggml_tensor* seqs,
+    ggml_tensor* padding_mask
+);
+
 extern "C" ggml_tensor* RelativePositionMHA_forward(
     fairseq2_model& model,
     const std::string& prefix,
@@ -302,6 +313,9 @@ struct Hypothesis {
 
     /// The score of each individual sequence step.
     ggml_tensor* step_scores;
+
+    /// The score of each lang tok at first decoding step, serving as LID 
+    ggml_tensor* lid_scores;
 };
 
 
@@ -311,8 +325,10 @@ extern "C" Hypothesis* generate_sequence(
     ggml_tensor* encoder_output,
     ggml_tensor* encoder_padding_mask,
     ggml_context* result_ctx,
-    int n_threads
+    int threads
 );
 
-extern "C" void fairseq2_spm_tokenize(fairseq2_model* model, const char* text, ggml_tensor& out);
+extern "C" void fairseq2_spm_tokenize(fairseq2_model* model, const char* text, ggml_tensor* out);
 extern "C" std::size_t fairseq2_spm_detokenize(fairseq2_model* model, ggml_tensor* tokens, char* out);
+
+std::pair<std::vector<std::string>, std::vector<float>> fairseq2_spm_detokenize(fairseq2_model* model, ggml_tensor* tokens, ggml_tensor* scores, char* out);

+ 8 - 2
ggml/examples/unity/model_loader.cpp

@@ -1,5 +1,5 @@
-#include <string>
 #include "model_loader.h"
+#include <string>
 
 #define DEBUG_MODEL_LOAD 0
 
@@ -133,7 +133,10 @@ void model_loader::load_vocab(llama_vocab& vocab, std::ifstream &fin)
 
     std::int64_t vocab_size = 0;
     fin.read(reinterpret_cast<char*>(&vocab_size), sizeof(vocab_size));
-    GGML_ASSERT(fin.gcount() == 8);
+    // GGML_ASSERT(fin.gcount() == 8);
+    if (vocab_size == 0) {
+        return;
+    }
 
     vocab.token_to_id.reserve(vocab_size);
     vocab.id_to_token.reserve(vocab_size);
@@ -219,5 +222,8 @@ extern "C" int load_fairseq2_ggml_file(fairseq2_model& model, const char* fname)
     loader.load_hparams(model.layer_config, fin);
     loader.load_vocab(model.vocab, fin);
     loader.load_model_weights(model, fin);
+    
+    // load optional target vocabulary in cases of bilingual models
+    loader.load_vocab(model.tgt_vocab, fin);
     return 0;
 }

+ 0 - 2
ggml/examples/unity/model_loader.h

@@ -25,8 +25,6 @@ public:
     void load_vocab(llama_vocab& vocab, std::ifstream &fin);
 
 private:
-    ggml_tensor * next_tensor(std::ifstream &fin, fairseq2_model &model);
-
     std::string get_name(std::ifstream &fin);
 };
 

+ 63 - 91
ggml/examples/unity/unity.cpp

@@ -4,24 +4,17 @@
 #include "math.h"
 #include "model_loader.h"
 #include "fairseq2.h"
-
-#include <thread>
-#include <cassert>
-#include <cmath>
-#include <cstdio>
-#include <cstring>
-#include <fstream>
-#include <map>
-#include <string>
-#include <vector>
-#include <iostream>
+#include "lib/unity_lib.h"
 #include <sndfile.h>
 #include <cstdlib>
 #include "ggml-alloc.h"
+#include <numeric>
+#include <algorithm>
 
 struct unity_params {
     int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
-    std::string model      = "seamlessM4T_medium.ggml"; // model path
+    std::string model = "seamlessM4T_medium.ggml"; // model path
+    std::string input_text = "";
     std::string tgt_lang = "eng";
     std::vector<std::string> files = {};
     bool text = false;
@@ -34,9 +27,9 @@ struct unity_params {
         /*len_penalty*/ 1.0,
         /*unk_penalty*/ 0.0,
         /*normalize_scores*/ true,
-        /*mem_mb*/ 512,
+        /*mem_mb*/ 512
     };
-    int32_t max_audio_s = 30;
+    bool verbose = false;
 };
 
 
@@ -45,13 +38,16 @@ void unity_print_usage(int /*argc*/, char ** argv, const unity_params & params)
     fprintf(stderr, "\n");
     fprintf(stderr, "options:\n");
     fprintf(stderr, "  -h, --help            show this help message and exit\n");
+    fprintf(stderr, "  -i, --input           Input text for the text-2-text translation\n");
+    fprintf(stderr, "  -l, --tgt-lang        Target translation lang (default: %s\n", params.tgt_lang);
+
     fprintf(stderr, "  -t N, --threads N     number of threads to use during computation (default: %d)\n", params.n_threads);
+    fprintf(stderr, "  -v, --verbose         Print out word level confidence score and LID score (default: off)");
     fprintf(stderr, "  -m FNAME, --model FNAME\n");
     fprintf(stderr, "                        model path (default: %s)\n", params.model.c_str());
     fprintf(stderr, "  --text                text output\n");
     fprintf(stderr, "  --beam-size           beam size (default: %d)\n", params.opts.beam_size);
     fprintf(stderr, "  -M, --mem             memory buffer, increase for long inputs (default: %d)\n", params.opts.mem_mb);
-    fprintf(stderr, "  --max-audio           max duration of audio in seconds (default: %d)\n", params.max_audio_s);
     fprintf(stderr, "\n");
 }
 
@@ -75,16 +71,18 @@ bool unity_params_parse(int argc, char ** argv, unity_params & params) {
             params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
         } else if (arg == "-m" || arg == "--model") {
             params.model = get_next_arg(i, argc, argv, arg, params);
+        } else if (arg == "-i" || arg == "--input") {
+            params.input_text = get_next_arg(i, argc, argv, arg, params);
         } else if (arg == "-l" || arg == "--tgt-lang") {
             params.tgt_lang = get_next_arg(i, argc, argv, arg, params);
         } else if (arg == "--text") {
             params.text = true;
         } else if (arg == "-b" || arg == "--beam-size") {
             params.opts.beam_size = std::stoi(get_next_arg(i, argc, argv, arg, params));
+        } else if (arg == "-v" || arg == "--verbose") {
+            params.verbose = true;
         } else if (arg == "-M" || arg == "--mem") {
             params.opts.mem_mb = std::stoi(get_next_arg(i, argc, argv, arg, params));
-        } else if (arg == "--max-audio") {
-            params.max_audio_s = std::stoi(get_next_arg(i, argc, argv, arg, params));
         } else {
             params.files.push_back(std::string(arg));
         }
@@ -92,41 +90,6 @@ bool unity_params_parse(int argc, char ** argv, unity_params & params) {
     return true;
 }
 
-struct ggml_cgraph * unity_speech_encoder(
-        fairseq2_model& model,
-        struct ggml_tensor * speech_input) {
-    ggml_context* ctx0 = model.ctx;
-    ggml_cgraph* gf = ggml_new_graph(ctx0);
-    ggml_tensor* seqs = StandardConformerEncoder_forward(model, "speech_encoder", speech_input, nullptr);
-    seqs = ggml_dup(model.ctx, seqs);
-    ggml_build_forward_expand(gf, seqs);
-    return gf;
-}
-
-
-Hypothesis* unity_decode(
-        fairseq2_model& model,
-        const SequenceGeneratorOptions& opts,
-        int tgt_lang_idx,
-        ggml_tensor* encoder_output,
-        int n_threads
-) {
-    SequenceGeneratorJob job = {
-        opts,
-        /*prefix_seq*/ nullptr,
-        /*pad_idx*/model.vocab.token_to_id["<pad>"],
-        /*unk_idx*/model.vocab.token_to_id["<unk>"],
-        /*bos_idx*/model.vocab.token_to_id["<s>"],
-        /*eos_idx*/model.vocab.token_to_id["</s>"],
-        /*num_threads*/n_threads,
-    };
-    FORCE_ALLOC(prefix_seq, model.ctx, ggml_new_tensor_1d(model.ctx, GGML_TYPE_I32, 2));
-    ((int *)prefix_seq->data)[0]  = job.eos_idx;
-    ((int *)prefix_seq->data)[1]  = tgt_lang_idx;
-    job.prefix_seq = prefix_seq;
-    return generate_sequence(model, job, encoder_output, nullptr, model.ctx, n_threads);
-}
-
 int main(int argc, char ** argv) {
 
     unity_params params;
@@ -151,8 +114,13 @@ int main(int argc, char ** argv) {
     char result_str[4096];
 
     std::string input;
-    bool interactive = params.files.size() == 0;
+    bool interactive = (params.files.size() == 0 && params.input_text.length() == 0);
     auto next_file = params.files.begin();
+
+    // Flag for the input case: true --> s2st, false --> t2tt
+    bool s2st_or_t2tt = true;
+
+    // S2ST
     while (true) {
         if (interactive) {
             std::cout << "\nEnter audio_path and tgt_lang, separated by space (or 'exit' to quit):\n";
@@ -161,7 +129,10 @@ int main(int argc, char ** argv) {
                 break;
             }
         } else {
-            if (next_file == params.files.end()) break;
+            if (params.input_text.length() > 0) {
+                break;
+            }
+            if (next_file == params.files.end() && s2st_or_t2tt) break;
             input = *(next_file++);
         }
         std::istringstream iss(input);
@@ -179,46 +150,47 @@ int main(int argc, char ** argv) {
             if (interactive) continue;
             else return 1;
         }
-        auto tgt_lang_ptr = model.vocab.token_to_id.find("__" + tgt_lang + "__");
-        if (tgt_lang_ptr == model.vocab.token_to_id.end()) {
-            std::cerr << "Unknown language " << tgt_lang << "\n";
-            if (interactive) continue;
-            else return 2;
-        }
-        int tgt_lang_idx = tgt_lang_ptr->second;
-
-
-        // Reset the ggml_context
-        model.ctx = ctx_from_buffer(encoder_buf);
-        ggml_set_no_alloc(model.ctx, true);
+        // Load audio input
         GGML_ASSERT(info.samplerate == 16000);
         GGML_ASSERT(info.channels == 1);
-        // Truncate audio input. Ideally we should chunk it, but this will prevent most obvious OOM.
-        int n_frames = std::min(info.samplerate * params.max_audio_s, (int)info.frames);
-        ggml_tensor* seqs = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_frames, info.channels);
-        ggml_allocr_alloc(fwd_alloc, seqs);
+        // stop at 30s. Ideally we should chunk input audio, but this will prevent most obvious OOM.
+        int n_frames = std::min(info.samplerate * 30, (int)info.frames);
+        std::vector<float> data(n_frames * info.channels);
+        sf_readf_float(sndfile, data.data(), n_frames);
+
+        Result result = unity_eval_speech(model, data, params.opts, tgt_lang, params.n_threads);
+        std::string concat_transcription = std::accumulate(std::next(result.transcription.begin()), result.transcription.end(), result.transcription[0],
+            [](const std::string& a, const std::string& b) {
+                return a + " " + b;
+            }
+        );
+        if (params.verbose) {
+            std::cout << "Final transcription: " << concat_transcription << std::endl;
+            std::cout << std::endl;
+            std::cout << "Word level confidence score:" << std::endl;
+            for (size_t i = 0; i < result.transcription.size(); ++i) {
+                std::cout << "Word: " << result.transcription[i] << " | Score: " << result.word_confidence_scores[i] << std::endl;
+            }
+            std::cout << std::endl;
+            std::cout << "LID scores: " << std::endl;
+            for (const auto& kv : result.lid_scores) {
+                std::cout << "Language: " << kv.first << "| Score: " << kv.second << std::endl;
+            }
+        } else {
+            std::cout << concat_transcription << std::endl;
+        }
+    }
 
-        // Load audio input
-        sf_readf_float(sndfile, (float*)seqs->data, n_frames);
-
-        // Audio encoder
-        ggml_cgraph* gf = unity_speech_encoder(model, seqs);
-        size_t enc_mem_used = ggml_allocr_alloc_graph(fwd_alloc, gf);
-        ggml_graph_compute_with_ctx(model.ctx, gf, params.n_threads);
-        // encoder_output is valid until we call `ggml_allocr_reset(fwd_alloc)`
-        ggml_tensor* encoder_output = gf->nodes[gf->n_nodes - 1];
-
-        // Beam search decoding
-        const Hypothesis* result = unity_decode(model, params.opts, tgt_lang_idx, encoder_output, params.n_threads);
-    
-        // Drop language and bos token.
-        ggml_tensor* tokens = ggml_slice(model.ctx, result[0].seq, 0, 2, 0);
-
-        // Collect result string
-        int n = fairseq2_spm_detokenize(&model, tokens, (char*)&result_str);
-        std::cout << std::string((char*)&result_str, n) << std::endl;
-        ggml_free(model.ctx);
-        ggml_allocr_reset(fwd_alloc);
+    // T2TT
+    if (params.input_text.length() > 0) {
+        // tokenize the input text
+        Result result = unity_eval_text(model, params.input_text, params.opts, params.tgt_lang, params.n_threads);
+        std::string concat_translation = std::accumulate(std::next(result.transcription.begin()), result.transcription.end(), result.transcription[0],
+            [](const std::string& a, const std::string& b) {
+                return a + " " + b;
+            }
+        );
+        std::cout << "Translation: " << concat_translation << std::endl;
     }
 
     return 0;

+ 2 - 2
ggml/ggml.py

@@ -282,7 +282,7 @@ class NativeObj:
         cls._cache[kind] = (alloc_fn, free_fn)
         return (alloc_fn, free_fn)
 
-    def __init__(self, kind: str, ptr: ctypes.c_void_p = NULL):
+    def __init__(self, kind: str, ptr: ctypes.c_void_p = NULLPTR):
         self.kind = kind
         alloc_fn, self._free_fn = self._init_c_func(kind)
         self.ptr = alloc_fn() if ptr is None else ptr
@@ -292,7 +292,7 @@ class NativeObj:
         if self.ptr is not None:
             self._free_fn(self.ptr)
             # print(f"freeing {self}")
-            self.ptr = NULL
+            self.ptr = NULLPTR
 
     def __enter__(self) -> ctypes.c_void_p:
         return self.ptr

+ 329 - 50
ggml/ggml_convert.py

@@ -6,54 +6,330 @@
 
 import dataclasses
 import logging
-import math
 import struct
 from enum import Enum
 from io import BufferedWriter
 from pathlib import Path
-from typing import Any, Callable, Dict, List, Optional, Tuple, Union
+from typing import Any, Callable, Dict, List, Optional, Mapping, Tuple, Union, Sequence, Set, final
+import re
 
 import torch
 from fairseq2.assets import AssetCard
 from fairseq2.models.transformer.frontend import TransformerEmbeddingFrontend
 from fairseq2.nn import SinusoidalPositionEncoder
 from fairseq2.nn.transformer import RelativePositionalEncoding
-from seamless_communication.models import unity
+from fairseq2.data.text import SentencePieceEncoder, SentencePieceTokenizerBase
+from fairseq2.data.typing import PathLike
+from fairseq2.typing import Device, finaloverride
+from fairseq2.models.utils import TokenizerLoaderBase, ModelLoader
+from fairseq2.models.utils.checkpoint import convert_model_state_dict
+from fairseq2.assets import asset_store, download_manager
 
 import ggml
-import re
 
 Preprocessor = Callable[[Any], Any]
 log = logging.getLogger("ggml_convert")
 
 
+class ModelType(str, Enum):
+    AUTO = "auto"  # inferred from the model name
+    UNITY = "unity"
+    NLLB = "nllb"
+    MT = "bitext"
+    MTS = "bitext_scripted"
+
+
+UNITY_SMALLER_MODELS = [
+    "unity_nano",
+    "unity_micro",
+]  # Trained with fairseq2, with custom dict (not original NLLB ones)
+
+
+NLLB_2_UNITY_KEYMAP = {
+    r"^encoder_frontend\.": r"text_encoder_frontend.",
+    r"^encoder\."         : r"text_encoder.",
+    r"^decoder\."         : r"text_decoder.",
+    r"^decoder_frontend\.": r"text_decoder_frontend.",
+}
+
+
+@final
+class NllbLikeTokenizer(SentencePieceTokenizerBase):
+    """The only difference between this class and NllbTokenizer is it doesn't add a <pad> to control symbol list.
+    Since NllbTokenizer is defined as final, we couldn't inherit from it directly. So copying ~everything"""
+
+    langs: Set[str]
+    default_lang: str
+
+    def __init__(
+        self, pathname: PathLike, langs: Sequence[str], default_lang: str
+    ) -> None:
+        """
+        :param pathname:
+            The pathname of the SentencePiece model file.
+        :param langs:
+            The list of supported languages.
+        :param default_lang:
+            The fall-back language if no language is specified.
+        """
+        # Each language is represented by a `__lang__` control symbol.
+        control_symbols = [f"__{lang}__" for lang in langs]
+
+        # Internal control symbols that are not relevant for eval use.
+        control_symbols.extend(["<MINED_DATA>", "<MMT_BT_DATA>", "<SMT_BT_DATA>"])
+        super().__init__(pathname, control_symbols)
+
+        self.langs = set(langs)
+
+        self.default_lang = default_lang
+
+    @finaloverride
+    def create_encoder(
+        self,
+        *,
+        task: Optional[str] = None,
+        lang: Optional[str] = None,
+        mode: Optional[str] = None,
+        device: Optional[Device] = None,
+        pin_memory: bool = False,
+    ) -> SentencePieceEncoder:
+        """Create a token encoder.
+
+        :param task:
+            Must be 'translation'. If ``None``, defaults to 'translation'.
+        :param lang:
+            A language from :attr:`langs`. If ``None``, defaults to
+            :attr:`default_lang`.
+        :param mode:
+            Must be 'source' or 'target'. Set to 'source' if ``lang`` is the
+            source language; set to 'target' if ``lang`` is the target language.
+            If ``None``, defaults to 'source'.
+        :param device:
+            The device on which to construct tensors.
+        :param pin_memory:
+            If ``True``, uses pinned memory while constructing tensors.
+        """
+        if task is not None and task != "translation":
+            raise ValueError(f"`task` must be 'translation', but is '{task}' instead.")
+
+        if lang is None:
+            lang = self.default_lang
+
+        if lang not in self.langs:
+            raise ValueError(
+                f"`lang` must be a supported language, but is '{lang}' instead."
+            )
+
+        if mode is None or mode == "source":
+            # NLLB models expect a language token in place of BOS in source
+            # sequences.
+            prefix_tokens = [f"__{lang}__"]
+            suffix_tokens = ["</s>"]
+        elif mode == "source_mining":
+            prefix_tokens = [f"__{lang}__", "<MINED_DATA>"]
+            suffix_tokens = ["</s>"]
+        elif mode == "source_mmt_bt":
+            prefix_tokens = [f"__{lang}__", "<MMT_BT_DATA>"]
+            suffix_tokens = ["</s>"]
+        elif mode == "source_smt_bt":
+            prefix_tokens = [f"__{lang}__", "<SMT_BT_DATA>"]
+            suffix_tokens = ["</s>"]
+        elif mode == "target":
+            # Target sequences are expected to start with an EOS, followed by
+            # the language token.
+            prefix_tokens = ["</s>", f"__{lang}__"]
+            suffix_tokens = []
+        else:
+            raise ValueError(
+                f"`mode` must be 'source' or 'target', but is '{mode}' instead."
+            )
+
+        return SentencePieceEncoder(
+            self.model,
+            prefix_tokens=prefix_tokens,
+            suffix_tokens=suffix_tokens,
+            device=device,
+            pin_memory=pin_memory,
+        )
+
+
+@final
+class NllbLikeTokenizerLoader(TokenizerLoaderBase[NllbLikeTokenizer]):
+    """Loads tokenizers used by NLLB models."""
+
+    @finaloverride
+    def _load(self, pathname: Path, card: AssetCard) -> NllbLikeTokenizer:
+        langs = card.field("langs").as_list(str)
+
+        default_lang = card.field("default_lang").as_(str)
+
+        return NllbLikeTokenizer(pathname, langs, default_lang)
+
+
+def convert_state_dict(
+    state_dict: Dict[str, Any], key_map: Optional[Mapping[str, str]] = None
+) -> Dict[str, Any]:
+
+    if key_map is None:
+        return state_dict
+    
+    state_dict = convert_model_state_dict(state_dict, key_map=key_map)
+
+    # We use the built-in version attribute of `torch.nn.Module`.
+    try:
+        del state_dict["encoder.version"]
+    except KeyError:
+        pass
+    try:
+        del state_dict["decoder.version"]
+    except KeyError:
+        pass
+
+    try:
+        del state_dict["encoder.embed_positions._float_tensor"]
+    except KeyError:
+        pass
+    try:
+        del state_dict["decoder.embed_positions._float_tensor"]
+    except KeyError:
+        pass
+
+    return state_dict
+
+
+def convert_unity_model(
+    model_name: str,
+    hparams: Optional[Dict[str, Any]] = None,
+):
+    from seamless_communication.models import unity
+    from seamless_communication.models.unity.builder import UnitYConfig, create_unity_model
+    from seamless_communication.models.unity.model import UnitYModel
+
+    load_unity_model_without_conversion = ModelLoader[UnitYModel, UnitYConfig](
+        asset_store,
+        download_manager,
+        unity.load_unity_config,
+        create_unity_model,
+        None,
+        restrict_checkpoints=False,
+    )
+
+    model_config = unity.load_unity_config(model_name)
+    hparams = flatten_config(
+        dataclasses.asdict(model_config), separator="__", overrides=hparams
+    )
+    hparams["multilingual"] = True
+    log.info(hparams)
+    # Need the diverge here because current default in SC is to convert from fairseq1 ckpt format
+    if model_name in UNITY_SMALLER_MODELS:
+        model = load_unity_model_without_conversion(model_name)
+        tokenizer = NllbLikeTokenizerLoader(asset_store, download_manager)(model_name)
+    else:
+        model = unity.load_unity_model(model_name)
+        tokenizer = unity.load_unity_text_tokenizer(model_name)
+
+    vocab = read_vocab(tokenizer)
+
+    return model, hparams, vocab
+
+
+def convert_nllb_model(
+    model_name: str,
+    hparams: Optional[Dict[str, Any]] = None,
+):
+    from fairseq2.models.nllb.loader import load_nllb_tokenizer, load_nllb_model, load_nllb_config
+
+    model_config = load_nllb_config(model_name)
+    hparams = flatten_config(
+        dataclasses.asdict(model_config), separator="__", overrides=hparams,
+    )
+    hparams["multilingual"] = True
+
+    model = load_nllb_model(model_name)
+    tokenizer = load_nllb_tokenizer(model_name)
+    vocab = read_vocab(tokenizer)
+
+    return model, hparams, vocab
+
+
+def convert_bitext_model(
+    model_name: str,
+    hparams: Optional[Dict[str, Any]] = None,
+):
+    from mt import load_mt_model, load_vocab  #, test_mt
+
+    hparams = hparams or {}
+    hparams["multilingual"] = False
+    model = load_mt_model(model_name)
+    src_vocab, src_spm = load_vocab(model_name, "src")
+    tgt_vocab, tgt_spm = load_vocab(model_name, "tgt")
+
+    # test_mt(model, src_spm, tgt_spm)
+
+    return model, hparams, src_vocab, tgt_vocab
+
+
 def convert_model(
     model_name: Union[str, torch.nn.Module],
     out: Optional[Path] = None,
+    model_type: ModelType = ModelType.AUTO,
     layers: str = "",
     hparams: Optional[Dict[str, Any]] = None,
-    vocab: Optional[List[Tuple[str, float]]] = None,
     fp16: bool = False,
 ) -> None:
+    """
+    Entry function for converting different kinds of model into GGML file. Supported model checkpoints:
+        - unity models
+        - nllb models
+        - Bilingual encoder-decoder model (Pytorch) with separate vocabulary for src and tgt languages
+        - Bilingual encoder-decoder model (torchscript)
+    Args:
+        model_name: name of a registered model (discoverable in a fairseq2 asset), path to a checkpoint,\
+            or the model object passed directly
+        out: path to store the converted .ggml model. If None, the ggml model is stored in the same place\
+            as input model
+        model_type: type of the model (or inferred from the name, only applied to nllb, unity and seamless)
+        layers: wildcard patterns to filter the layers from the model. Does not applied to scripted models
+        hparams: override the hparams in the model with the user-defined values
+        vocab: Path to  vocabulary files (in case not bundled with the model checkpoint)
+        extra_vocab: Path to additional vocabulary files (used in bilingual models with explicit tgt languages)
+        fp16: Save to .GGML float16 tensors instead of float32
+    """
+
+    key_map: Optional[Dict[str, str]] = None
+    tgt_vocab: Optional[List[Tuple[str, float]]] = None
     if isinstance(model_name, str):
         # Load the corresponding fairseq2 model
         if out is None:
             out = Path(model_name).with_suffix(".ggml")
 
-        # The type of model depends on the name
-        if "unity" in model_name or "seamlessM4T" in model_name:
-            if hparams is None:
-                model_config = unity.load_unity_config(model_name)
-                hparams = flatten_config(
-                    dataclasses.asdict(model_config), separator="__"
-                )
-                log.info(hparams)
-            model = unity.load_unity_model(model_name)
-            if vocab is None:
-                tokenizer = unity.load_unity_text_tokenizer(model_name)
-                vocab = read_vocab(tokenizer)
-        else:
-            raise ValueError(f"Unsupported model type: {model_name}")
+        # Reason the model architecture from the model name or user input
+        try:
+            if model_type == ModelType.AUTO:
+                if "unity" in model_name or "seamlessM4T" in model_name:
+                    model_type = ModelType.UNITY
+                elif "nllb" in model_name:
+                    model_type = ModelType.NLLB
+
+            assert (
+                model_type != ModelType.AUTO
+            ), "Cannot infer model type from the `model_name`. Please specify `model_type`"
+
+            if model_type == ModelType.UNITY:
+                model, hparams, vocab = convert_unity_model(model_name, hparams=hparams)
+            elif model_type == ModelType.NLLB:
+                model, hparams, vocab = convert_nllb_model(model_name, hparams=hparams)
+                key_map = NLLB_2_UNITY_KEYMAP
+            elif model_type == ModelType.MTS:
+                # TODO: implement the EdgeML model conversion here
+                raise NotImplementedError("Scripted model conversion not implemented yet")
+            
+            # Bilingual non-scripted model
+            else:
+                model, hparams, vocab, tgt_vocab = convert_bitext_model(model_name, hparams=hparams)
+                key_map = NLLB_2_UNITY_KEYMAP
+        except Exception as exc:
+            raise ValueError(f"Error in loading model: {model_name}") from exc
     else:
         # Use the model passed explicitly
         assert (
@@ -66,19 +342,12 @@ def convert_model(
     if layers:
         state_dict = {k: v for k, v in state_dict.items() if re.match(layers, k)}
     fixup_model(model, state_dict, layer_filter=layers)
-    layer_config = read_layer_config(model, layer_filter=layers)
-    vocab = vocab or []
-    write_ggml_file(out, hparams, layer_config, vocab, state_dict, fp16)
-
+    state_dict = convert_state_dict(state_dict, key_map=key_map)
+    layer_config = read_layer_config(model, layer_filter=layers, key_map=key_map)
 
-def _nested_getattr(model: Any, name: str) -> Any:
-    parts = name.split(".")
-    node = model
-    for part in parts:
-        node = getattr(node, part)
-        if node is None:
-            return None
-    return node
+    vocab = vocab or []
+    tgt_vocab = tgt_vocab or []
+    write_ggml_file(out, hparams, layer_config, state_dict=state_dict, vocab=vocab, tgt_vocab=tgt_vocab, fp16=fp16)
 
 
 def find_children(model: torch.nn.Module, t: type, layer_filter: str = "") -> List[Tuple[str, torch.nn.Module]]:
@@ -133,15 +402,6 @@ def fixup_model(model: torch.nn.Module, state_dict: Dict[str, torch.Tensor], lay
         state_dict["speech_encoder.pos_enc"] = rel_pos_enc.freqs
 
 
-def convert_to_fp16(state_dict: Dict[str, torch.Tensor]) -> None:
-    for k in state_dict:
-        v = state_dict[k]
-        if v.dtype != torch.float32:
-            # ignore int tensors
-            continue
-        state_dict[k] = v.to(torch.float16)
-
-
 def read_vocab(tokenizer: Any) -> List[Tuple[str, float]]:
     vocab_info = tokenizer.vocab_info
     vocab = [
@@ -155,9 +415,10 @@ def write_ggml_file(
     out: Path,
     hparams: Dict[str, Any],
     layer_config: Dict[str, Any],
-    vocab: List[Tuple[str, float]],
     state_dict: Dict[str, torch.Tensor],
-    fp16: bool,
+    vocab: List[Tuple[str, float]],
+    tgt_vocab: Optional[List[Tuple[str, float]]] = None,  # tgt_vocab for bilingual models
+    fp16: bool = False,
 ) -> None:
     with out.open("wb") as o:
         write_ggml_header(o)
@@ -165,6 +426,7 @@ def write_ggml_file(
         write_hparams(o, layer_config)
         write_vocab(o, vocab)
         write_state_dict(o, state_dict, fp16)
+        write_vocab(o, tgt_vocab)
 
 
 def write_ggml_header(out: BufferedWriter) -> None:
@@ -200,6 +462,9 @@ def write_hparams(out: BufferedWriter, hparams: Dict[str, Any]) -> None:
 def write_vocab(out: BufferedWriter, vocab: List[Tuple[str, float]]) -> None:
     out.write(struct.pack("<q", len(vocab)))
 
+    if len(vocab) == 0:
+        return
+
     # Write all words concatenated in a buffer
     words = [bytes(w, "utf8") for w, score in vocab]
     packed_words = b"\0".join(words)
@@ -246,10 +511,12 @@ def write_state_dict(
         # Compressed size
         compressed_byte_size = sum(_fp16_byte_size(x) for x in state_dict.values())
         log.warning(
-            f"Saving a ggml file with {len(state_dict)} tensors, totalling {true_byte_size / GB:.3f}Gb compressed to {compressed_byte_size / GB:.3f}"
+            f"Saving a ggml file with {len(state_dict)} tensors, totalling {true_byte_size / GB:.3f}Gb"
+            f". Compressed to {compressed_byte_size / GB:.3f}Gb"
         )
 
     for key, value in state_dict.items():
+        # Rename the layers to make it look like "unity-arch"
         write_string(out, key)
         if key.endswith(".bias") and value.ndim == 1 and "adaptor" not in key:
             # GGML broadcasting isn't as strong as numpy
@@ -324,7 +591,7 @@ def torch_to_ggml_type(dtype: torch.dtype) -> int:
 def flatten_config(
     config: Dict[str, Any],
     separator: str,
-    config_preprocessor: Optional[Preprocessor] = None,
+    overrides: Optional[Dict[str, Any]] = None,
 ) -> Dict[str, Any]:
     """Flatten nested dictionnary
 
@@ -339,9 +606,6 @@ def flatten_config(
         flat dictionnary
     """
 
-    if config_preprocessor is None:
-        config_preprocessor = lambda x: x
-
     def __flatten(config: Dict[str, Any], prefix: str = "") -> Dict[str, Any]:
         result = {}
         for key in config:
@@ -350,16 +614,22 @@ def flatten_config(
                 nested_result = __flatten(config[key], f"{new_key}{separator}")
                 result.update(nested_result)
             else:
-                new_config = config_preprocessor(config[key])
+                new_config = config[key]
                 if new_config is not None:
                     result[new_key] = config[key]
 
         return result
 
-    return __flatten(config)
+    res_config = __flatten(config)
+    if overrides:
+        return {**res_config, **overrides}
+    else:
+        return res_config
 
 
-def read_layer_config(model: torch.nn.Module, layer_filter: str) -> Dict[str, Any]:
+def read_layer_config(
+    model: torch.nn.Module, layer_filter: str, key_map: Optional[Dict[str, str]] = None
+) -> Dict[str, Any]:
     layer_config = {}
 
     def _append_node_config(node: Any, prefix: str) -> None:
@@ -384,6 +654,15 @@ def read_layer_config(model: torch.nn.Module, layer_filter: str) -> Dict[str, An
     _append_node_config(model, "")
     for name, node in find_children(model, torch.nn.Module, layer_filter):
         _append_node_config(node, name + ".")
+
+    key_map = key_map or {}
+    keys_to_replace = []
+    for k, v in layer_config.items():
+        for old_pattern, replacement in key_map.items():
+            if (new_key := re.sub(old_pattern, replacement, k)) != k:
+                keys_to_replace.append((k, new_key))
+    for old_key, new_key in keys_to_replace:
+        layer_config[new_key] = layer_config.pop(old_key)
     return layer_config
 
 

+ 75 - 9
ggml/include/ggml/ggml-alloc.h

@@ -6,21 +6,87 @@
 extern "C" {
 #endif
 
+struct ggml_backend;
+struct ggml_backend_buffer;
+struct ggml_backend_buffer_type;
 
-GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
-GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
+//
+// Legacy API
+//
+
+typedef struct ggml_allocr * ggml_allocr_t;
+
+// initialize allocator for use with CPU backend only
+GGML_API ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment);
+GGML_API ggml_allocr_t ggml_allocr_new_measure(size_t alignment);
+
+// initialize allocator for use with ggml-backend
+GGML_API ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer);
+GGML_API ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
+GGML_API ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend);
+
+GGML_API struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc);
 
 // tell the allocator to parse nodes following the order described in the list
 // you should call this if your graph are optimized to execute out-of-order
-GGML_API void   ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n);
+GGML_API void   ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n);
+
+GGML_API void   ggml_allocr_free       (ggml_allocr_t alloc);
+GGML_API bool   ggml_allocr_is_measure (ggml_allocr_t alloc);
+GGML_API void   ggml_allocr_reset      (ggml_allocr_t alloc);
+GGML_API void   ggml_allocr_alloc      (ggml_allocr_t alloc, struct ggml_tensor * tensor);
+GGML_API size_t ggml_allocr_max_size   (ggml_allocr_t alloc);
+
+GGML_API size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph);
+
+//
+// ggml-backend v2 API
+//
+
+// Separate tensor and graph allocator objects
+// This is necessary for multi-backend allocation because the graph allocator needs to use multiple tensor allocators
+// The original API is kept as a wrapper around the new API
+
+// Tensor allocator
+typedef struct ggml_tallocr * ggml_tallocr_t;
 
-GGML_API void   ggml_allocr_free(struct ggml_allocr * alloc);
-GGML_API bool   ggml_allocr_is_measure(struct ggml_allocr * alloc);
-GGML_API void   ggml_allocr_reset(struct ggml_allocr * alloc);
-GGML_API void   ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor);
-GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
+GGML_API ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment);
+GGML_API ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment);
+GGML_API ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer);
+GGML_API ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
+GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend);
 
+GGML_API struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t talloc);
+
+GGML_API void   ggml_tallocr_free       (ggml_tallocr_t talloc);
+GGML_API bool   ggml_tallocr_is_measure (ggml_tallocr_t talloc);
+GGML_API void   ggml_tallocr_reset      (ggml_tallocr_t talloc);
+GGML_API void   ggml_tallocr_alloc      (ggml_tallocr_t talloc, struct ggml_tensor * tensor);
+GGML_API size_t ggml_tallocr_max_size   (ggml_tallocr_t talloc);
+
+
+// Graph allocator
+typedef struct ggml_gallocr * ggml_gallocr_t;
+
+GGML_API ggml_gallocr_t ggml_gallocr_new(void);
+GGML_API void   ggml_gallocr_free(ggml_gallocr_t galloc);
+
+GGML_API void   ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n);
+GGML_API size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph);
+
+// Allocate tensors from the allocators given by the hash table
+GGML_API void   ggml_gallocr_alloc_graph_n(
+                    ggml_gallocr_t galloc,
+                    struct ggml_cgraph * graph,
+                    struct ggml_hash_set hash_set,
+                    ggml_tallocr_t * hash_node_talloc);
+
+
+// Utils
+// Create a buffer and allocate all the tensors in a ggml_context
+GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, struct ggml_backend_buffer_type * buft);
+GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, struct ggml_backend * backend);
 
 #ifdef  __cplusplus
 }
-#endif
+#endif

+ 181 - 0
ggml/include/ggml/ggml-backend.h

@@ -0,0 +1,181 @@
+#pragma once
+
+#include "ggml.h"
+#include "ggml-alloc.h"
+
+#ifdef  __cplusplus
+extern "C" {
+#endif
+
+    typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
+    typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
+    typedef struct ggml_backend * ggml_backend_t;
+    typedef void * ggml_backend_graph_plan_t;
+
+    //
+    // Backend buffer
+    //
+
+    // buffer type
+    GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
+    GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
+    GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
+    GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
+
+    // buffer
+    GGML_API void   ggml_backend_buffer_free          (ggml_backend_buffer_t buffer);
+    GGML_API void * ggml_backend_buffer_get_base      (ggml_backend_buffer_t buffer);
+    GGML_API size_t ggml_backend_buffer_get_size      (ggml_backend_buffer_t buffer);
+    GGML_API void   ggml_backend_buffer_init_tensor   (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
+    GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
+    GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
+    GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer);
+
+    //
+    // Backend
+    //
+
+
+    GGML_API const char * ggml_backend_name(ggml_backend_t backend);
+    GGML_API void         ggml_backend_free(ggml_backend_t backend);
+
+    GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend);
+    GGML_API ggml_backend_buffer_t      ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
+    GGML_API size_t                     ggml_backend_get_alignment(ggml_backend_t backend);
+
+    GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend,       struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
+    GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor,       void * data, size_t offset, size_t size);
+
+    GGML_API void ggml_backend_tensor_set(      struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
+    GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor,       void * data, size_t offset, size_t size);
+
+    GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
+
+    GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create (ggml_backend_t backend, struct ggml_cgraph * cgraph);
+
+    GGML_API void ggml_backend_graph_plan_free   (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
+    GGML_API void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
+    GGML_API void ggml_backend_graph_compute     (ggml_backend_t backend, struct ggml_cgraph * cgraph);
+    GGML_API bool ggml_backend_supports_op       (ggml_backend_t backend, const struct ggml_tensor * op);
+
+    // tensor copy between different backends
+    GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
+    GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); // automatic fallback to sync copy
+
+    //
+    // CPU backend
+    //
+
+    GGML_API ggml_backend_t ggml_backend_cpu_init(void);
+
+    GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend);
+    GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
+
+    // Create a backend buffer from an existing pointer
+    GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
+
+    GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
+
+    //
+    // Backend registry
+    //
+
+    // The backend registry is a registry of all the available backends, and allows initializing backends in a generic way
+
+    GGML_API size_t                     ggml_backend_reg_get_count(void);
+    GGML_API size_t                     ggml_backend_reg_find_by_name(const char * name);
+    GGML_API ggml_backend_t             ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is name[:params]
+    GGML_API const char *               ggml_backend_reg_get_name(size_t i);
+    GGML_API ggml_backend_t             ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
+    GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i);
+    GGML_API ggml_backend_buffer_t      ggml_backend_reg_alloc_buffer(size_t i, size_t size);
+
+    //
+    // Backend scheduler
+    //
+
+    // The backend scheduler allows for multiple backends to be used together
+    // Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
+    // The backends are selected based on:
+    // - the backend that supports the operation
+    // - the location of the pre-allocated tensors (e.g. the weights)
+    /*
+      Example usage:
+
+        sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, num_backends);
+        // sched is initialized with measure allocators and cannot be used until allocated with a measure graph
+
+        // initialize buffers from a measure graph
+        measure_graph = build_graph(sched); // use the allocr to allocate inputs as needed
+
+        // in build_graph:
+        build_graph(...) {
+            // allocating tensors in a specific backend (optional, recommended: pre-allocate inputs in a different buffer)
+            alloc_cpu = ggml_backend_sched_get_allocr(sched, backend_cpu);
+            ggml_allocr_alloc(alloc_cpu, tensor);
+
+            // manually assigning nodes to a backend (optional, shouldn't be needed in most cases)
+            struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
+            ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
+        }
+
+        // allocate backend buffers from measure graph
+        ggml_backend_sched_init_measure(sched, measure_graph);
+
+        // the scheduler is now ready to compute graphs
+
+        // compute
+        graph = build_graph(sched);
+        ggml_backend_sched_graph_compute(sched, graph);
+    */
+
+    struct ggml_backend_sched;
+    typedef struct ggml_backend_sched * ggml_backend_sched_t;
+
+    // Initialize a backend scheduler
+    GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends);
+
+    GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
+
+    // Initialize backend buffers from a measure graph
+    GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
+
+    GGML_API ggml_tallocr_t        ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
+    GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
+
+    GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
+
+    // Allocate a graph on the backend scheduler
+    GGML_API void ggml_backend_sched_graph_compute(
+            ggml_backend_sched_t sched,
+            struct ggml_cgraph * graph);
+
+
+    //
+    // Utils
+    //
+
+    struct ggml_backend_graph_copy {
+        ggml_backend_buffer_t buffer;
+        struct ggml_context * ctx_allocated;
+        struct ggml_context * ctx_unallocated;
+        struct ggml_cgraph * graph;
+    };
+
+    // Copy a graph to a different backend
+    GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
+    GGML_API void                           ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
+
+    typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
+
+    // Compare the output of two backends
+    GGML_API void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
+
+    // Tensor initialization
+    GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
+    GGML_API void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
+
+
+#ifdef  __cplusplus
+}
+#endif

+ 308 - 101
ggml/include/ggml/ggml.h

@@ -58,7 +58,8 @@
 //   {
 //       ...
 //
-//       struct ggml_cgraph gf = ggml_build_forward(f);
+//       struct ggml_cgraph * gf = ggml_new_graph(ctx);
+//       ggml_build_forward_expand(gf, f);
 //
 //       // set the input variable and parameter values
 //       ggml_set_f32(x, 2.0f);
@@ -213,15 +214,14 @@
 #define GGML_QNT_VERSION        2    // bump this on quantization format changes
 #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
 
-#define GGML_MAX_DIMS          4
-#define GGML_MAX_NODES         4096
-#define GGML_MAX_PARAMS        256
-#define GGML_MAX_CONTEXTS      64
-#define GGML_MAX_SRC           6
-#define GGML_MAX_NAME          64
-#define GGML_MAX_OP_PARAMS     32
-#define GGML_DEFAULT_N_THREADS 4
-
+#define GGML_MAX_DIMS           4
+#define GGML_MAX_PARAMS         4096
+#define GGML_MAX_CONTEXTS       64
+#define GGML_MAX_SRC            10
+#define GGML_MAX_NAME           64
+#define GGML_MAX_OP_PARAMS      64
+#define GGML_DEFAULT_N_THREADS  4
+#define GGML_DEFAULT_GRAPH_SIZE 4096
 #if UINTPTR_MAX == 0xFFFFFFFF
     #define GGML_MEM_ALIGN 4
 #else
@@ -231,8 +231,9 @@
 #define GGML_EXIT_SUCCESS 0
 #define GGML_EXIT_ABORTED 1
 
-#define GGUF_MAGIC   0x46554747 // "GGUF"
-#define GGUF_VERSION 2
+#define GGUF_MAGIC "GGUF"
+
+#define GGUF_VERSION 3
 
 #define GGUF_DEFAULT_ALIGNMENT 32
 
@@ -243,11 +244,21 @@
 #define GGML_ASSERT(x) \
     do { \
         if (!(x)) { \
+            fflush(stdout); \
             fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
+            ggml_print_backtrace(); \
             abort(); \
         } \
     } while (0)
 
+#ifndef NDEBUG
+#define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
+#elif defined(__GNUC__)
+#define GGML_UNREACHABLE() __builtin_unreachable()
+#else
+#define GGML_UNREACHABLE() ((void) 0)
+#endif
+
 // used to copy the number of elements and stride in bytes of tensors into local variables.
 // main purpose is to reduce code duplication and improve readability.
 //
@@ -272,6 +283,20 @@
     const type prefix##3 = (pointer)->array[3]; \
     GGML_UNUSED(prefix##3);
 
+#define GGML_TENSOR_UNARY_OP_LOCALS \
+    GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
+    GGML_TENSOR_LOCALS(size_t,  nb0, src0, nb) \
+    GGML_TENSOR_LOCALS(int64_t, ne,  dst,  ne) \
+    GGML_TENSOR_LOCALS(size_t,  nb,  dst,  nb)
+
+#define GGML_TENSOR_BINARY_OP_LOCALS \
+    GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
+    GGML_TENSOR_LOCALS(size_t,  nb0, src0, nb) \
+    GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
+    GGML_TENSOR_LOCALS(size_t,  nb1, src1, nb) \
+    GGML_TENSOR_LOCALS(int64_t, ne,  dst,  ne) \
+    GGML_TENSOR_LOCALS(size_t,  nb,  dst,  nb)
+
 #ifdef  __cplusplus
 extern "C" {
 #endif
@@ -318,7 +343,7 @@ extern "C" {
         GGML_TYPE_COUNT,
     };
 
-    enum ggml_backend {
+    enum ggml_backend_type {
         GGML_BACKEND_CPU = 0,
         GGML_BACKEND_GPU = 10,
         GGML_BACKEND_GPU_SPLIT = 20,
@@ -371,6 +396,7 @@ extern "C" {
         GGML_OP_GROUP_NORM,
 
         GGML_OP_MUL_MAT,
+        GGML_OP_MUL_MAT_ID,
         GGML_OP_OUT_PROD,
 
         GGML_OP_SCALE,
@@ -392,21 +418,23 @@ extern "C" {
         GGML_OP_ROPE_BACK,
         GGML_OP_ALIBI,
         GGML_OP_CLAMP,
+        GGML_OP_CONV_TRANSPOSE_1D,
+        GGML_OP_IM2COL,
         GGML_OP_CONV_1D,
-        GGML_OP_CONV_1D_GENERIC,
         GGML_OP_CONV_2D,
         GGML_OP_CONV_TRANSPOSE_2D,
         GGML_OP_POOL_1D,
         GGML_OP_POOL_2D,
+        GGML_OP_DEPTHWISE_CONV_STAGE_0,  // internal
+        GGML_OP_DEPTHWISE_CONV_STAGE_1,  // internal
+        GGML_OP_DEPTHWISE_CONV_STAGE_2,  // internal
 
-        GGML_OP_CONV_1D_STAGE_0,  // internal
-        GGML_OP_CONV_1D_STAGE_1,  // internal
-        GGML_OP_CONV_1D_STAGE_2,  // internal
-
-        GGML_OP_CONV_1D_GENERIC_STAGE_0,
-        GGML_OP_CONV_1D_GENERIC_STAGE_1,  
-
+        GGML_OP_CONV_1D_STAGE_0,
+        GGML_OP_CONV_1D_STAGE_1,  
         GGML_OP_UPSCALE, // nearest interpolate
+        GGML_OP_PAD,
+        GGML_OP_ARGSORT,
+        GGML_OP_LEAKY_RELU,
 
         GGML_OP_FLASH_ATTN,
         GGML_OP_FLASH_FF,
@@ -446,6 +474,8 @@ extern "C" {
         GGML_UNARY_OP_GELU,
         GGML_UNARY_OP_GELU_QUICK,
         GGML_UNARY_OP_SILU,
+
+        GGML_UNARY_OP_COUNT,
         GGML_UNARY_OP_GLU,
     };
 
@@ -455,6 +485,12 @@ extern "C" {
         GGML_OBJECT_WORK_BUFFER
     };
 
+    enum ggml_log_level {
+        GGML_LOG_LEVEL_ERROR = 2,
+        GGML_LOG_LEVEL_WARN = 3,
+        GGML_LOG_LEVEL_INFO = 4
+    };
+
     // ggml object
     struct ggml_object {
         size_t offs;
@@ -471,14 +507,16 @@ extern "C" {
 
     // n-dimensional tensor
     struct ggml_tensor {
-        enum ggml_type    type;
-        enum ggml_backend backend;
+        enum ggml_type         type;
+        enum ggml_backend_type backend;
+
+        struct ggml_backend_buffer * buffer;
 
         int     n_dims;
         int64_t ne[GGML_MAX_DIMS]; // number of elements
         size_t  nb[GGML_MAX_DIMS]; // stride in bytes:
-                                   // nb[0] = sizeof(type)
-                                   // nb[1] = nb[0]   * ne[0] + padding
+                                   // nb[0] = ggml_type_size(type)
+                                   // nb[1] = nb[0]   * (ne[0] / ggml_blck_size(type)) + padding
                                    // nb[i] = nb[i-1] * ne[i-1]
 
         // compute data
@@ -506,7 +544,7 @@ extern "C" {
 
         void * extra; // extra things e.g. for ggml-cuda.cu
 
-        char padding[4];
+        char padding[12];
     };
 
     static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
@@ -519,29 +557,35 @@ extern "C" {
 
         int n_threads;
 
-        // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
-        int n_tasks[GGML_MAX_NODES];
-
         // abort ggml_graph_compute when true
         bool (*abort_callback)(void * data);
         void * abort_callback_data;
     };
 
-    // next prime after GGML_MAX_NODES
-    // #define GGML_GRAPH_HASHTABLE_SIZE 4099
-    // next prime after GGML_MAX_NODES * 2 (nodes + leafs)
-    #define GGML_GRAPH_HASHTABLE_SIZE 8273
+    enum ggml_cgraph_eval_order {
+        GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
+        GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
+        GGML_CGRAPH_EVAL_ORDER_COUNT
+    };
+
+    struct ggml_hash_set {
+        size_t size;
+        struct ggml_tensor ** keys;
+    };
 
     // computation graph
     struct ggml_cgraph {
+        int size;
         int n_nodes;
         int n_leafs;
 
-        struct ggml_tensor * nodes[GGML_MAX_NODES];
-        struct ggml_tensor * grads[GGML_MAX_NODES];
-        struct ggml_tensor * leafs[GGML_MAX_NODES];
+        struct ggml_tensor ** nodes;
+        struct ggml_tensor ** grads;
+        struct ggml_tensor ** leafs;
+
+        struct ggml_hash_set visited_hash_table;
 
-        void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
+        enum ggml_cgraph_eval_order order;
 
         // performance
         int     perf_runs;
@@ -549,8 +593,6 @@ extern "C" {
         int64_t perf_time_us;
     };
 
-    static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
-
     // scratch buffer
     struct ggml_scratch {
         size_t offs;
@@ -560,7 +602,7 @@ extern "C" {
 
     struct ggml_init_params {
         // memory pool
-        int64_t mem_size;   // bytes
+        size_t mem_size;   // bytes
         void * mem_buffer; // if NULL, memory will be allocated internally
         bool   no_alloc;   // don't allocate memory for the tensor data
     };
@@ -595,6 +637,8 @@ extern "C" {
     GGML_API int64_t ggml_cycles(void);
     GGML_API int64_t ggml_cycles_per_ms(void);
 
+    GGML_API void    ggml_print_backtrace(void);
+
     GGML_API void    ggml_numa_init(void); // call once for better performance on NUMA systems
     GGML_API bool    ggml_is_numa(void); // true if init detected that system has >1 NUMA node
 
@@ -615,6 +659,9 @@ extern "C" {
     GGML_API const char * ggml_op_name  (enum ggml_op   op);
     GGML_API const char * ggml_op_symbol(enum ggml_op   op);
 
+    GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
+    GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
+
     GGML_API size_t  ggml_element_size(const struct ggml_tensor * tensor);
 
     GGML_API bool    ggml_is_quantized(enum ggml_type type);
@@ -643,7 +690,7 @@ extern "C" {
     GGML_API void    ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
 
     GGML_API void *  ggml_get_mem_buffer     (const struct ggml_context * ctx);
-    GGML_API int64_t  ggml_get_mem_size       (const struct ggml_context * ctx);
+    GGML_API size_t  ggml_get_mem_size       (const struct ggml_context * ctx);
     GGML_API size_t  ggml_get_max_tensor_size(const struct ggml_context * ctx);
 
     GGML_API struct ggml_tensor * ggml_new_tensor(
@@ -684,18 +731,30 @@ extern "C" {
     GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
     GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
 
+    // Context tensor enumeration and lookup
+    GGML_API struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx);
+    GGML_API struct ggml_tensor * ggml_get_next_tensor (struct ggml_context * ctx, struct ggml_tensor * tensor);
     GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
 
     GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
     GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
     GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
 
+    // Converts a flat index into coordinates
+    GGML_API void    ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
+
     GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
     GGML_API void    ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
 
+    GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
+    GGML_API void    ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
+
     GGML_API float   ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
     GGML_API void    ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
 
+    GGML_API float   ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
+    GGML_API void    ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
+
     GGML_API void *  ggml_get_data    (const struct ggml_tensor * tensor);
     GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
 
@@ -729,6 +788,12 @@ extern "C" {
             struct ggml_tensor  * a,
             struct ggml_tensor  * b);
 
+    GGML_API struct ggml_tensor * ggml_add_cast(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * a,
+            struct ggml_tensor  * b,
+            enum   ggml_type      type);
+
     GGML_API struct ggml_tensor * ggml_add1(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
@@ -739,6 +804,9 @@ extern "C" {
             struct ggml_tensor  * a,
             struct ggml_tensor  * b);
 
+    // dst = a
+    // view(dst, nb1, nb2, nb3, offset) += b
+    // return dst
     GGML_API struct ggml_tensor * ggml_acc(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
@@ -838,6 +906,7 @@ extern "C" {
             struct ggml_tensor  * a,
             struct ggml_tensor  * b);
 
+    // sums repetitions in a into shape of b
     GGML_API struct ggml_tensor * ggml_repeat_back(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
@@ -902,11 +971,14 @@ extern "C" {
             struct ggml_context * ctx,
             struct ggml_tensor  * a);
 
+    GGML_API struct ggml_tensor * ggml_leaky_relu(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * a, float negative_slope, bool inplace);
+
     GGML_API struct ggml_tensor * ggml_relu_inplace(
             struct ggml_context * ctx,
             struct ggml_tensor  * a);
 
-    // TODO: double-check this computation is correct
     GGML_API struct ggml_tensor * ggml_gelu(
             struct ggml_context * ctx,
             struct ggml_tensor  * a);
@@ -952,8 +1024,8 @@ extern "C" {
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
             float                 eps);
-
-    GGML_API struct ggml_tensor * ggml_batch_norm(
+    
+     GGML_API struct ggml_tensor * ggml_batch_norm(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
             struct ggml_tensor  * gamma,
@@ -993,14 +1065,24 @@ extern "C" {
             struct ggml_tensor  * b,
             float                 eps);
 
-    // A: n columns, m rows
-    // B: n columns, p rows  (i.e. we transpose it internally)
-    // result is m columns, p rows
+    // A: k columns, n rows => [ne03, ne02, n, k]
+    // B: k columns, m rows  (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
+    // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
     GGML_API struct ggml_tensor * ggml_mul_mat(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
             struct ggml_tensor  * b);
 
+    // indirect matrix multiplication
+    //  ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b)
+    GGML_API struct ggml_tensor * ggml_mul_mat_id(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * const as[],
+            int                   n_as,
+            struct ggml_tensor  * ids,
+            int                   id,
+            struct ggml_tensor  * b);
+
     // A: m columns, n rows,
     // B: p columns, n rows,
     // result is m columns, p rows
@@ -1072,7 +1154,6 @@ extern "C" {
             size_t                nb1,
             size_t                offset);
 
-
     // a -> b, return view(b)
     GGML_API struct ggml_tensor * ggml_cpy(
             struct ggml_context * ctx,
@@ -1095,6 +1176,33 @@ extern "C" {
             struct ggml_context * ctx,
             struct ggml_tensor  * a);
 
+    // make contiguous, with new shape
+    GGML_API struct ggml_tensor * ggml_cont_1d(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * a,
+            int64_t               ne0);
+
+    GGML_API struct ggml_tensor * ggml_cont_2d(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * a,
+            int64_t               ne0,
+            int64_t               ne1);
+
+    GGML_API struct ggml_tensor * ggml_cont_3d(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * a,
+            int64_t               ne0,
+            int64_t               ne1,
+            int64_t               ne2);
+
+    GGML_API struct ggml_tensor * ggml_cont_4d(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * a,
+            int64_t               ne0,
+            int64_t               ne1,
+            int64_t               ne2,
+            int64_t               ne3);
+
     // return view(a), b specifies the new shape
     // TODO: when we start computing gradient, make a copy instead of view
     GGML_API struct ggml_tensor * ggml_reshape(
@@ -1182,6 +1290,7 @@ extern "C" {
             struct ggml_context * ctx,
             struct ggml_tensor  * a);
 
+    // supports 3D: a->ne[2] == b->ne[1]
     GGML_API struct ggml_tensor * ggml_get_rows(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
@@ -1230,6 +1339,14 @@ extern "C" {
             struct ggml_context * ctx,
             struct ggml_tensor  * a);
 
+    // fused soft_max(a*scale + mask)
+    // mask is optional
+    GGML_API struct ggml_tensor * ggml_soft_max_ext(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * a,
+            struct ggml_tensor  * mask,
+            float                 scale);
+
     GGML_API struct ggml_tensor * ggml_soft_max_back(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
@@ -1242,14 +1359,15 @@ extern "C" {
             struct ggml_tensor  * b);
 
     // rotary position embedding
-    // if mode & 1 == 1, skip n_past elements
+    // if mode & 1 == 1, skip n_past elements (DEPRECATED)
     // if mode & 2 == 1, GPT-NeoX style
     // if mode & 4 == 1, ChatGLM style
-    // TODO: avoid creating a new tensor every time
+    //
+    // b is an int32 vector with size a->ne[2], it contains the positions
     GGML_API struct ggml_tensor * ggml_rope(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
-            int                   n_past,
+            struct ggml_tensor  * b,
             int                   n_dims,
             int                   mode,
             int                   n_ctx);
@@ -1258,7 +1376,7 @@ extern "C" {
     GGML_API struct ggml_tensor * ggml_rope_inplace(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
-            int                   n_past,
+            struct ggml_tensor  * b,
             int                   n_dims,
             int                   mode,
             int                   n_ctx);
@@ -1267,29 +1385,43 @@ extern "C" {
     GGML_API struct ggml_tensor * ggml_rope_custom(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
-            int                   n_past,
+            struct ggml_tensor  * b,
             int                   n_dims,
             int                   mode,
             int                   n_ctx,
+            int                   n_orig_ctx,
             float                 freq_base,
-            float                 freq_scale);
+            float                 freq_scale,
+            float                 ext_factor,
+            float                 attn_factor,
+            float                 beta_fast,
+            float                 beta_slow);
 
     // in-place, returns view(a)
     GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
-            int                   n_past,
+            struct ggml_tensor  * b,
             int                   n_dims,
             int                   mode,
             int                   n_ctx,
+            int                   n_orig_ctx,
             float                 freq_base,
-            float                 freq_scale);
+            float                 freq_scale,
+            float                 ext_factor,
+            float                 attn_factor,
+            float                 beta_fast,
+            float                 beta_slow);
+
+    // compute correction dims for YaRN RoPE scaling
+    void ggml_rope_yarn_corr_dims(
+        int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
 
     // xPos RoPE, in-place, returns view(a)
     GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
-            int                   n_past,
+            struct ggml_tensor  * b,
             int                   n_dims,
             float                 base,
             bool                  down);
@@ -1299,18 +1431,23 @@ extern "C" {
     GGML_API struct ggml_tensor * ggml_rope_back(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
-            int                   n_past,
+            struct ggml_tensor  * b,
             int                   n_dims,
             int                   mode,
             int                   n_ctx,
+            int                   n_orig_ctx,
             float                 freq_base,
             float                 freq_scale,
+            float                 ext_factor,
+            float                 attn_factor,
+            float                 beta_fast,
+            float                 beta_slow,
             float                 xpos_base,
             bool                  xpos_down);
 
     // alibi position embedding
     // in-place, returns view(a)
-    struct ggml_tensor * ggml_alibi(
+    GGML_API struct ggml_tensor * ggml_alibi(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
             int                   n_past,
@@ -1319,27 +1456,33 @@ extern "C" {
 
     // clamp
     // in-place, returns view(a)
-    struct ggml_tensor * ggml_clamp(
+    GGML_API struct ggml_tensor * ggml_clamp(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
             float                 min,
             float                 max);
 
-    GGML_API struct ggml_tensor * ggml_conv_1d(
+    GGML_API struct ggml_tensor * ggml_im2col(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
             struct ggml_tensor  * b,
-            int                   s0,  // stride
-            int                   p0,  // padding
-            int                   d0); // dilation
+            int                  s0,
+            int                  s1,
+            int                  p0,
+            int                  p1,
+            int                  d0,
+            int                  d1,
+            bool                 is_2D);
 
-    GGML_API struct ggml_tensor * ggml_conv_1d_generic(
+    GGML_API struct ggml_tensor * ggml_conv_1d(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
             struct ggml_tensor  * b,
             int                   s0,  // stride
             int                   p0,  // padding
-            int                   d0); // dilation
+            int                   d0,  // dilation
+            int                   groups // Number of blocked connections from input channels to output channels. Now supports 1 and model_dim (depthwise convolution)
+            ); 
 
     // conv_1d with padding = half
     // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
@@ -1350,6 +1493,14 @@ extern "C" {
             int                   s,
             int                   d);
 
+    GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * a,
+            struct ggml_tensor  * b,
+            int                   s0,
+            int                   p0,
+            int                   d0);
+
     GGML_API struct ggml_tensor * ggml_conv_2d(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
@@ -1408,6 +1559,8 @@ extern "C" {
             int                   s0, // stride
             int                   p0); // padding
 
+    // the result will have 2*p0 padding for the first dimension
+    // and 2*p1 padding for the second dimension
     GGML_API struct ggml_tensor * ggml_pool_2d(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
@@ -1416,8 +1569,8 @@ extern "C" {
             int                   k1,
             int                   s0,
             int                   s1,
-            int                   p0,
-            int                   p1);
+            float                 p0,
+            float                 p1);
 
     // nearest interpolate
     // used in stable-diffusion
@@ -1426,6 +1579,32 @@ extern "C" {
             struct ggml_tensor  * a,
             int                   scale_factor);
 
+    // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
+    GGML_API struct ggml_tensor * ggml_pad(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * a,
+            int                  p0,
+            int                  p1,
+            int                  p2,
+            int                  p3);
+
+    // sort rows
+    enum ggml_sort_order {
+        GGML_SORT_ASC,
+        GGML_SORT_DESC,
+    };
+
+    GGML_API struct ggml_tensor * ggml_argsort(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * a,
+            enum ggml_sort_order  order);
+
+    // top k elements per row
+    GGML_API struct ggml_tensor * ggml_top_k(
+            struct ggml_context * ctx,
+            struct ggml_tensor  * a,
+            int                   k);
+
     GGML_API struct ggml_tensor * ggml_flash_attn(
             struct ggml_context * ctx,
             struct ggml_tensor  * q,
@@ -1487,7 +1666,6 @@ extern "C" {
             int                   kh);
 
     // used in sam
-
     GGML_API struct ggml_tensor * ggml_add_rel_pos(
             struct ggml_context * ctx,
             struct ggml_tensor  * a,
@@ -1658,19 +1836,22 @@ extern "C" {
     GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
     GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
 
-    GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
-    GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
-
     // graph allocation in a context
-    GGML_API struct ggml_cgraph * ggml_new_graph        (struct ggml_context * ctx);
-    GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
+    GGML_API struct ggml_cgraph * ggml_new_graph         (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
+    GGML_API struct ggml_cgraph * ggml_new_graph_custom  (struct ggml_context * ctx, size_t size, bool grads);
+    GGML_API struct ggml_cgraph * ggml_graph_dup         (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
+    GGML_API struct ggml_cgraph   ggml_graph_view        (struct ggml_cgraph * cgraph, int i0, int i1);
+    GGML_API void                 ggml_graph_cpy         (struct ggml_cgraph * src, struct ggml_cgraph * dst);
+    GGML_API void                 ggml_graph_reset       (struct ggml_cgraph * cgraph);  // zero grads
+    GGML_API void                 ggml_graph_clear       (struct ggml_cgraph * cgraph);
+
     GGML_API size_t ggml_graph_overhead(void);
+    GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
 
     // ggml_graph_plan() has to be called before ggml_graph_compute()
     // when plan.work_size > 0, caller must allocate memory for plan.work_data
     GGML_API struct ggml_cplan ggml_graph_plan   (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
-    GGML_API               int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
-    GGML_API              void ggml_graph_reset  (struct ggml_cgraph * cgraph);
+    GGML_API int               ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
 
     // same as ggml_graph_compute() but the work data is allocated as a part of the context
     // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
@@ -1678,8 +1859,8 @@ extern "C" {
 
     GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
 
-    GGML_API void               ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
-    GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
+    GGML_API void                 ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
+    GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
 
     // print info and performance information for the graph
     GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
@@ -1687,6 +1868,16 @@ extern "C" {
     // dump the graph into a file using the dot format
     GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
 
+    // build gradient checkpointing backward graph gb for gf using provided checkpoints
+    // gb_tmp will contain original backward graph with rewritten backward process nodes,
+    // but without the second forward pass nodes.
+    GGML_API void ggml_build_backward_gradient_checkpointing(
+            struct ggml_context   * ctx,
+            struct ggml_cgraph    * gf,
+            struct ggml_cgraph    * gb,
+            struct ggml_cgraph    * gb_tmp,
+            struct ggml_tensor  * * checkpoints,
+            int                     n_checkpoints);
     //
     // optimization
     //
@@ -1713,6 +1904,7 @@ extern "C" {
         GGML_OPT_NO_CONTEXT,
         GGML_OPT_INVALID_WOLFE,
         GGML_OPT_FAIL,
+        GGML_OPT_CANCEL,
 
         GGML_LINESEARCH_FAIL = -128,
         GGML_LINESEARCH_MINIMUM_STEP,
@@ -1721,7 +1913,8 @@ extern "C" {
         GGML_LINESEARCH_INVALID_PARAMETERS,
     };
 
-    typedef void (*ggml_opt_callback)(void * data, float * sched);
+    typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
+    typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
 
     // optimization parameters
     //
@@ -1730,6 +1923,8 @@ extern "C" {
     struct ggml_opt_params {
         enum ggml_opt_type type;
 
+        size_t graph_size;
+
         int n_threads;
 
         // delta-based convergence test
@@ -1752,6 +1947,8 @@ extern "C" {
         bool print_forward_graph;
         bool print_backward_graph;
 
+        int n_gradient_accumulation;
+
         // ADAM parameters
         struct {
             int n_iter;
@@ -1797,6 +1994,7 @@ extern "C" {
         float loss_after;
 
         struct {
+            struct ggml_tensor * g;  // current gradient
             struct ggml_tensor * m;  // first moment
             struct ggml_tensor * v;  // second moment
             struct ggml_tensor * pf; // past function values
@@ -1860,12 +2058,19 @@ extern "C" {
     // quantization
     //
 
+    // TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
     GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
     GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
     GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
     GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
     GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
 
+    GGML_API size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
+    GGML_API size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
+    GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
+    GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
+    GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
+
     GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
 
     //
@@ -1913,26 +2118,27 @@ extern "C" {
 
     GGML_API int          gguf_get_n_kv(const struct gguf_context * ctx);
     GGML_API int          gguf_find_key(const struct gguf_context * ctx, const char * key);
-    GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int i);
-
-    GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int i);
-    GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int i);
-
-    // results are undefined if the wrong type is used for the key
-    GGML_API uint8_t      gguf_get_val_u8  (const struct gguf_context * ctx, int i);
-    GGML_API int8_t       gguf_get_val_i8  (const struct gguf_context * ctx, int i);
-    GGML_API uint16_t     gguf_get_val_u16 (const struct gguf_context * ctx, int i);
-    GGML_API int16_t      gguf_get_val_i16 (const struct gguf_context * ctx, int i);
-    GGML_API uint32_t     gguf_get_val_u32 (const struct gguf_context * ctx, int i);
-    GGML_API int32_t      gguf_get_val_i32 (const struct gguf_context * ctx, int i);
-    GGML_API float        gguf_get_val_f32 (const struct gguf_context * ctx, int i);
-    GGML_API uint64_t     gguf_get_val_u64 (const struct gguf_context * ctx, int i);
-    GGML_API int64_t      gguf_get_val_i64 (const struct gguf_context * ctx, int i);
-    GGML_API double       gguf_get_val_f64 (const struct gguf_context * ctx, int i);
-    GGML_API bool         gguf_get_val_bool(const struct gguf_context * ctx, int i);
-    GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int i);
-    GGML_API int          gguf_get_arr_n   (const struct gguf_context * ctx, int i);
-    GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int i);
+    GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
+
+    GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
+    GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
+
+    // will abort if the wrong type is used for the key
+    GGML_API uint8_t      gguf_get_val_u8  (const struct gguf_context * ctx, int key_id);
+    GGML_API int8_t       gguf_get_val_i8  (const struct gguf_context * ctx, int key_id);
+    GGML_API uint16_t     gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
+    GGML_API int16_t      gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
+    GGML_API uint32_t     gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
+    GGML_API int32_t      gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
+    GGML_API float        gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
+    GGML_API uint64_t     gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
+    GGML_API int64_t      gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
+    GGML_API double       gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
+    GGML_API bool         gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
+    GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
+    GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
+    GGML_API int          gguf_get_arr_n   (const struct gguf_context * ctx, int key_id);
+    GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
     GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
 
     GGML_API int    gguf_get_n_tensors    (const struct gguf_context * ctx);
@@ -2001,6 +2207,7 @@ extern "C" {
     GGML_API int ggml_cpu_has_fma        (void);
     GGML_API int ggml_cpu_has_neon       (void);
     GGML_API int ggml_cpu_has_arm_fma    (void);
+    GGML_API int ggml_cpu_has_metal      (void);
     GGML_API int ggml_cpu_has_f16c       (void);
     GGML_API int ggml_cpu_has_fp16_va    (void);
     GGML_API int ggml_cpu_has_wasm_simd  (void);
@@ -2038,8 +2245,8 @@ extern "C" {
         enum ggml_type    vec_dot_type;
     } ggml_type_traits_t;
 
-    ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
+    GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
 
 #ifdef  __cplusplus
 }
-#endif
+#endif

+ 3 - 0
ggml/requirements.txt

@@ -4,3 +4,6 @@ sentencepiece==0.1.98
 torch==2.0.1
 torchaudio==2.0.2
 torchvision==0.15.2
+transformers==4.29.2
+fairseq2==0.2.1
+func_argparse

+ 94 - 12
ggml/src/CMakeLists.txt

@@ -26,6 +26,15 @@ if (NOT UNAME_M)
 endif()
 #message(STATUS "UNAME_S: ${UNAME_S}  UNAME_P: ${UNAME_P}  UNAME_M: ${UNAME_M}")
 
+# this version of Apple ld64 is buggy
+execute_process(
+    COMMAND ${CMAKE_C_COMPILER} ${CMAKE_EXE_LINKER_FLAGS} -Wl,-v
+    ERROR_VARIABLE output
+)
+if (output MATCHES "dyld-1015\.7")
+    add_compile_definitions(HAVE_BUGGY_APPLE_LINKER)
+endif()
+
 # Mac OS + Arm can report x86_64
 # ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
 if (UNAME_S MATCHES "Darwin")
@@ -162,7 +171,7 @@ if (GGML_OPENBLAS)
 
         set(GGML_EXTRA_LIBS  ${GGML_EXTRA_LIBS}  ${OPENBLAS_LIB})
         set(GGML_EXTRA_INCS  ${GGML_EXTRA_INCS}  ${OPENBLAS_INC})
-	set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
+        set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
     else()
         message(WARNING "OpenBLAS not found")
     endif()
@@ -177,12 +186,12 @@ if (GGML_CLBLAST)
         )
 	find_path(CLBLAST_INC NAMES clblast.h PATHS ${CLBLAST_INCLUDE_SEARCH_PATHS})
 	find_library(CLBLAST_LIB NAMES clblast)
-	if (CLBLAST_LIB AND CLBLAST_INC)
+	find_library(OPENCL_LIB NAMES OpenCL)
+	if (CLBLAST_LIB AND OPENCL_LIB AND CLBLAST_INC)
 		message(STATUS "clBLAST found")
 
-
 		set(GGML_EXTRA_INCS  ${GGML_EXTRA_INCS}  ${CLBLAST_INC})
-		set(GGML_EXTRA_LIBS  ${GGML_EXTRA_LIBS}  ${CLBLAST_LIB})
+		set(GGML_EXTRA_LIBS  ${GGML_EXTRA_LIBS}  ${CLBLAST_LIB}  ${OPENCL_LIB})
 		set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_CLBLAST)
 
 		set(GGML_OPENCL_SOURCES ggml-opencl.cpp ggml-opencl.h)
@@ -204,7 +213,17 @@ if (GGML_CUBLAS)
 
         set(GGML_CUDA_SOURCES ggml-cuda.cu ggml-cuda.h)
 
-        add_compile_definitions(GGML_USE_CUBLAS)
+        set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_CUBLAS)
+
+        if (GGML_CUDA_FORCE_DMMV)
+            add_compile_definitions(GGML_CUDA_FORCE_DMMV)
+        endif()
+        if (GGML_CUDA_FORCE_MMQ)
+            add_compile_definitions(GGML_CUDA_FORCE_MMQ)
+        endif()
+
+        # required for dynamic parallelism
+        # set(CMAKE_CUDA_SEPARABLE_COMPILATION ON)
 
         if (GGML_STATIC)
             set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
@@ -212,11 +231,59 @@ if (GGML_CUBLAS)
             set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
         endif()
 
+        if (CMAKE_BUILD_TYPE MATCHES Debug)
+            set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -lineinfo")
+        endif()
     else()
         message(WARNING "cuBLAS not found")
     endif()
 endif()
 
+if (GGML_HIPBLAS)
+    list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
+
+    if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
+        message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
+    endif()
+    if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
+        message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
+    endif()
+
+    find_package(hip)
+    find_package(hipblas)
+    find_package(rocblas)
+
+    if (${hipblas_FOUND} AND ${hip_FOUND})
+        message(STATUS "HIP and hipBLAS found")
+
+        set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_CUBLAS)
+
+        add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
+        if (BUILD_SHARED_LIBS)
+            set_target_properties(ggml-rocm PROPERTIES POSITION_INDEPENDENT_CODE ON)
+        endif()
+        if (GGML_CUDA_FORCE_DMMV)
+            target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_FORCE_DMMV)
+        endif()
+        if (GGML_CUDA_FORCE_MMQ)
+            target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_FORCE_MMQ)
+        endif()
+        target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_DMMV_X=${GGML_CUDA_DMMV_X})
+        target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
+        target_compile_definitions(ggml-rocm PRIVATE K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
+        set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
+        target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
+        target_include_directories(ggml-rocm PRIVATE . ../include ../include/ggml)
+
+        if (GGML_STATIC)
+            message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
+        endif()
+        set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} ggml-rocm)
+    else()
+        message(WARNING "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
+    endif()
+endif()
+
 if (GGML_METAL)
     find_library(FOUNDATION_LIBRARY         Foundation              REQUIRED)
     find_library(METAL_FRAMEWORK            Metal                   REQUIRED)
@@ -225,8 +292,9 @@ if (GGML_METAL)
 
     set(GGML_METAL_SOURCES ggml-metal.m ggml-metal.h)
 
-    add_compile_definitions(GGML_USE_METAL)
-    add_compile_definitions(GGML_METAL_NDEBUG)
+    set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_METAL)
+
+    #add_compile_definitions(GGML_METAL_NDEBUG)
 
     # get full path to the file
     #add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
@@ -249,8 +317,13 @@ endif()
 add_library(${TARGET}
     ggml.c
     ggml-alloc.c
+    ggml-backend.c
+    ggml-quants.c
+    ggml-impl.h
+    ggml-backend-impl.h
     ../include/ggml/ggml.h
     ../include/ggml/ggml-alloc.h
+    ../include/ggml/ggml-backend.h
     ${GGML_CUDA_SOURCES}
     ${GGML_OPENCL_SOURCES}
     ${GGML_METAL_SOURCES}
@@ -301,8 +374,16 @@ if (MINGW)
 endif()
 
 if (GGML_CUDA_SOURCES)
-    message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
-    set_property(TARGET ggml  PROPERTY CUDA_ARCHITECTURES "52;61")
+    message(STATUS "GGML CUDA sources found")
+    if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
+        # Only configure gmml CUDA architectures is not globally set
+        if (NOT DEFINED GGML_CUDA_ARCHITECTURES)
+            # Not overriden by user, so set defaults
+            set(GGML_CUDA_ARCHITECTURES 52 61 70)
+        endif()
+        message(STATUS "GGML Configuring CUDA architectures ${GGML_CUDA_ARCHITECTURES}")
+        set_property(TARGET ggml  PROPERTY CUDA_ARCHITECTURES ${GGML_CUDA_ARCHITECTURES})
+    endif()
     set_property(TARGET ggml  PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
     if (NOT MSVC)
         target_link_libraries(ggml PUBLIC stdc++)
@@ -311,12 +392,13 @@ endif()
 
 set (GGML_PUBLIC_HEADERS
      ${CMAKE_CURRENT_SOURCE_DIR}/../include/ggml/ggml.h
-     ${CMAKE_CURRENT_SOURCE_DIR}/../include/ggml/ggml-alloc.h)
+     ${CMAKE_CURRENT_SOURCE_DIR}/../include/ggml/ggml-alloc.h
+     ${CMAKE_CURRENT_SOURCE_DIR}/../include/ggml/ggml-backend.h)
+
 set_target_properties(${TARGET} PROPERTIES
                       PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
 
 install(TARGETS ${TARGET}
     LIBRARY DESTINATION lib
-    ARCHIVE DESTINATION lib/static
     PUBLIC_HEADER DESTINATION include/ggml
-    )
+    )

+ 453 - 284
ggml/src/ggml-alloc.c

@@ -1,69 +1,21 @@
 #include "ggml-alloc.h"
+#include "ggml-backend-impl.h"
 #include "ggml.h"
+#include "ggml-impl.h"
 #include <assert.h>
+#include <limits.h>
 #include <stdarg.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 
-#ifdef __has_include
-    #if __has_include(<unistd.h>)
-        #include <unistd.h>
-        #if defined(_POSIX_MAPPED_FILES)
-            #include <sys/types.h>
-            #include <sys/mman.h>
-        #endif
-    #endif
-#endif
-
-#if defined(_WIN32)
-    #define WIN32_LEAN_AND_MEAN
-    #ifndef NOMINMAX
-        #define NOMINMAX
-    #endif
-    #include <windows.h>
-    #include <memoryapi.h>
-#endif
-
-
-#define UNUSED(x) (void)(x)
 #define MAX(a, b) ((a) > (b) ? (a) : (b))
-#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
+#define MAX_FREE_BLOCKS 256
 
 //#define GGML_ALLOCATOR_DEBUG
 
-//#define AT_PRINTF printf
-#define AT_PRINTF(...) ((void)0)
-
-struct hash_node {
-    struct ggml_tensor * t;
-    int n_children;
-    int n_views;
-};
-
-static size_t hash(void * p) {
-    return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
-}
-
-static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
-    size_t h = hash(t);
-
-    // linear probing
-    size_t i = h;
-    while (hash_table[i].t != NULL) {
-        if (hash_table[i].t == t) {
-            return &hash_table[i];
-        }
-        i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
-        if (i == h) {
-            // hash table is full
-            GGML_ASSERT(false);
-        }
-    }
-
-    hash_table[i].t = t;
-    return &hash_table[i];
-}
+//#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__)
+#define AT_PRINTF(...)
 
 // TODO: GGML_PAD ?
 static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
@@ -77,19 +29,18 @@ struct free_block {
     size_t size;
 };
 
-#define MAX_FREE_BLOCKS 128
-
-struct ggml_allocr {
-    void * data;
-    size_t size;
+struct ggml_tallocr {
+    struct ggml_backend_buffer * buffer;
+    bool buffer_owned;
+    void * base;
     size_t alignment;
+
     int n_free_blocks;
     struct free_block free_blocks[MAX_FREE_BLOCKS];
-    struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
+
     size_t max_size;
+
     bool measure;
-    int parse_seq[GGML_MAX_CONCUR];
-    int parse_seq_len;
 
 #ifdef GGML_ALLOCATOR_DEBUG
     struct ggml_tensor * allocated_tensors[1024];
@@ -97,7 +48,7 @@ struct ggml_allocr {
 };
 
 #ifdef GGML_ALLOCATOR_DEBUG
-static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
+static void add_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
     for (int i = 0; i < 1024; i++) {
         if (alloc->allocated_tensors[i] == NULL) {
             alloc->allocated_tensors[i] = tensor;
@@ -106,7 +57,7 @@ static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor
     }
     GGML_ASSERT(!"out of allocated_tensors");
 }
-static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
+static void remove_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
     for (int i = 0; i < 1024; i++) {
         if (alloc->allocated_tensors[i] == tensor ||
             (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
@@ -119,24 +70,20 @@ static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tens
 }
 #endif
 
-static size_t ggml_allocr_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
-    return ggml_nbytes(tensor);
-
-    UNUSED(alloc);
+// check if a tensor is allocated by this buffer
+static bool ggml_tallocr_is_own(ggml_tallocr_t alloc, const struct ggml_tensor * tensor) {
+    return tensor->buffer == alloc->buffer;
 }
 
-// check if a tensor is allocated by this buffer
-static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) {
-    void * ptr = tensor->data;
-    return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size;
+static bool ggml_is_view(struct ggml_tensor * t) {
+    return t->view_src != NULL;
 }
 
-void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
-#ifdef GGML_ALLOCATOR_DEBUG
+void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
     GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
     GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
-#endif
-    size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
+
+    size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor);
     size = aligned_offset(NULL, size, alloc->alignment);
 
     AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
@@ -183,10 +130,14 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
     }
 
     tensor->data = addr;
+    tensor->buffer = alloc->buffer;
+    if (!alloc->measure) {
+        ggml_backend_buffer_init_tensor(alloc->buffer, tensor);
+    }
 
 #ifdef GGML_ALLOCATOR_DEBUG
     add_allocated_tensor(alloc, tensor);
-    size_t cur_max = (char*)addr - (char*)alloc->data + size;
+    size_t cur_max = (char*)addr - (char*)alloc->base + size;
     if (cur_max > alloc->max_size) {
         printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
         for (int i = 0; i < 1024; i++) {
@@ -198,23 +149,24 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
     }
 #endif
 
-    alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
+    alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->base + size);
 }
 
 // this is a very naive implementation, but for our case the number of free blocks should be very small
-static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
-    void * ptr = tensor->data;
-
-    if (ggml_allocr_is_own(alloc, tensor) == false) {
+static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
+    if (ggml_tallocr_is_own(alloc, tensor) == false) {
         // the tensor was not allocated in this buffer
         // this can happen because the graph allocator will try to free weights and other tensors from different buffers
         // the easiest way to deal with this is just to ignore it
+        // AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer);
         return;
     }
 
-    size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
+    void * ptr = tensor->data;
+
+    size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor);
     size = aligned_offset(NULL, size, alloc->alignment);
-    AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
+    AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
 
 #ifdef GGML_ALLOCATOR_DEBUG
     remove_allocated_tensor(alloc, tensor);
@@ -268,139 +220,179 @@ static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tens
     alloc->n_free_blocks++;
 }
 
-void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) {
-    for (int i = 0; i < n; i++) {
-        alloc->parse_seq[i] = list[i];
+void ggml_tallocr_reset(ggml_tallocr_t alloc) {
+    alloc->n_free_blocks = 1;
+    size_t align_offset = aligned_offset(alloc->base, 0, alloc->alignment);
+    alloc->free_blocks[0].addr = (char *)alloc->base + align_offset;
+
+    if (alloc->measure) {
+        alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
+    } else {
+        alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
     }
-    alloc->parse_seq_len = n;
 }
 
-void ggml_allocr_reset(struct ggml_allocr * alloc) {
-    alloc->n_free_blocks = 1;
-    size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
-    alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
-    alloc->free_blocks[0].size = alloc->size - align_offset;
-}
+ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) {
+    struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(data, size);
 
-struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
-    struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
+    ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
 
-    *alloc = (struct ggml_allocr){
-        /*.data          = */ data,
-        /*.size          = */ size,
+    *alloc = (struct ggml_tallocr) {
+        /*.buffer        = */ buffer,
+        /*.buffer_owned  = */ true,
+        /*.base          = */ ggml_backend_buffer_get_base(buffer),
         /*.alignment     = */ alignment,
         /*.n_free_blocks = */ 0,
         /*.free_blocks   = */ {{0}},
-        /*.hash_table    = */ {{0}},
         /*.max_size      = */ 0,
         /*.measure       = */ false,
-        /*.parse_seq     = */ {0},
-        /*.parse_seq_len = */ 0,
 #ifdef GGML_ALLOCATOR_DEBUG
         /*.allocated_tensors = */ {0},
 #endif
     };
 
-    ggml_allocr_reset(alloc);
+    ggml_tallocr_reset(alloc);
 
     return alloc;
 }
 
-// OS specific functions to allocate and free uncommitted virtual memory
-static void * alloc_vmem(size_t size) {
-#if defined(_WIN32)
-    return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
-#elif defined(_POSIX_MAPPED_FILES)
-    void * ptr = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0);
-    if (ptr == MAP_FAILED) {
-        return NULL;
-    }
-    return ptr;
-#else
-    // use a fixed address for other platforms
-    uintptr_t base_addr = (uintptr_t)-size - 0x100;
-    return (void *)base_addr;
-#endif
-}
+ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment) {
+    ggml_tallocr_t alloc = ggml_tallocr_new((void *)0x1000, SIZE_MAX/2, alignment);
+    alloc->measure = true;
 
-static void free_vmem(void * base_addr, size_t size) {
-#if defined(_WIN32)
-    VirtualFree(base_addr, 0, MEM_RELEASE);
-    UNUSED(size);
-#elif defined(_POSIX_MAPPED_FILES)
-    munmap(base_addr, size);
-#else
-    // nothing to do
-    UNUSED(base_addr);
-    UNUSED(size);
-#endif
+    return alloc;
 }
 
-// allocate uncommitted virtual memory to measure the size of the graph
-static void alloc_measure_vmem(void ** base_addr, size_t * size) {
-    // 1TB for 64-bit, 1GB for 32-bit
-    *size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<40;
-    do {
-        *base_addr = alloc_vmem(*size);
-        if (*base_addr != NULL) {
-            AT_PRINTF("allocated %.2f GB of virtual memory for measure buffer at %p\n", *size / 1024.0 / 1024.0 / 1024.0, *base_addr);
-            return;
-        }
-        // try again with half the size
-        *size /= 2;
-    } while (*size > 0);
+ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) {
+    // create a backend buffer to get the correct tensor allocation sizes
+    ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, 1);
 
-    GGML_ASSERT(!"failed to allocate virtual memory for measure buffer");
+    // TODO: move alloc initialization to a common ggml_tallocr_new_impl function
+    ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
+    alloc->buffer_owned = true;
+    alloc->measure = true;
+    ggml_tallocr_reset(alloc);
+    return alloc;
 }
 
-static void free_measure_vmem(void * base_addr, size_t size) {
-    free_vmem(base_addr, size);
+ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) {
+    ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, size);
+    ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
+    alloc->buffer_owned = true;
+    return alloc;
 }
 
-struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
-    struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
+ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
+    ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
 
-    void * base_addr;
-    size_t size;
-
-    alloc_measure_vmem(&base_addr, &size);
-
-    *alloc = (struct ggml_allocr){
-        /*.data          = */ base_addr,
-        /*.size          = */ size,
-        /*.alignment     = */ alignment,
+    *alloc = (struct ggml_tallocr) {
+        /*.buffer        = */ buffer,
+        /*.buffer_owned  = */ false,
+        /*.base          = */ ggml_backend_buffer_get_base(buffer),
+        /*.alignment     = */ ggml_backend_buffer_get_alignment(buffer),
         /*.n_free_blocks = */ 0,
         /*.free_blocks   = */ {{0}},
-        /*.hash_table    = */ {{0}},
         /*.max_size      = */ 0,
-        /*.measure       = */ true,
-        /*.parse_seq     = */ {0},
-        /*.parse_seq_len = */ 0,
+        /*.measure       = */ false,
 #ifdef GGML_ALLOCATOR_DEBUG
         /*.allocated_tensors = */ {0},
 #endif
     };
 
-    ggml_allocr_reset(alloc);
+    ggml_tallocr_reset(alloc);
 
     return alloc;
 }
 
-void ggml_allocr_free(struct ggml_allocr * alloc) {
-    if (alloc->measure) {
-        free_measure_vmem(alloc->data, alloc->size);
+struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t alloc) {
+    return alloc->buffer;
+}
+
+void ggml_tallocr_free(ggml_tallocr_t alloc) {
+    if (alloc == NULL) {
+        return;
+    }
+
+    if (alloc->buffer_owned) {
+        ggml_backend_buffer_free(alloc->buffer);
     }
     free(alloc);
 }
 
-bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
+bool ggml_tallocr_is_measure(ggml_tallocr_t alloc) {
     return alloc->measure;
 }
 
-//////////// compute graph allocator
+size_t ggml_tallocr_max_size(ggml_tallocr_t alloc) {
+    return alloc->max_size;
+}
 
-static bool ggml_is_view(struct ggml_tensor * t) {
-    return t->view_src != NULL;
+// graph allocator
+
+struct hash_node {
+    int n_children;
+    int n_views;
+};
+
+struct ggml_gallocr {
+    ggml_tallocr_t talloc;
+    struct ggml_hash_set hash_set;
+    struct hash_node * hash_values;
+    size_t hash_values_size;
+    ggml_tallocr_t * hash_allocs;
+    int * parse_seq;
+    int parse_seq_len;
+};
+
+ggml_gallocr_t ggml_gallocr_new(void) {
+    ggml_gallocr_t galloc = (ggml_gallocr_t)malloc(sizeof(struct ggml_gallocr));
+
+    *galloc = (struct ggml_gallocr) {
+        /*.talloc           = */ NULL,
+        /*.hash_set         = */ {0},
+        /*.hash_values      = */ NULL,
+        /*.hash_values_size = */ 0,
+        /*.hash_allocs      = */ NULL,
+        /*.parse_seq        = */ NULL,
+        /*.parse_seq_len    = */ 0,
+    };
+
+    return galloc;
+}
+
+void ggml_gallocr_free(ggml_gallocr_t galloc) {
+    if (galloc == NULL) {
+        return;
+    }
+
+    if (galloc->hash_set.keys != NULL) {
+        free(galloc->hash_set.keys);
+    }
+    if (galloc->hash_values != NULL) {
+        free(galloc->hash_values);
+    }
+    if (galloc->hash_allocs != NULL) {
+        free(galloc->hash_allocs);
+    }
+    if (galloc->parse_seq != NULL) {
+        free(galloc->parse_seq);
+    }
+    free(galloc);
+}
+
+void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n) {
+    free(galloc->parse_seq);
+    galloc->parse_seq = malloc(sizeof(int) * n);
+
+    for (int i = 0; i < n; i++) {
+        galloc->parse_seq[i] = list[i];
+    }
+    galloc->parse_seq_len = n;
+}
+
+static struct hash_node * hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
+    size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
+    return &galloc->hash_values[i];
 }
 
 static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
@@ -435,7 +427,6 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
         case GGML_OP_ROPE:
         case GGML_OP_RMS_NORM:
         case GGML_OP_SOFT_MAX:
-        case GGML_OP_CONT:
             return true;
 
         default:
@@ -443,12 +434,39 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
     }
 }
 
-static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
-    struct hash_node * ht = alloc->hash_table;
+static ggml_tallocr_t node_tallocr(ggml_gallocr_t galloc, struct ggml_tensor * node) {
+    if (galloc->talloc != NULL) {
+        return galloc->talloc;
+    }
+
+    return galloc->hash_allocs[ggml_hash_find_or_insert(galloc->hash_set, node)];
+}
+
+static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool update_backend) {
+    ggml_tallocr_t alloc = node_tallocr(galloc, view);
+
+    GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL);
+    if (update_backend) {
+        view->backend = view->view_src->backend;
+    }
+    view->buffer  = view->view_src->buffer;
+    view->data    = (char *)view->view_src->data + view->view_offs;
+
+    // FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
+    // due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
+    assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->buft == alloc->buffer->buft);
+
+    if (!alloc->measure) {
+        ggml_backend_buffer_init_tensor(alloc->buffer, view);
+    }
+}
+
+static void allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
+    ggml_tallocr_t alloc = node_tallocr(galloc, node);
+
     if (node->data == NULL) {
         if (ggml_is_view(node)) {
-            assert(node->view_src->data != NULL);
-            node->data = (char *)node->view_src->data + node->view_offs;
+            init_view(galloc, node, true);
         } else {
             // see if we can reuse a parent's buffer (inplace)
             if (ggml_op_can_inplace(node->op)) {
@@ -459,16 +477,16 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
                     }
 
                     // if the node's data is external, then we cannot re-use it
-                    if (ggml_allocr_is_own(alloc, parent) == false) {
+                    if (ggml_tallocr_is_own(alloc, parent) == false) {
                         AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
                         continue;
                     }
 
-                    struct hash_node * p_hn = hash_get(ht, parent);
+                    struct hash_node * p_hn = hash_get(galloc, parent);
                     if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
                         if (ggml_is_view(parent)) {
                             struct ggml_tensor * view_src = parent->view_src;
-                            struct hash_node * view_src_hn = hash_get(ht, view_src);
+                            struct hash_node * view_src_hn = hash_get(galloc, view_src);
                             if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
                                 // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
                                 // the parent's data that it will need later (same layout requirement). the problem is that then
@@ -476,158 +494,309 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
                                 // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
                                 // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
                                 AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
-                                node->data = parent->data;
+                                node->view_src = view_src;
+                                view_src_hn->n_views += 1;
+                                init_view(galloc, node, false);
                                 return;
                             }
-                        }
-                        else {
+                        } else {
                             AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
-                            node->data = parent->data;
+                            node->view_src = parent;
+                            p_hn->n_views += 1;
+                            init_view(galloc, node, false);
                             return;
                         }
                     }
                 }
             }
-            ggml_allocr_alloc(alloc, node);
+            ggml_tallocr_alloc(alloc, node);
         }
     }
 }
 
-static size_t ggml_allocr_alloc_graph_tensors_n(
-    struct ggml_allocr * alloc,
-    struct ggml_cgraph ** graphs, int n_graphs,
-    struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
+static void free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
+    ggml_tallocr_t alloc = node_tallocr(galloc, node);
 
-    // reset hash table
-    struct hash_node * ht = alloc->hash_table;
-    memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
+    ggml_tallocr_free_tensor(alloc, node);
+}
+
+static void ggml_tallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * gf) {
+    const int * parse_seq     = galloc->parse_seq;
+    int         parse_seq_len = galloc->parse_seq_len;
 
     // count number of children and views
-    for (int g = 0; g < n_graphs; g++) {
-        struct ggml_cgraph * gf = graphs[g];
-        for (int i = 0; i < gf->n_nodes; i++) {
-            struct ggml_tensor * node = gf->nodes[i];
+    for (int i = 0; i < gf->n_nodes; i++) {
+        struct ggml_tensor * node = gf->nodes[i];
 
-            if (ggml_is_view(node)) {
-                struct ggml_tensor * view_src = node->view_src;
-                hash_get(ht, view_src)->n_views += 1;
+        if (ggml_is_view(node)) {
+            struct ggml_tensor * view_src = node->view_src;
+            hash_get(galloc, view_src)->n_views += 1;
+            if (node->buffer == NULL && node->data != NULL) {
+                // view of a pre-allocated tensor, didn't call init_view() yet
+                init_view(galloc, node, true);
             }
+        }
 
+        for (int j = 0; j < GGML_MAX_SRC; j++) {
+            struct ggml_tensor * parent = node->src[j];
+            if (parent == NULL) {
+                break;
+            }
+            hash_get(galloc, parent)->n_children += 1;
+            if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) {
+                init_view(galloc, parent, true);
+            }
+        }
+   }
+
+    // allocate tensors
+    // if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
+    int last_barrier_pos = 0;
+    int n_nodes = parse_seq_len ? parse_seq_len : gf->n_nodes;
+
+    for (int ind = 0; ind < n_nodes; ind++) {
+        // allocate a node if there is no parse_seq or this is not a barrier
+        if (parse_seq_len == 0 || parse_seq[ind] != -1) {
+            int i = parse_seq_len ? parse_seq[ind] : ind;
+            struct ggml_tensor * node = gf->nodes[i];
+
+            // allocate parents (leafs)
             for (int j = 0; j < GGML_MAX_SRC; j++) {
                 struct ggml_tensor * parent = node->src[j];
                 if (parent == NULL) {
                     break;
                 }
-                hash_get(ht, parent)->n_children += 1;
+                allocate_node(galloc, parent);
             }
-        }
-    }
 
-    // allocate tensors
-    for (int g = 0; g < n_graphs; g++) {
-        struct ggml_cgraph * gf = graphs[g];
-        AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
-        // graph inputs are allocated first to ensure that they are not overwritten by each other
-        if (inputs != NULL && inputs[g] != NULL) {
-            for (int i = 0; inputs[g][i] != NULL; i++) {
-                struct ggml_tensor * input = inputs[g][i];
-                AT_PRINTF("input: %s\n", input->name);
-                allocate_node(alloc, input);
+            // allocate node
+            allocate_node(galloc, node);
+
+            AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
+            for (int j = 0; j < GGML_MAX_SRC; j++) {
+                struct ggml_tensor * parent = node->src[j];
+                if (parent == NULL) {
+                    break;
+                }
+                AT_PRINTF("%s", parent->name);
+                if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
+                    AT_PRINTF(", ");
+                }
             }
+            AT_PRINTF("\n");
         }
-        // if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
-        int last_barrier_pos = 0;
-        int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes;
 
-        for (int ind = 0; ind < n_nodes; ind++) {
-            // allocate a node if there is no parse_seq or this is not a barrier
-            if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) {
-                int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind;
-                struct ggml_tensor * node = gf->nodes[i];
+        // update parents
+        // update immediately if there is no parse_seq
+        // update only at barriers if there is parse_seq
+        if ((parse_seq_len == 0) || parse_seq[ind] == -1) {
+            int update_start = parse_seq_len ? last_barrier_pos : ind;
+            int update_end   = parse_seq_len ? ind              : ind + 1;
+            for (int i = update_start; i < update_end; i++) {
+                int node_i = parse_seq_len ? parse_seq[i] : i;
+                struct ggml_tensor * node = gf->nodes[node_i];
 
-                // allocate parents (leafs)
                 for (int j = 0; j < GGML_MAX_SRC; j++) {
                     struct ggml_tensor * parent = node->src[j];
                     if (parent == NULL) {
                         break;
                     }
-                    allocate_node(alloc, parent);
-                }
+                    struct hash_node * p_hn = hash_get(galloc, parent);
+                    p_hn->n_children -= 1;
 
-                // allocate node
-                allocate_node(alloc, node);
+                    //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
 
-                AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
-                for (int j = 0; j < GGML_MAX_SRC; j++) {
-                    struct ggml_tensor * parent = node->src[j];
-                    if (parent == NULL) {
-                        break;
-                    }
-                    AT_PRINTF("%s", parent->name);
-                    if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
-                        AT_PRINTF(", ");
-                    }
-                }
-                AT_PRINTF("\n");
-            }
-
-            // update parents
-            // update immediately if there is no parse_seq
-            // update only at barriers if there is parse_seq
-            if ((alloc->parse_seq_len == 0) || alloc->parse_seq[ind] == -1) {
-                int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
-                int update_end   = alloc->parse_seq_len ? ind              : ind + 1;
-                for (int i = update_start; i < update_end; i++) {
-                    int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i;
-                    struct ggml_tensor * node = gf->nodes[node_i];
-
-                    for (int j = 0; j < GGML_MAX_SRC; j++) {
-                        struct ggml_tensor * parent = node->src[j];
-                        if (parent == NULL) {
-                            break;
-                        }
-                        struct hash_node * p_hn = hash_get(ht, parent);
-                        p_hn->n_children -= 1;
-
-                        //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
-
-                        if (p_hn->n_children == 0 && p_hn->n_views == 0) {
-                            if (ggml_is_view(parent)) {
-                                struct ggml_tensor * view_src = parent->view_src;
-                                struct hash_node * view_src_hn = hash_get(ht, view_src);
-                                view_src_hn->n_views -= 1;
-                                AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
-                                if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
-                                    ggml_allocr_free_tensor(alloc, view_src);
-                                }
-                            }
-                            else {
-                                if (parent->data != node->data) {
-                                    ggml_allocr_free_tensor(alloc, parent);
-                                }
+                    if (p_hn->n_children == 0 && p_hn->n_views == 0) {
+                        if (ggml_is_view(parent)) {
+                            struct ggml_tensor * view_src = parent->view_src;
+                            struct hash_node * view_src_hn = hash_get(galloc, view_src);
+                            view_src_hn->n_views -= 1;
+                            AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
+                            if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0) {
+                                free_node(galloc, view_src);
                             }
                         }
+                        else {
+                            free_node(galloc, parent);
+                        }
                     }
                 }
-                AT_PRINTF("\n");
-                if (alloc->parse_seq_len) {
-                    last_barrier_pos = ind + 1;
-                }
             }
-        }
-        // free graph outputs here that wouldn't be freed otherwise because they have no children
-        if (outputs != NULL && outputs[g] != NULL) {
-            for (int i = 0; outputs[g][i] != NULL; i++) {
-                struct ggml_tensor * output = outputs[g][i];
-                AT_PRINTF("output: %s\n", output->name);
-                ggml_allocr_free_tensor(alloc, output);
+            AT_PRINTF("\n");
+            if (parse_seq_len) {
+                last_barrier_pos = ind + 1;
             }
         }
     }
+}
 
-    return alloc->max_size;
+size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph) {
+    size_t hash_size = graph->visited_hash_table.size;
+
+    // check if the hash table is initialized and large enough
+    if (galloc->hash_set.size < hash_size) {
+        if (galloc->hash_set.keys != NULL) {
+            free(galloc->hash_set.keys);
+        }
+        if (galloc->hash_values != NULL) {
+            free(galloc->hash_values);
+        }
+        galloc->hash_set.keys = malloc(sizeof(struct ggml_tensor *) * hash_size);
+        galloc->hash_set.size = hash_size;
+        galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size);
+    }
+
+    // reset hash table
+    memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * hash_size);
+    memset(galloc->hash_values,   0, sizeof(struct hash_node) * hash_size);
+
+    galloc->talloc = talloc;
+    ggml_tallocr_alloc_graph_impl(galloc, graph);
+    galloc->talloc = NULL;
+
+    size_t max_size = ggml_tallocr_max_size(talloc);
+
+    return max_size;
 }
 
-size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
-    return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
+void ggml_gallocr_alloc_graph_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, struct ggml_hash_set hash_set, ggml_tallocr_t * hash_node_talloc) {
+    const size_t hash_size = hash_set.size;
+
+    GGML_ASSERT(hash_size >= (size_t)(graph->n_nodes + graph->n_leafs));
+
+    galloc->talloc = NULL;
+
+    // alloc hash_values if needed
+    if (galloc->hash_values == NULL || galloc->hash_values_size < hash_size) {
+        free(galloc->hash_values);
+        galloc->hash_values      = malloc(sizeof(struct hash_node) * hash_size);
+        galloc->hash_values_size = hash_size;
+    }
+
+    // free hash_set.keys if needed
+    if (galloc->hash_set.keys != NULL) {
+        free(galloc->hash_set.keys);
+    }
+    galloc->hash_set = hash_set;
+
+    // reset hash values
+    memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size);
+
+    galloc->hash_allocs = hash_node_talloc;
+
+    ggml_tallocr_alloc_graph_impl(galloc, graph);
+
+    // remove unowned resources
+    galloc->hash_set.keys = NULL;
+    galloc->hash_allocs = NULL;
+}
+
+// legacy API wrapper
+
+struct ggml_allocr {
+    ggml_tallocr_t talloc;
+    ggml_gallocr_t galloc;
+};
+
+static ggml_allocr_t ggml_allocr_new_impl(ggml_tallocr_t talloc) {
+    ggml_allocr_t alloc = (ggml_allocr_t)malloc(sizeof(struct ggml_allocr));
+    *alloc = (struct ggml_allocr) {
+        /*.talloc = */ talloc,
+        /*.galloc = */ ggml_gallocr_new(),
+    };
+    return alloc;
+}
+
+ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment) {
+    return ggml_allocr_new_impl(ggml_tallocr_new(data, size, alignment));
+}
+
+ggml_allocr_t ggml_allocr_new_measure(size_t alignment) {
+    return ggml_allocr_new_impl(ggml_tallocr_new_measure(alignment));
+}
+
+ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
+    return ggml_allocr_new_impl(ggml_tallocr_new_from_buffer(buffer));
+}
+
+ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size) {
+    return ggml_allocr_new_impl(ggml_tallocr_new_from_backend(backend, size));
+}
+
+ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend) {
+    return ggml_allocr_new_impl(ggml_tallocr_new_measure_from_backend(backend));
+}
+
+struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc) {
+    return ggml_tallocr_get_buffer(alloc->talloc);
+}
+
+void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) {
+    ggml_gallocr_set_parse_seq(alloc->galloc, list, n);
+}
+
+void ggml_allocr_free(ggml_allocr_t alloc) {
+    ggml_gallocr_free(alloc->galloc);
+    ggml_tallocr_free(alloc->talloc);
+    free(alloc);
+}
+
+bool ggml_allocr_is_measure(ggml_allocr_t alloc) {
+    return ggml_tallocr_is_measure(alloc->talloc);
+}
+
+void ggml_allocr_reset(ggml_allocr_t alloc) {
+    ggml_tallocr_reset(alloc->talloc);
+}
+
+void ggml_allocr_alloc(ggml_allocr_t alloc, struct ggml_tensor * tensor) {
+    ggml_tallocr_alloc(alloc->talloc, tensor);
+}
+
+size_t ggml_allocr_max_size(ggml_allocr_t alloc) {
+    return ggml_tallocr_max_size(alloc->talloc);
+}
+
+size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) {
+    return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph);
+}
+
+// utils
+ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
+    GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
+
+    size_t alignment = ggml_backend_buft_get_alignment(buft);
+
+    size_t nbytes = 0;
+    for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
+        if (t->data == NULL && t->view_src == NULL) {
+            nbytes += GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
+        }
+    }
+
+    if (nbytes == 0) {
+        fprintf(stderr, "%s: no tensors to allocate\n", __func__);
+        return NULL;
+    }
+
+    ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, nbytes);
+    ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer);
+
+    for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
+        if (t->data == NULL) {
+            if (t->view_src == NULL) {
+                ggml_tallocr_alloc(tallocr, t);
+            } else {
+                ggml_backend_view_init(buffer, t);
+            }
+        }
+    }
+
+    ggml_tallocr_free(tallocr);
+
+    return buffer;
 }
+
+ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) {
+    return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend));
+}

+ 112 - 0
ggml/src/ggml-backend-impl.h

@@ -0,0 +1,112 @@
+#pragma once
+
+// ggml-backend internal header
+
+#include "ggml-backend.h"
+
+#ifdef  __cplusplus
+extern "C" {
+#endif
+
+    //
+    // Backend buffer
+    //
+
+    // buffer type
+    typedef void * ggml_backend_buffer_type_context_t;
+
+    struct ggml_backend_buffer_type_i {
+        ggml_backend_buffer_t (*alloc_buffer)    (ggml_backend_buffer_type_t buft, size_t size);
+        size_t                (*get_alignment)   (ggml_backend_buffer_type_t buft); // tensor alignment
+        size_t                (*get_alloc_size)  (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
+        bool                  (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
+    };
+
+    struct ggml_backend_buffer_type {
+        struct ggml_backend_buffer_type_i  iface;
+        ggml_backend_buffer_type_context_t context;
+    };
+
+    // buffer
+    typedef void * ggml_backend_buffer_context_t;
+
+    struct ggml_backend_buffer_i {
+        void     (*free_buffer)(ggml_backend_buffer_t buffer);
+        //void     (*reset)      (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
+        void *   (*get_base)   (ggml_backend_buffer_t buffer);
+        void     (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
+        void     (*set_tensor) (ggml_backend_buffer_t buffer,       struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
+        void     (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor,       void * data, size_t offset, size_t size);
+        // (optional) copy tensor between different buffer-type, allow for single-copy tranfers
+        void (*cpy_tensor_from)(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
+        void (*cpy_tensor_to)  (ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
+    };
+
+    struct ggml_backend_buffer {
+        struct ggml_backend_buffer_i  iface;
+        ggml_backend_buffer_type_t    buft;
+        ggml_backend_buffer_context_t context;
+        size_t size;
+    };
+
+    ggml_backend_buffer_t ggml_backend_buffer_init(
+                   ggml_backend_buffer_type_t      buft,
+            struct ggml_backend_buffer_i           iface,
+                   ggml_backend_buffer_context_t   context,
+                   size_t                          size);
+
+
+    //
+    // Backend
+    //
+
+    typedef void * ggml_backend_context_t;
+
+    struct ggml_backend_i {
+        const char * (*get_name)(ggml_backend_t backend);
+
+        void (*free)(ggml_backend_t backend);
+
+        // buffer allocation
+        ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend);
+
+        // (optional) asynchroneous tensor data access
+        void (*set_tensor_async)(ggml_backend_t backend,       struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
+        void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor,       void * data, size_t offset, size_t size);
+
+        // (optional) asynchroneous tensor copy
+        void (*cpy_tensor_from_async)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
+        void (*cpy_tensor_to_async)  (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
+
+        void (*synchronize)     (ggml_backend_t backend);
+
+        // compute graph with a plan
+        ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
+        void                      (*graph_plan_free)   (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
+        void                      (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
+
+        // compute graph without a plan
+        void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
+
+        // check if the backend supports an operation
+        bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
+    };
+
+    struct ggml_backend {
+        struct ggml_backend_i iface;
+
+        ggml_backend_context_t context;
+    };
+
+
+    //
+    // Backend registry
+    //
+
+    typedef ggml_backend_t (*ggml_backend_init_fn)(const char * params, void * user_data);
+
+    void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
+
+#ifdef  __cplusplus
+}
+#endif

+ 1357 - 0
ggml/src/ggml-backend.c

@@ -0,0 +1,1357 @@
+#include "ggml-backend-impl.h"
+#include "ggml-alloc.h"
+#include "ggml-impl.h"
+
+#include <assert.h>
+#include <limits.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+
+
+// backend buffer type
+
+ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+    return buft->iface.alloc_buffer(buft, size);
+}
+
+size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
+    return buft->iface.get_alignment(buft);
+}
+
+size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
+    // get_alloc_size is optional, defaults to ggml_nbytes
+    if (buft->iface.get_alloc_size) {
+        return buft->iface.get_alloc_size(buft, tensor);
+    }
+    return ggml_nbytes(tensor);
+}
+
+bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
+    return buft->iface.supports_backend(buft, backend);
+}
+
+// backend buffer
+
+ggml_backend_buffer_t ggml_backend_buffer_init(
+               ggml_backend_buffer_type_t      buft,
+        struct ggml_backend_buffer_i           iface,
+               ggml_backend_buffer_context_t   context,
+               size_t                          size) {
+    ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
+
+    GGML_ASSERT(iface.get_base != NULL);
+
+    (*buffer) = (struct ggml_backend_buffer) {
+        /* .interface = */ iface,
+        /* .buft      = */ buft,
+        /* .context   = */ context,
+        /* .size      = */ size,
+    };
+
+    return buffer;
+}
+
+void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
+    if (buffer == NULL) {
+        return;
+    }
+
+    if (buffer->iface.free_buffer != NULL) {
+        buffer->iface.free_buffer(buffer);
+    }
+    free(buffer);
+}
+
+size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
+    return buffer->size;
+}
+
+void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
+    void * base = buffer->iface.get_base(buffer);
+
+    GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
+
+    return base;
+}
+
+void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
+    // init_tensor is optional
+    if (buffer->iface.init_tensor) {
+        buffer->iface.init_tensor(buffer, tensor);
+    }
+}
+
+size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
+    return ggml_backend_buft_get_alignment(ggml_backend_buffer_type(buffer));
+}
+
+size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
+    return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type(buffer), tensor);
+}
+
+ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer) {
+    return buffer->buft;
+}
+
+// backend
+
+const char * ggml_backend_name(ggml_backend_t backend) {
+    if (backend == NULL) {
+        return "NULL";
+    }
+    return backend->iface.get_name(backend);
+}
+
+void ggml_backend_free(ggml_backend_t backend) {
+    if (backend == NULL) {
+        return;
+    }
+
+    backend->iface.free(backend);
+}
+
+ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
+    return backend->iface.get_default_buffer_type(backend);
+}
+
+ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
+    return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
+}
+
+size_t ggml_backend_get_alignment(ggml_backend_t backend) {
+    return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
+}
+
+void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+    GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+    GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
+
+    backend->iface.set_tensor_async(backend, tensor, data, offset, size);
+}
+
+void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+    GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+    GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
+
+    backend->iface.get_tensor_async(backend, tensor, data, offset, size);
+}
+
+void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+    GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+    GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
+    GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
+
+    tensor->buffer->iface.set_tensor(tensor->buffer, tensor, data, offset, size);
+}
+
+void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+    GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+    GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
+    GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
+
+    tensor->buffer->iface.get_tensor(tensor->buffer, tensor, data, offset, size);
+}
+
+void ggml_backend_synchronize(ggml_backend_t backend) {
+    if (backend->iface.synchronize == NULL) {
+        return;
+    }
+
+    backend->iface.synchronize(backend);
+}
+
+ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+    return backend->iface.graph_plan_create(backend, cgraph);
+}
+
+void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+    backend->iface.graph_plan_free(backend, plan);
+}
+
+void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+    backend->iface.graph_plan_compute(backend, plan);
+
+    // TODO: optional sync
+    ggml_backend_synchronize(backend);
+}
+
+void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+    backend->iface.graph_compute(backend, cgraph);
+
+    // TODO: optional sync
+    ggml_backend_synchronize(backend);
+}
+
+bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+    return backend->iface.supports_op(backend, op);
+}
+
+// backend copy
+
+static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
+    if (a->type != b->type) {
+        return false;
+    }
+    for (int i = 0; i < GGML_MAX_DIMS; i++) {
+        if (a->ne[i] != b->ne[i]) {
+            return false;
+        }
+        if (a->nb[i] != b->nb[i]) {
+            return false;
+        }
+    }
+    return true;
+}
+
+void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
+    //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
+    //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
+    GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
+
+    // fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
+
+    if (src == dst) {
+        return;
+    }
+
+    // TODO: allow backends to support copy to/from same backend
+
+    if (dst->buffer->iface.cpy_tensor_from != NULL) {
+        dst->buffer->iface.cpy_tensor_from(dst->buffer, src, dst);
+    } else if (src->buffer->iface.cpy_tensor_to != NULL) {
+        src->buffer->iface.cpy_tensor_to(src->buffer, src, dst);
+    } else {
+        // shouldn't be hit when copying from/to CPU
+        #ifndef NDEBUG
+        fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to "
+                        "are implemented for %s and %s, falling back to get/set\n", src->name, dst->name);
+        #endif
+        size_t nbytes = ggml_nbytes(src);
+        void * data = malloc(nbytes);
+        ggml_backend_tensor_get(src, data, 0, nbytes);
+        ggml_backend_tensor_set(dst, data, 0, nbytes);
+        free(data);
+    }
+}
+
+// backend registry
+
+#define GGML_MAX_BACKENDS_REG 16
+
+struct ggml_backend_reg {
+    char name[128];
+    ggml_backend_init_fn init_fn;
+    ggml_backend_buffer_type_t default_buffer_type;
+    void * user_data;
+};
+
+static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG];
+static size_t ggml_backend_registry_count = 0;
+
+static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
+
+static void ggml_backend_registry_init(void) {
+    static bool initialized = false;
+
+    if (initialized) {
+        return;
+    }
+
+    initialized = true;
+
+    ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
+
+    // add forward decls here to avoid including the backend headers
+#ifdef GGML_USE_CUBLAS
+    extern void ggml_backend_cuda_reg_devices(void);
+    ggml_backend_cuda_reg_devices();
+#endif
+
+#ifdef GGML_USE_METAL
+    extern ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
+    extern ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
+    ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
+#endif
+}
+
+void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
+    GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG);
+
+    int id = ggml_backend_registry_count;
+
+    ggml_backend_registry[id] = (struct ggml_backend_reg) {
+        /* .name                = */ {0},
+        /* .fn                  = */ init_fn,
+        /* .default_buffer_type = */ default_buffer_type,
+        /* .user_data           = */ user_data,
+    };
+
+    snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
+
+#ifndef NDEBUG
+    fprintf(stderr, "%s: registered backend %s\n", __func__, name);
+#endif
+
+    ggml_backend_registry_count++;
+}
+
+size_t ggml_backend_reg_get_count(void) {
+    ggml_backend_registry_init();
+
+    return ggml_backend_registry_count;
+}
+
+size_t ggml_backend_reg_find_by_name(const char * name) {
+    ggml_backend_registry_init();
+
+    for (size_t i = 0; i < ggml_backend_registry_count; i++) {
+        // TODO: case insensitive in a portable way
+        if (strcmp(ggml_backend_registry[i].name, name) == 0) {
+            return i;
+        }
+    }
+    return SIZE_MAX;
+}
+
+// init from backend:params string
+ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
+    ggml_backend_registry_init();
+
+    const char * params = strchr(backend_str, ':');
+    char backend_name[128];
+    if (params == NULL) {
+        strcpy(backend_name, backend_str);
+        params = "";
+    } else {
+        strncpy(backend_name, backend_str, params - backend_str);
+        backend_name[params - backend_str] = '\0';
+        params++;
+    }
+
+    size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
+    if (backend_i == SIZE_MAX) {
+        fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
+        return NULL;
+    }
+
+    return ggml_backend_reg_init_backend(backend_i, params);
+}
+
+const char * ggml_backend_reg_get_name(size_t i) {
+    ggml_backend_registry_init();
+
+    GGML_ASSERT(i < ggml_backend_registry_count);
+    return ggml_backend_registry[i].name;
+}
+
+ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
+    ggml_backend_registry_init();
+
+    GGML_ASSERT(i < ggml_backend_registry_count);
+    return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
+}
+
+ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
+    ggml_backend_registry_init();
+
+    GGML_ASSERT(i < ggml_backend_registry_count);
+    return ggml_backend_registry[i].default_buffer_type;
+}
+
+ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
+    ggml_backend_registry_init();
+
+    GGML_ASSERT(i < ggml_backend_registry_count);
+    return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
+}
+
+// backend CPU
+
+static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
+    return (void *)buffer->context;
+}
+
+static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+    free(buffer->context);
+    GGML_UNUSED(buffer);
+}
+
+static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+    GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
+    GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+
+    memcpy((char *)tensor->data + offset, data, size);
+
+    GGML_UNUSED(buffer);
+}
+
+static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+    GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
+    GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+
+    memcpy(data, (const char *)tensor->data + offset, size);
+
+    GGML_UNUSED(buffer);
+}
+
+static void ggml_backend_cpu_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
+    ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
+
+    GGML_UNUSED(buffer);
+}
+
+static void ggml_backend_cpu_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
+    ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
+
+    GGML_UNUSED(buffer);
+}
+
+static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
+    /* .free_buffer     = */ ggml_backend_cpu_buffer_free_buffer,
+    /* .get_base        = */ ggml_backend_cpu_buffer_get_base,
+    /* .init_tensor     = */ NULL, // no initialization required
+    /* .set_tensor      = */ ggml_backend_cpu_buffer_set_tensor,
+    /* .get_tensor      = */ ggml_backend_cpu_buffer_get_tensor,
+    /* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
+    /* .cpy_tensor_to   = */ ggml_backend_cpu_buffer_cpy_tensor_to,
+};
+
+// for buffers from ptr, free is not called
+static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
+    /* .free_buffer     = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
+    /* .get_base        = */ ggml_backend_cpu_buffer_get_base,
+    /* .init_tensor     = */ NULL, // no initialization required
+    /* .set_tensor      = */ ggml_backend_cpu_buffer_set_tensor,
+    /* .get_tensor      = */ ggml_backend_cpu_buffer_get_tensor,
+    /* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
+    /* .cpy_tensor_to   = */ ggml_backend_cpu_buffer_cpy_tensor_to,
+};
+
+static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
+
+static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+    size += TENSOR_ALIGNMENT;   // malloc may return an address that is not aligned
+    void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
+
+    GGML_ASSERT(data != NULL && "failed to allocate buffer");
+
+    return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
+}
+
+static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+    return TENSOR_ALIGNMENT;
+
+    GGML_UNUSED(buft);
+}
+
+static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
+    return ggml_backend_is_cpu(backend);
+
+    GGML_UNUSED(buft);
+}
+
+ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
+    static struct ggml_backend_buffer_type ggml_backend_buffer_type_cpu = {
+        /* .iface = */ {
+            /* .alloc_buffer     = */ ggml_backend_cpu_buffer_type_alloc_buffer,
+            /* .get_alignment    = */ ggml_backend_cpu_buffer_type_get_alignment,
+            /* .get_alloc_size   = */ NULL, // defaults to ggml_nbytes
+            /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
+        },
+        /* .context = */ NULL,
+    };
+
+    return &ggml_backend_buffer_type_cpu;
+}
+
+struct ggml_backend_cpu_context {
+    int n_threads;
+    void * work_data;
+    size_t work_size;
+};
+
+static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
+    return "CPU";
+
+    GGML_UNUSED(backend);
+}
+
+static void ggml_backend_cpu_free(ggml_backend_t backend) {
+    struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
+    free(cpu_ctx->work_data);
+    free(cpu_ctx);
+    free(backend);
+}
+
+static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
+    return ggml_backend_cpu_buffer_type();
+
+    GGML_UNUSED(backend);
+}
+
+struct ggml_backend_plan_cpu {
+    struct ggml_cplan cplan;
+    struct ggml_cgraph cgraph;
+};
+
+static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+    struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
+
+    struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
+
+    cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
+    cpu_plan->cgraph = *cgraph;
+
+    if (cpu_plan->cplan.work_size > 0) {
+        cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
+    }
+
+    return cpu_plan;
+}
+
+static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+    struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
+
+    free(cpu_plan->cplan.work_data);
+    free(cpu_plan);
+
+    GGML_UNUSED(backend);
+}
+
+static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+    struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
+
+    ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
+
+    GGML_UNUSED(backend);
+}
+
+static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+    struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
+
+    struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
+
+    if (cpu_ctx->work_size < cplan.work_size) {
+        // TODO: may be faster to free and use malloc to avoid the copy
+        cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
+        cpu_ctx->work_size = cplan.work_size;
+    }
+
+    cplan.work_data = cpu_ctx->work_data;
+
+    ggml_graph_compute(cgraph, &cplan);
+}
+
+static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+    return true;
+
+    GGML_UNUSED(backend);
+    GGML_UNUSED(op);
+}
+
+static struct ggml_backend_i cpu_backend_i = {
+    /* .get_name                = */ ggml_backend_cpu_name,
+    /* .free                    = */ ggml_backend_cpu_free,
+    /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
+    /* .set_tensor_async        = */ NULL,
+    /* .get_tensor_async        = */ NULL,
+    /* .cpy_tensor_from_async   = */ NULL,
+    /* .cpy_tensor_to_async     = */ NULL,
+    /* .synchronize             = */ NULL,
+    /* .graph_plan_create       = */ ggml_backend_cpu_graph_plan_create,
+    /* .graph_plan_free         = */ ggml_backend_cpu_graph_plan_free,
+    /* .graph_plan_compute      = */ ggml_backend_cpu_graph_plan_compute,
+    /* .graph_compute           = */ ggml_backend_cpu_graph_compute,
+    /* .supports_op             = */ ggml_backend_cpu_supports_op,
+};
+
+ggml_backend_t ggml_backend_cpu_init(void) {
+    struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
+
+    ctx->n_threads = GGML_DEFAULT_N_THREADS;
+    ctx->work_data = NULL;
+    ctx->work_size = 0;
+
+    ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
+
+    *cpu_backend = (struct ggml_backend) {
+        /* .interface = */ cpu_backend_i,
+        /* .context   = */ ctx
+    };
+    return cpu_backend;
+}
+
+bool ggml_backend_is_cpu(ggml_backend_t backend) {
+    return backend->iface.get_name == ggml_backend_cpu_name;
+}
+
+void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
+    GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
+
+    struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
+    ctx->n_threads = n_threads;
+}
+
+ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
+    return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
+}
+
+static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
+    return ggml_backend_cpu_init();
+
+    GGML_UNUSED(params);
+    GGML_UNUSED(user_data);
+}
+
+
+// scheduler
+
+#define GGML_MAX_BACKENDS 4
+#define GGML_MAX_SPLITS 256
+#define GGML_MAX_SPLIT_INPUTS 16
+
+struct ggml_backend_sched_split {
+    ggml_tallocr_t tallocr;
+    int i_start;
+    int i_end;
+    struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
+    int n_inputs;
+    struct ggml_cgraph graph;
+};
+
+struct ggml_backend_sched {
+    int n_backends;
+    ggml_backend_t backends[GGML_MAX_BACKENDS];
+    ggml_tallocr_t  tallocs[GGML_MAX_BACKENDS];
+
+    ggml_gallocr_t galloc;
+
+    struct ggml_hash_set    hash_set;
+    ggml_tallocr_t *        node_talloc;                     // [hash_set.size]
+    struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS]
+
+    struct ggml_cgraph * graph;
+    struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
+    int n_splits;
+
+    struct ggml_context * ctx;
+
+    // align context_buffer to GGML_MEM_ALIGN
+    #ifdef _MSC_VER
+    __declspec(align(GGML_MEM_ALIGN))
+    #else
+    __attribute__((aligned(GGML_MEM_ALIGN)))
+    #endif
+    char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
+};
+
+#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
+#define node_allocr(node) sched->node_talloc[hash_id(node)]
+
+static bool ggml_is_view_op(enum ggml_op op) {
+    return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
+}
+
+// returns the priority of the backend, lower is better
+static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) {
+    for (int i = 0; i < sched->n_backends; i++) {
+        if (sched->backends[i] == backend) {
+            return i;
+        }
+    }
+    return INT_MAX;
+}
+
+static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
+    for (int i = 0; i < sched->n_backends; i++) {
+        if (sched->tallocs[i] == allocr) {
+            return i;
+        }
+    }
+    return INT_MAX;
+}
+
+static ggml_backend_t get_buffer_backend(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
+    if (buffer == NULL) {
+        return NULL;
+    }
+    // find highest prio backend that supports the buffer type
+    for (int i = 0; i < sched->n_backends; i++) {
+        if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
+            return sched->backends[i];
+        }
+    }
+    GGML_ASSERT(false && "tensor buffer type not supported by any backend");
+}
+
+static ggml_backend_t get_allocr_backend(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
+    if (allocr == NULL) {
+        return NULL;
+    }
+    // find highest prio backend that supports the buffer type
+    for (int i = 0; i < sched->n_backends; i++) {
+        if (sched->tallocs[i] == allocr) {
+            return sched->backends[i];
+        }
+    }
+    GGML_UNREACHABLE();
+}
+
+#if 0
+static char causes[GGML_DEFAULT_GRAPH_SIZE*8 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
+#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
+#define GET_CAUSE(node) causes[hash_id(node)]
+#else
+#define SET_CAUSE(node, ...)
+#define GET_CAUSE(node) ""
+#endif
+
+// returns the backend that should be used for the node based on the current locations
+static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
+    // if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
+    // ie. kv cache updates
+    // note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
+    // dst
+    ggml_backend_t cur_backend = get_buffer_backend(sched, node->buffer);
+    if (cur_backend != NULL) {
+        SET_CAUSE(node, "1.dst");
+        return cur_backend;
+    }
+
+    // view_src
+    if (node->view_src != NULL && get_buffer_backend(sched, node->view_src->buffer) != NULL) {
+        SET_CAUSE(node, "1.vsrc");
+        return get_buffer_backend(sched, node->view_src->buffer);
+    }
+
+    // src
+    int cur_prio = INT_MAX;
+    size_t cur_size = 0;
+
+    for (int i = 0; i < GGML_MAX_SRC; i++) {
+        const struct ggml_tensor * src = node->src[i];
+        if (src == NULL) {
+            break;
+        }
+        ggml_backend_t src_backend = get_buffer_backend(sched, src->buffer);
+        if (src_backend != NULL) {
+            int src_prio = sched_backend_prio(sched, src_backend);
+            size_t src_size = ggml_nbytes(src);
+            if (src_prio < cur_prio && src_size >= cur_size) {
+                cur_prio = src_prio;
+                cur_size = src_size;
+                cur_backend = src_backend;
+                SET_CAUSE(node, "1.src%d", i);
+            }
+        }
+    }
+    return cur_backend;
+}
+
+static char * fmt_size(size_t size) {
+    static char buffer[128];
+    if (size >= 1024*1024) {
+        sprintf(buffer, "%zuM", size/1024/1024);
+    } else {
+        sprintf(buffer, "%zuK", size/1024);
+    }
+    return buffer;
+}
+
+static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
+    int cur_split = 0;
+    for (int i = 0; i < graph->n_nodes; i++) {
+        if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
+            ggml_backend_t split_backend = get_allocr_backend(sched, sched->splits[cur_split].tallocr);
+            fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
+                sched->splits[cur_split].n_inputs);
+            for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
+                fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
+                    fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
+            }
+            fprintf(stderr, "\n");
+            cur_split++;
+        }
+        struct ggml_tensor * node = graph->nodes[i];
+        if (ggml_is_view_op(node->op)) {
+            continue;
+        }
+        ggml_tallocr_t node_allocr = node_allocr(node);
+        ggml_backend_t node_backend = node_allocr ? get_allocr_backend(sched, node_allocr) : NULL; // FIXME:
+        fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name,
+            fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", GET_CAUSE(node));
+        for (int j = 0; j < GGML_MAX_SRC; j++) {
+            struct ggml_tensor * src = node->src[j];
+            if (src == NULL) {
+                break;
+            }
+            ggml_tallocr_t src_allocr = node_allocr(src);
+            ggml_backend_t src_backend = src_allocr ? get_allocr_backend(sched, src_allocr) : NULL;
+            fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name,
+                fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
+        }
+        fprintf(stderr, "\n");
+    }
+}
+
+// creates a copy of the tensor with the same memory layout
+static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
+    struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
+    for (int i = 0; i < GGML_MAX_DIMS; i++) {
+        dup->nb[i] = tensor->nb[i];
+    }
+    return dup;
+}
+
+// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
+// TODO: merge passes
+static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
+    // reset state
+    size_t hash_size = sched->hash_set.size;
+    memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
+    memset(sched->node_talloc,   0, sizeof(sched->node_talloc[0])   * hash_size);
+    memset(sched->node_copies,   0, sizeof(sched->node_copies[0])   * hash_size);
+    sched->n_splits = 0;
+
+    struct ggml_init_params params = {
+        /* .mem_size =   */ sizeof(sched->context_buffer),
+        /* .mem_buffer = */ sched->context_buffer,
+        /* .no_alloc =   */ true
+    };
+
+    if (sched->ctx != NULL) {
+        ggml_free(sched->ctx);
+    }
+
+    sched->ctx = ggml_init(params);
+
+    // pass 1: assign backends to ops with allocated inputs
+    for (int i = 0; i < graph->n_leafs; i++) {
+        struct ggml_tensor * leaf = graph->leafs[i];
+        if (node_allocr(leaf) != NULL) {
+            // do not overwrite user assignments
+            continue;
+        }
+        ggml_backend_t leaf_backend = get_buffer_backend(sched, leaf->buffer);
+        if (leaf_backend == NULL && leaf->view_src != NULL) {
+            leaf_backend = get_buffer_backend(sched, leaf->view_src->buffer);
+        }
+        if (leaf_backend != NULL) {
+            node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
+        }
+    }
+
+    for (int i = 0; i < graph->n_nodes; i++) {
+        struct ggml_tensor * node = graph->nodes[i];
+        if (node_allocr(node) != NULL) {
+            // do not overwrite user assignments
+            continue;
+        }
+        ggml_backend_t node_backend = sched_backend_from_cur(sched, node);
+        if (node_backend != NULL) {
+            node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
+        }
+    }
+    //printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
+
+    // pass 2: assign backends to ops from current assignments
+    // TODO:
+    //  - reuse sched_backend_from_cur
+    for (int i = 0; i < graph->n_nodes; i++) {
+        struct ggml_tensor * node = graph->nodes[i];
+        ggml_tallocr_t node_allocr = node_allocr(node);
+        if (node_allocr == NULL) {
+            int    cur_prio = INT_MAX;
+            size_t cur_size = 0;
+            for (int j = 0; j < GGML_MAX_SRC; j++) {
+                struct ggml_tensor * src = node->src[j];
+                if (src == NULL) {
+                    break;
+                }
+                ggml_tallocr_t src_allocr = node_allocr(src);
+                if (src_allocr != NULL) {
+                    int    src_prio = sched_allocr_prio(sched, src_allocr);
+                    size_t src_size = ggml_nbytes(src);
+                    if (src_prio < cur_prio && src_size >= cur_size) {
+                        cur_prio = src_prio;
+                        cur_size = src_size;
+                        node_allocr = src_allocr;
+                        SET_CAUSE(node, "2.src%d", j);
+                    }
+                }
+            }
+            if (node_allocr != NULL) {
+                node_allocr(node) = node_allocr;
+            }
+        }
+    }
+    //printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
+
+    // pass 3: assign backends to remaining src from dst (should only be leafs)
+    for (int i = 0; i < graph->n_nodes; i++) {
+        struct ggml_tensor * node = graph->nodes[i];
+        ggml_tallocr_t node_allocr = node_allocr(node);
+        for (int j = 0; j < GGML_MAX_SRC; j++) {
+            struct ggml_tensor * src = node->src[j];
+            if (src == NULL) {
+                break;
+            }
+            ggml_tallocr_t src_allocr = node_allocr(src);
+            if (src_allocr == NULL) {
+                node_allocr(src) = node_allocr;
+            }
+        }
+    }
+    //printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
+
+    // pass 4: split graph, find tensors that need to be copied
+    // TODO:
+    //  - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
+    // find first backend
+    int cur_split = 0;
+    for (int i = 0; i < graph->n_nodes; i++) {
+        struct ggml_tensor * node = graph->nodes[i];
+        if (node->view_src == NULL) {
+            sched->splits[0].tallocr = node_allocr(node);
+            break;
+        }
+    }
+    sched->splits[0].i_start = 0;
+    sched->splits[0].n_inputs = 0;
+    memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
+    ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
+    size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
+    for (int i = 0; i < graph->n_nodes; i++) {
+        struct ggml_tensor * node = graph->nodes[i];
+
+        if (ggml_is_view_op(node->op)) {
+            continue;
+        }
+
+        ggml_tallocr_t node_allocr = node_allocr(node);
+
+        if (node_allocr != cur_allocr) {
+            sched->splits[cur_split].i_end = i;
+            cur_split++;
+            GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
+            sched->splits[cur_split].tallocr = node_allocr;
+            sched->splits[cur_split].i_start = i;
+            sched->splits[cur_split].n_inputs = 0;
+            memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
+            cur_allocr = node_allocr;
+            cur_backend_id = sched_allocr_prio(sched, cur_allocr);
+        }
+
+        // find inputs that are not on the same backend
+        for (int j = 0; j < GGML_MAX_SRC; j++) {
+            struct ggml_tensor * src = node->src[j];
+            if (src == NULL) {
+                break;
+            }
+            ggml_tallocr_t src_allocr = node_allocr(src);
+            if (src_allocr != node_allocr) {
+                int n_inputs = sched->splits[cur_split].n_inputs++;
+                GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
+                sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
+
+                // create copies
+                size_t id = hash_id(src);
+                if (sched->node_copies[id][cur_backend_id] == NULL) {
+                    struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
+                    sched->node_copies[id][cur_backend_id] = tensor_copy;
+                    node_allocr(tensor_copy) = cur_allocr;
+                    ggml_backend_t backend = get_allocr_backend(sched, cur_allocr);
+                    ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
+                }
+                node->src[j] = sched->node_copies[id][cur_backend_id];
+            }
+        }
+    }
+    sched->splits[cur_split].i_end = graph->n_nodes;
+    sched->n_splits = cur_split + 1;
+
+    //fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout);
+
+#if 1
+    // sanity check: all sources should have the same backend as the node
+    for (int i = 0; i < graph->n_nodes; i++) {
+        struct ggml_tensor * node = graph->nodes[i];
+        ggml_tallocr_t node_allocr = node_allocr(node);
+        if (node_allocr == NULL) {
+            fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
+        }
+        for (int j = 0; j < GGML_MAX_SRC; j++) {
+            struct ggml_tensor * src = node->src[j];
+            if (src == NULL) {
+                break;
+            }
+            ggml_tallocr_t src_allocr = node_allocr(src);
+            if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
+                fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
+                    node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL",
+                    j, src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL");
+            }
+        }
+    }
+#endif
+
+    // create copies of the graph for each split
+    // FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
+    struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
+    for (int i = 0; i < sched->n_splits; i++) {
+        struct ggml_backend_sched_split * split = &sched->splits[i];
+        split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
+
+        // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
+        for (int j = 0; j < split->n_inputs; j++) {
+            struct ggml_tensor * input = split->inputs[j];
+            struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
+            input_cpy->src[0] = input;
+            graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
+        }
+
+        for (int j = split->i_start; j < split->i_end; j++) {
+            graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
+        }
+    }
+    sched->graph = graph_copy;
+}
+
+static void sched_alloc_splits(ggml_backend_sched_t sched) {
+    ggml_gallocr_alloc_graph_n(
+        sched->galloc,
+        sched->graph,
+        sched->hash_set,
+        sched->node_talloc);
+}
+
+static void sched_compute_splits(ggml_backend_sched_t sched) {
+    uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
+    uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
+
+    struct ggml_backend_sched_split * splits = sched->splits;
+
+    for (int i = 0; i < sched->n_splits; i++) {
+        struct ggml_backend_sched_split * split = &splits[i];
+        ggml_backend_t split_backend = get_allocr_backend(sched, split->tallocr);
+        int split_backend_id = sched_backend_prio(sched, split_backend);
+
+        // copy the input tensors to the split backend
+        uint64_t copy_start_us = ggml_time_us();
+        for (int j = 0; j < split->n_inputs; j++) {
+            struct ggml_tensor * input = split->inputs[j];
+            struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_backend_prio(sched, split_backend)];
+            if (input->buffer == NULL) {
+                if (input->view_src == NULL) {
+                    fprintf(stderr, "input %s has no buffer and no view_src\n", input->name);
+                    exit(1);
+                }
+                // FIXME: may need to use the sched buffer instead
+                ggml_backend_view_init(input->view_src->buffer, input);
+            }
+            if (input_cpy->buffer == NULL) {
+                fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
+                exit(1);
+            }
+            //GGML_ASSERT(input->buffer->backend != input_cpy->buffer->backend);
+            //GGML_ASSERT(input_cpy->buffer->backend == split_backend);
+            ggml_backend_tensor_copy(input, input_cpy);
+        }
+        // ggml_backend_synchronize(split_backend);
+        int64_t copy_end_us = ggml_time_us();
+        copy_us[split_backend_id] += copy_end_us - copy_start_us;
+
+#if 0
+        char split_filename[GGML_MAX_NAME];
+        snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
+        ggml_graph_dump_dot(split->graph, NULL, split_filename);
+#endif
+
+        uint64_t compute_start_us = ggml_time_us();
+        ggml_backend_graph_compute(split_backend, &split->graph);
+        // ggml_backend_synchronize(split_backend);
+        uint64_t compute_end_us = ggml_time_us();
+        compute_us[split_backend_id] += compute_end_us - compute_start_us;
+    }
+
+#if 0
+    // per-backend timings
+    fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
+    for (int i = 0; i < sched->n_backends; i++) {
+        if (copy_us[i] > 0 || compute_us[i] > 0) {
+            fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
+        }
+    }
+#endif
+}
+
+static void sched_reset(ggml_backend_sched_t sched) {
+    for (int i = 0; i < sched->n_backends; i++) {
+        ggml_tallocr_reset(sched->tallocs[i]);
+    }
+}
+
+ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) {
+    GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
+
+    struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
+    memset(sched, 0, sizeof(struct ggml_backend_sched));
+
+    sched->n_backends = n_backends;
+    for (int i = 0; i < n_backends; i++) {
+        sched->backends[i] = backends[i];
+    }
+
+    sched->galloc = ggml_gallocr_new();
+
+    // init measure allocs for each backend
+    for (int i = 0; i < n_backends; i++) {
+        sched->tallocs[i] = ggml_tallocr_new_measure_from_backend(backends[i]);
+    }
+
+    return sched;
+}
+
+void ggml_backend_sched_free(ggml_backend_sched_t sched) {
+    if (sched == NULL) {
+        return;
+    }
+    for (int i = 0; i < sched->n_backends; i++) {
+        ggml_tallocr_free(sched->tallocs[i]);
+    }
+    ggml_gallocr_free(sched->galloc);
+    free(sched->hash_set.keys);
+    free(sched->node_talloc);
+    free(sched->node_copies);
+    free(sched);
+}
+
+void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
+    // initialize hash tables
+    size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS;
+    sched->hash_set.size = hash_size;
+    sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size);
+    sched->node_talloc   = malloc(sizeof(sched->node_talloc[0])   * hash_size);
+    sched->node_copies   = malloc(sizeof(sched->node_copies[0])   * hash_size);
+
+    sched_split_graph(sched, measure_graph);
+    sched_alloc_splits(sched);
+
+    // allocate buffers and reset allocators
+    for (int i = 0; i < sched->n_backends; i++) {
+        size_t size = ggml_tallocr_max_size(sched->tallocs[i]);
+        ggml_tallocr_free(sched->tallocs[i]);
+        sched->tallocs[i] = ggml_tallocr_new_from_backend(sched->backends[i], size);
+    }
+
+    sched_reset(sched);
+}
+
+void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
+    GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
+
+    sched_split_graph(sched, graph);
+    sched_alloc_splits(sched);
+    sched_compute_splits(sched);
+    sched_reset(sched);
+}
+
+ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
+    int backend_index = sched_backend_prio(sched, backend);
+    return sched->tallocs[backend_index];
+}
+
+ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
+    int backend_index = sched_backend_prio(sched, backend);
+    return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
+}
+
+void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
+    int backend_index = sched_backend_prio(sched, backend);
+    GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
+    node_allocr(node) = sched->tallocs[backend_index];
+}
+
+// utils
+void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
+    GGML_ASSERT(tensor->buffer == NULL);
+    GGML_ASSERT(tensor->data == NULL);
+    GGML_ASSERT(tensor->view_src != NULL);
+    GGML_ASSERT(tensor->view_src->buffer != NULL);
+    GGML_ASSERT(tensor->view_src->data != NULL);
+
+    tensor->buffer = buffer;
+    tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
+    tensor->backend = tensor->view_src->backend;
+    ggml_backend_buffer_init_tensor(buffer, tensor);
+}
+
+void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
+    GGML_ASSERT(tensor->buffer == NULL);
+    GGML_ASSERT(tensor->data == NULL);
+    GGML_ASSERT(tensor->view_src == NULL);
+    GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
+    GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
+                (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
+
+    tensor->buffer = buffer;
+    tensor->data = addr;
+    ggml_backend_buffer_init_tensor(buffer, tensor);
+}
+
+static struct ggml_tensor * graph_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
+    struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
+
+    GGML_ASSERT(src != NULL);
+    GGML_ASSERT(src->data && "graph must be allocated");
+
+    size_t id = ggml_hash_insert(hash_set, src);
+    if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
+        return node_copies[ggml_hash_find(hash_set, src)];
+    }
+
+    struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
+    if (src->view_src != NULL) {
+        dst->view_src = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
+        dst->view_offs = src->view_offs;
+    }
+    dst->op = src->op;
+    memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
+    ggml_set_name(dst, src->name);
+
+    // copy src
+    for (int i = 0; i < GGML_MAX_SRC; i++) {
+        struct ggml_tensor * s = src->src[i];
+        if (s == NULL) {
+            break;
+        }
+        dst->src[i] = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
+    }
+
+    node_copies[id] = dst;
+    return dst;
+}
+
+static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
+    size_t id = ggml_hash_find(hash_set, src);
+    if (node_init[id]) {
+        return;
+    }
+    node_init[id] = true;
+
+    struct ggml_tensor * dst = node_copies[id];
+    if (dst->view_src != NULL) {
+        ggml_backend_view_init(dst->view_src->buffer, dst);
+    }
+    else {
+        ggml_backend_tensor_copy(src, dst);
+    }
+
+    // init src
+    for (int i = 0; i < GGML_MAX_SRC; i++) {
+        struct ggml_tensor * s = src->src[i];
+        if (s == NULL) {
+            break;
+        }
+        graph_init_tensor(hash_set, node_copies, node_init, s);
+    }
+}
+
+struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
+    struct ggml_hash_set hash_set = {
+        /* .size = */ graph->visited_hash_table.size,
+        /* .keys = */ calloc(sizeof(hash_set.keys[0]) * graph->visited_hash_table.size, 1)
+    };
+    struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]) * hash_set.size, 1);
+    bool * node_init = calloc(sizeof(node_init[0]) * hash_set.size, 1);
+
+    struct ggml_init_params params = {
+        /* .mem_size   = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
+        /* .mem_buffer = */ NULL,
+        /* .no_alloc   = */ true
+    };
+
+    struct ggml_context * ctx_allocated = ggml_init(params);
+    struct ggml_context * ctx_unallocated = ggml_init(params);
+
+    // dup nodes
+    for (int i = 0; i < graph->n_nodes; i++) {
+        struct ggml_tensor * node = graph->nodes[i];
+        graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
+    }
+
+    // allocate nodes
+    ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
+
+    //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
+
+    // copy data and init views
+    for (int i = 0; i < graph->n_nodes; i++) {
+        struct ggml_tensor * node = graph->nodes[i];
+        graph_init_tensor(hash_set, node_copies, node_init, node);
+    }
+
+    // build graph copy
+    struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
+    for (int i = 0; i < graph->n_nodes; i++) {
+        struct ggml_tensor * node = graph->nodes[i];
+        struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
+        graph_copy->nodes[i] = node_copy;
+    }
+    graph_copy->n_nodes = graph->n_nodes;
+
+    free(hash_set.keys);
+    free(node_copies);
+    free(node_init);
+
+    return (struct ggml_backend_graph_copy) {
+        /* .buffer           = */ buffer,
+        /* .ctx_allocated    = */ ctx_allocated,
+        /* .ctx_unallocated  = */ ctx_unallocated,
+        /* .graph            = */ graph_copy,
+    };
+}
+
+void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
+    ggml_backend_buffer_free(copy.buffer);
+    ggml_free(copy.ctx_allocated);
+    ggml_free(copy.ctx_unallocated);
+}
+
+void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
+    struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
+    struct ggml_cgraph * g1 = graph;
+    struct ggml_cgraph * g2 = copy.graph;
+
+    assert(g1->n_nodes == g2->n_nodes);
+
+    for (int i = 0; i < g1->n_nodes; i++) {
+        //printf("eval %d/%d\n", i, g1->n_nodes);
+        struct ggml_tensor * t1 = g1->nodes[i];
+        struct ggml_tensor * t2 = g2->nodes[i];
+
+        assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
+
+        struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
+        struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
+
+        ggml_backend_graph_compute(backend1, &g1v);
+        ggml_backend_graph_compute(backend2, &g2v);
+
+        if (ggml_is_view_op(t1->op)) {
+            continue;
+        }
+
+        // compare results, calculate rms etc
+        if (!callback(i, t1, t2, user_data)) {
+            break;
+        }
+    }
+
+    ggml_backend_graph_copy_free(copy);
+}

+ 243 - 0
ggml/src/ggml-impl.h

@@ -0,0 +1,243 @@
+#pragma once
+
+#include "ggml.h"
+
+// GGML internal header
+
+#include <assert.h>
+#include <stddef.h>
+#include <stdbool.h>
+#include <string.h> // memcpy
+#include <math.h>   // fabsf
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+// static_assert should be a #define, but if it's not,
+// fall back to the _Static_assert C11 keyword.
+// if C99 - static_assert is noop
+// ref: https://stackoverflow.com/a/53923785/4039976
+#ifndef static_assert
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
+#define static_assert(cond, msg) _Static_assert(cond, msg)
+#else
+#define static_assert(cond, msg) struct global_scope_noop_trick
+#endif
+#endif
+
+// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
+#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
+#ifndef __FMA__
+#define __FMA__
+#endif
+#ifndef __F16C__
+#define __F16C__
+#endif
+#ifndef __SSE3__
+#define __SSE3__
+#endif
+#endif
+
+// 16-bit float
+// on Arm, we use __fp16
+// on x86, we use uint16_t
+#if defined(__ARM_NEON) && !defined(_MSC_VER)
+
+// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
+//
+//   $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
+//
+#include <arm_neon.h>
+
+#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
+#define GGML_COMPUTE_FP32_TO_FP16(x) (x)
+
+#define GGML_FP16_TO_FP32(x) ((float) (x))
+#define GGML_FP32_TO_FP16(x) (x)
+
+#else
+
+#ifdef __wasm_simd128__
+#include <wasm_simd128.h>
+#else
+#ifdef __POWER9_VECTOR__
+#include <altivec.h>
+#undef bool
+#define bool _Bool
+#else
+#if defined(_MSC_VER) || defined(__MINGW32__)
+#include <intrin.h>
+#else
+#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
+#if !defined(__riscv)
+#include <immintrin.h>
+#endif
+#endif
+#endif
+#endif
+#endif
+
+#ifdef __riscv_v_intrinsic
+#include <riscv_vector.h>
+#endif
+
+#ifdef __F16C__
+
+#ifdef _MSC_VER
+#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
+#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
+#else
+#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
+#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
+#endif
+
+#elif defined(__POWER9_VECTOR__)
+
+#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
+#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
+/* the inline asm below is about 12% faster than the lookup method */
+#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
+#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
+
+static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
+    register float f;
+    register double d;
+    __asm__(
+        "mtfprd %0,%2\n"
+        "xscvhpdp %0,%0\n"
+        "frsp %1,%0\n" :
+        /* temp */ "=d"(d),
+        /* out */  "=f"(f):
+        /* in */   "r"(h));
+    return f;
+}
+
+static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
+    register double d;
+    register ggml_fp16_t r;
+    __asm__( /* xscvdphp can work on double or single precision */
+        "xscvdphp %0,%2\n"
+        "mffprd %1,%0\n" :
+        /* temp */ "=d"(d),
+        /* out */  "=r"(r):
+        /* in */   "f"(f));
+    return r;
+}
+
+#else
+
+// FP16 <-> FP32
+// ref: https://github.com/Maratyszcza/FP16
+
+static inline float fp32_from_bits(uint32_t w) {
+    union {
+        uint32_t as_bits;
+        float as_value;
+    } fp32;
+    fp32.as_bits = w;
+    return fp32.as_value;
+}
+
+static inline uint32_t fp32_to_bits(float f) {
+    union {
+        float as_value;
+        uint32_t as_bits;
+    } fp32;
+    fp32.as_value = f;
+    return fp32.as_bits;
+}
+
+static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
+    const uint32_t w = (uint32_t) h << 16;
+    const uint32_t sign = w & UINT32_C(0x80000000);
+    const uint32_t two_w = w + w;
+
+    const uint32_t exp_offset = UINT32_C(0xE0) << 23;
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
+    const float exp_scale = 0x1.0p-112f;
+#else
+    const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
+#endif
+    const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
+
+    const uint32_t magic_mask = UINT32_C(126) << 23;
+    const float magic_bias = 0.5f;
+    const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
+
+    const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
+    const uint32_t result = sign |
+        (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
+    return fp32_from_bits(result);
+}
+
+static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
+    const float scale_to_inf = 0x1.0p+112f;
+    const float scale_to_zero = 0x1.0p-110f;
+#else
+    const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
+    const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
+#endif
+    float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
+
+    const uint32_t w = fp32_to_bits(f);
+    const uint32_t shl1_w = w + w;
+    const uint32_t sign = w & UINT32_C(0x80000000);
+    uint32_t bias = shl1_w & UINT32_C(0xFF000000);
+    if (bias < UINT32_C(0x71000000)) {
+        bias = UINT32_C(0x71000000);
+    }
+
+    base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
+    const uint32_t bits = fp32_to_bits(base);
+    const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
+    const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
+    const uint32_t nonsign = exp_bits + mantissa_bits;
+    return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
+}
+
+#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
+#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
+
+#endif // __F16C__
+
+#endif // __ARM_NEON
+
+// precomputed f32 table for f16 (256 KB)
+// defined in ggml.c, initialized in ggml_init()
+extern float ggml_table_f32_f16[1 << 16];
+
+// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
+// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
+// This is also true for POWER9.
+#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
+
+inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
+    uint16_t s;
+    memcpy(&s, &f, sizeof(uint16_t));
+    return ggml_table_f32_f16[s];
+}
+
+#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
+#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
+
+#endif
+
+#define GGML_HASHTABLE_FULL ((size_t)-1)
+#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
+
+bool   ggml_hash_contains      (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
+
+// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
+size_t ggml_hash_find          (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
+
+// returns GGML_HASHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
+size_t ggml_hash_insert        (      struct ggml_hash_set hash_set, struct ggml_tensor * key);
+
+// return index, asserts if table is full
+size_t ggml_hash_find_or_insert(      struct ggml_hash_set hash_set, struct ggml_tensor * key);
+
+#ifdef __cplusplus
+}
+#endif

+ 7382 - 0
ggml/src/ggml-quants.c

@@ -0,0 +1,7382 @@
+#include "ggml-quants.h"
+#include "ggml-impl.h"
+
+#include <math.h>
+#include <string.h>
+#include <assert.h>
+#include <float.h>
+
+#ifdef __ARM_NEON
+
+// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
+//
+//   $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
+//
+#include <arm_neon.h>
+
+#else
+
+#ifdef __wasm_simd128__
+#include <wasm_simd128.h>
+#else
+#if defined(__POWER9_VECTOR__) || defined(__powerpc64__)
+#include <altivec.h>
+#undef bool
+#define bool _Bool
+#else
+#if defined(_MSC_VER) || defined(__MINGW32__)
+#include <intrin.h>
+#else
+#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
+#if !defined(__riscv)
+#include <immintrin.h>
+#endif
+#endif
+#endif
+#endif
+#endif
+#endif
+
+#ifdef __riscv_v_intrinsic
+#include <riscv_vector.h>
+#endif
+
+#undef MIN
+#undef MAX
+
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+
+#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
+
+#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
+// multiply int8_t, add results pairwise twice
+static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
+    // Get absolute values of x vectors
+    const __m128i ax = _mm_sign_epi8(x, x);
+    // Sign the values of the y vectors
+    const __m128i sy = _mm_sign_epi8(y, x);
+    // Perform multiplication and create 16-bit values
+    const __m128i dot = _mm_maddubs_epi16(ax, sy);
+    const __m128i ones = _mm_set1_epi16(1);
+    return _mm_madd_epi16(ones, dot);
+}
+
+#if __AVX__ || __AVX2__ || __AVX512F__
+// horizontally add 8 floats
+static inline float hsum_float_8(const __m256 x) {
+    __m128 res = _mm256_extractf128_ps(x, 1);
+    res = _mm_add_ps(res, _mm256_castps256_ps128(x));
+    res = _mm_add_ps(res, _mm_movehl_ps(res, res));
+    res = _mm_add_ss(res, _mm_movehdup_ps(res));
+    return _mm_cvtss_f32(res);
+}
+
+// horizontally add 8 int32_t
+static inline int hsum_i32_8(const __m256i a) {
+    const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
+    const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
+    const __m128i sum64 = _mm_add_epi32(hi64, sum128);
+    const __m128i hi32  = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
+    return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
+}
+
+// horizontally add 4 int32_t
+static inline int hsum_i32_4(const __m128i a) {
+    const __m128i hi64 = _mm_unpackhi_epi64(a, a);
+    const __m128i sum64 = _mm_add_epi32(hi64, a);
+    const __m128i hi32  = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
+    return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
+}
+
+#if defined(__AVX2__) || defined(__AVX512F__)
+// spread 32 bits to 32 bytes { 0x00, 0xFF }
+static inline __m256i bytes_from_bits_32(const uint8_t * x) {
+    uint32_t x32;
+    memcpy(&x32, x, sizeof(uint32_t));
+    const __m256i shuf_mask = _mm256_set_epi64x(
+            0x0303030303030303, 0x0202020202020202,
+            0x0101010101010101, 0x0000000000000000);
+    __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
+    const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
+    bytes = _mm256_or_si256(bytes, bit_mask);
+    return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
+}
+
+// Unpack 32 4-bit fields into 32 bytes
+// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
+static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
+{
+    const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
+    const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
+    const __m256i lowMask = _mm256_set1_epi8( 0xF );
+    return _mm256_and_si256(lowMask, bytes);
+}
+
+// add int16_t pairwise and return as float vector
+static inline __m256 sum_i16_pairs_float(const __m256i x) {
+    const __m256i ones = _mm256_set1_epi16(1);
+    const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
+    return _mm256_cvtepi32_ps(summed_pairs);
+}
+
+static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
+#if __AVXVNNI__
+    const __m256i zero = _mm256_setzero_si256();
+    const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
+    return _mm256_cvtepi32_ps(summed_pairs);
+#else
+    // Perform multiplication and create 16-bit values
+    const __m256i dot = _mm256_maddubs_epi16(ax, sy);
+    return sum_i16_pairs_float(dot);
+#endif
+}
+
+// multiply int8_t, add results pairwise twice and return as float vector
+static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
+#if __AVXVNNIINT8__
+    const __m256i zero = _mm256_setzero_si256();
+    const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
+    return _mm256_cvtepi32_ps(summed_pairs);
+#else
+    // Get absolute values of x vectors
+    const __m256i ax = _mm256_sign_epi8(x, x);
+    // Sign the values of the y vectors
+    const __m256i sy = _mm256_sign_epi8(y, x);
+    return mul_sum_us8_pairs_float(ax, sy);
+#endif
+}
+
+static inline __m128i packNibbles( __m256i bytes )
+{
+    // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
+#if __AVX512F__
+    const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4);   // 0000_0000_abcd_0000
+    bytes = _mm256_or_si256(bytes, bytes_srli_4);               // 0000_abcd_abcd_efgh
+    return _mm256_cvtepi16_epi8(bytes);                         // abcd_efgh
+#else
+    const __m256i lowByte = _mm256_set1_epi16( 0xFF );
+    __m256i high = _mm256_andnot_si256( lowByte, bytes );
+    __m256i low = _mm256_and_si256( lowByte, bytes );
+    high = _mm256_srli_epi16( high, 4 );
+    bytes = _mm256_or_si256( low, high );
+
+    // Compress uint16_t lanes into bytes
+    __m128i r0 = _mm256_castsi256_si128( bytes );
+    __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
+    return _mm_packus_epi16( r0, r1 );
+#endif
+}
+#elif defined(__AVX__)
+// spread 32 bits to 32 bytes { 0x00, 0xFF }
+static inline __m256i bytes_from_bits_32(const uint8_t * x) {
+    uint32_t x32;
+    memcpy(&x32, x, sizeof(uint32_t));
+    const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
+    const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
+    __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
+    __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
+    const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
+    bytesl = _mm_or_si128(bytesl, bit_mask);
+    bytesh = _mm_or_si128(bytesh, bit_mask);
+    bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
+    bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
+    return MM256_SET_M128I(bytesh, bytesl);
+}
+
+// Unpack 32 4-bit fields into 32 bytes
+// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
+static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
+{
+    // Load 16 bytes from memory
+    __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
+    __m128i tmph = _mm_srli_epi16(tmpl, 4);
+    const __m128i lowMask = _mm_set1_epi8(0xF);
+    tmpl = _mm_and_si128(lowMask, tmpl);
+    tmph = _mm_and_si128(lowMask, tmph);
+    return MM256_SET_M128I(tmph, tmpl);
+}
+
+// add int16_t pairwise and return as float vector
+static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
+    const __m128i ones = _mm_set1_epi16(1);
+    const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
+    const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
+    const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
+    return _mm256_cvtepi32_ps(summed_pairs);
+}
+
+static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
+    const __m128i axl = _mm256_castsi256_si128(ax);
+    const __m128i axh = _mm256_extractf128_si256(ax, 1);
+    const __m128i syl = _mm256_castsi256_si128(sy);
+    const __m128i syh = _mm256_extractf128_si256(sy, 1);
+    // Perform multiplication and create 16-bit values
+    const __m128i dotl = _mm_maddubs_epi16(axl, syl);
+    const __m128i doth = _mm_maddubs_epi16(axh, syh);
+    return sum_i16_pairs_float(doth, dotl);
+}
+
+// multiply int8_t, add results pairwise twice and return as float vector
+static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
+    const __m128i xl = _mm256_castsi256_si128(x);
+    const __m128i xh = _mm256_extractf128_si256(x, 1);
+    const __m128i yl = _mm256_castsi256_si128(y);
+    const __m128i yh = _mm256_extractf128_si256(y, 1);
+    // Get absolute values of x vectors
+    const __m128i axl = _mm_sign_epi8(xl, xl);
+    const __m128i axh = _mm_sign_epi8(xh, xh);
+    // Sign the values of the y vectors
+    const __m128i syl = _mm_sign_epi8(yl, xl);
+    const __m128i syh = _mm_sign_epi8(yh, xh);
+    // Perform multiplication and create 16-bit values
+    const __m128i dotl = _mm_maddubs_epi16(axl, syl);
+    const __m128i doth = _mm_maddubs_epi16(axh, syh);
+    return sum_i16_pairs_float(doth, dotl);
+}
+
+static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
+{
+    // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
+    const __m128i lowByte = _mm_set1_epi16( 0xFF );
+    __m128i high = _mm_andnot_si128( lowByte, bytes1 );
+    __m128i low = _mm_and_si128( lowByte, bytes1 );
+    high = _mm_srli_epi16( high, 4 );
+    bytes1 = _mm_or_si128( low, high );
+    high = _mm_andnot_si128( lowByte, bytes2 );
+    low = _mm_and_si128( lowByte, bytes2 );
+    high = _mm_srli_epi16( high, 4 );
+    bytes2 = _mm_or_si128( low, high );
+
+    return _mm_packus_epi16( bytes1, bytes2);
+}
+#endif
+#elif defined(__SSSE3__)
+// horizontally add 4x4 floats
+static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
+    __m128 res_0 =_mm_hadd_ps(a, b);
+    __m128 res_1 =_mm_hadd_ps(c, d);
+    __m128 res =_mm_hadd_ps(res_0, res_1);
+    res =_mm_hadd_ps(res, res);
+    res =_mm_hadd_ps(res, res);
+
+    return _mm_cvtss_f32(res);
+}
+#endif // __AVX__ || __AVX2__ || __AVX512F__
+#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
+
+#if defined(__ARM_NEON)
+#if !defined(__aarch64__)
+
+// 64-bit compatibility
+
+// vaddvq_s16
+// vpaddq_s16
+// vaddvq_s32
+// vaddvq_f32
+// vmaxvq_f32
+// vcvtnq_s32_f32
+
+inline static int32_t vaddvq_s16(int16x8_t v) {
+    return
+        (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
+        (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
+        (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
+        (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
+}
+
+inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
+    int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
+    int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
+    return vcombine_s16(a0, b0);
+}
+
+inline static int32_t vaddvq_s32(int32x4_t v) {
+    return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
+}
+
+inline static float vaddvq_f32(float32x4_t v) {
+    return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
+}
+
+inline static float vmaxvq_f32(float32x4_t v) {
+    return
+        MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
+            MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
+}
+
+inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
+    int32x4_t res;
+
+    res[0] = roundf(vgetq_lane_f32(v, 0));
+    res[1] = roundf(vgetq_lane_f32(v, 1));
+    res[2] = roundf(vgetq_lane_f32(v, 2));
+    res[3] = roundf(vgetq_lane_f32(v, 3));
+
+    return res;
+}
+
+// vld1q_s16_x2
+// vld1q_u8_x2
+// vld1q_u8_x4
+// vld1q_s8_x2
+// vld1q_s8_x4
+// TODO: double-check these work correctly
+
+typedef struct ggml_int16x8x2_t {
+    int16x8_t val[2];
+} ggml_int16x8x2_t;
+
+inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
+    ggml_int16x8x2_t res;
+
+    res.val[0] = vld1q_s16(ptr + 0);
+    res.val[1] = vld1q_s16(ptr + 8);
+
+    return res;
+}
+
+typedef struct ggml_uint8x16x2_t {
+    uint8x16_t val[2];
+} ggml_uint8x16x2_t;
+
+inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
+    ggml_uint8x16x2_t res;
+
+    res.val[0] = vld1q_u8(ptr + 0);
+    res.val[1] = vld1q_u8(ptr + 16);
+
+    return res;
+}
+
+typedef struct ggml_uint8x16x4_t {
+    uint8x16_t val[4];
+} ggml_uint8x16x4_t;
+
+inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
+    ggml_uint8x16x4_t res;
+
+    res.val[0] = vld1q_u8(ptr + 0);
+    res.val[1] = vld1q_u8(ptr + 16);
+    res.val[2] = vld1q_u8(ptr + 32);
+    res.val[3] = vld1q_u8(ptr + 48);
+
+    return res;
+}
+
+typedef struct ggml_int8x16x2_t {
+    int8x16_t val[2];
+} ggml_int8x16x2_t;
+
+inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
+    ggml_int8x16x2_t res;
+
+    res.val[0] = vld1q_s8(ptr + 0);
+    res.val[1] = vld1q_s8(ptr + 16);
+
+    return res;
+}
+
+typedef struct ggml_int8x16x4_t {
+    int8x16_t val[4];
+} ggml_int8x16x4_t;
+
+inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
+    ggml_int8x16x4_t res;
+
+    res.val[0] = vld1q_s8(ptr + 0);
+    res.val[1] = vld1q_s8(ptr + 16);
+    res.val[2] = vld1q_s8(ptr + 32);
+    res.val[3] = vld1q_s8(ptr + 48);
+
+    return res;
+}
+
+#else
+
+#define ggml_int16x8x2_t  int16x8x2_t
+#define ggml_uint8x16x2_t uint8x16x2_t
+#define ggml_uint8x16x4_t uint8x16x4_t
+#define ggml_int8x16x2_t  int8x16x2_t
+#define ggml_int8x16x4_t  int8x16x4_t
+
+#define ggml_vld1q_s16_x2 vld1q_s16_x2
+#define ggml_vld1q_u8_x2  vld1q_u8_x2
+#define ggml_vld1q_u8_x4  vld1q_u8_x4
+#define ggml_vld1q_s8_x2  vld1q_s8_x2
+#define ggml_vld1q_s8_x4  vld1q_s8_x4
+
+#endif
+#endif
+
+#if defined(__ARM_NEON) || defined(__wasm_simd128__)
+#define B1(c,s,n)  0x ## n ## c ,  0x ## n ## s
+#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
+#define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
+#define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
+#define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
+#define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
+#define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
+#define B8(c,s  ) B7(c,s,     c), B7(c,s,     s)
+
+// precomputed tables for expanding 8bits to 8 bytes:
+static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
+static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
+#endif
+
+// reference implementation for deterministic creation of model files
+void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
+    static const int qk = QK4_0;
+
+    assert(k % qk == 0);
+
+    const int nb = k / qk;
+
+    for (int i = 0; i < nb; i++) {
+        float amax = 0.0f; // absolute max
+        float max  = 0.0f;
+
+        for (int j = 0; j < qk; j++) {
+            const float v = x[i*qk + j];
+            if (amax < fabsf(v)) {
+                amax = fabsf(v);
+                max  = v;
+            }
+        }
+
+        const float d  = max / -8;
+        const float id = d ? 1.0f/d : 0.0f;
+
+        y[i].d = GGML_FP32_TO_FP16(d);
+
+        for (int j = 0; j < qk/2; ++j) {
+            const float x0 = x[i*qk + 0    + j]*id;
+            const float x1 = x[i*qk + qk/2 + j]*id;
+
+            const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
+            const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
+
+            y[i].qs[j]  = xi0;
+            y[i].qs[j] |= xi1 << 4;
+        }
+    }
+}
+
+void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
+    quantize_row_q4_0_reference(x, y, k);
+}
+
+void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
+    const int qk = QK4_1;
+
+    assert(k % qk == 0);
+
+    const int nb = k / qk;
+
+    for (int i = 0; i < nb; i++) {
+        float min = FLT_MAX;
+        float max = -FLT_MAX;
+
+        for (int j = 0; j < qk; j++) {
+            const float v = x[i*qk + j];
+
+            if (v < min) min = v;
+            if (v > max) max = v;
+        }
+
+        const float d  = (max - min) / ((1 << 4) - 1);
+        const float id = d ? 1.0f/d : 0.0f;
+
+        y[i].d = GGML_FP32_TO_FP16(d);
+        y[i].m = GGML_FP32_TO_FP16(min);
+
+        for (int j = 0; j < qk/2; ++j) {
+            const float x0 = (x[i*qk + 0    + j] - min)*id;
+            const float x1 = (x[i*qk + qk/2 + j] - min)*id;
+
+            const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
+            const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
+
+            y[i].qs[j]  = xi0;
+            y[i].qs[j] |= xi1 << 4;
+        }
+    }
+}
+
+void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
+    quantize_row_q4_1_reference(x, y, k);
+}
+
+void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
+    static const int qk = QK5_0;
+
+    assert(k % qk == 0);
+
+    const int nb = k / qk;
+
+    for (int i = 0; i < nb; i++) {
+        float amax = 0.0f; // absolute max
+        float max  = 0.0f;
+
+        for (int j = 0; j < qk; j++) {
+            const float v = x[i*qk + j];
+            if (amax < fabsf(v)) {
+                amax = fabsf(v);
+                max  = v;
+            }
+        }
+
+        const float d  = max / -16;
+        const float id = d ? 1.0f/d : 0.0f;
+
+        y[i].d = GGML_FP32_TO_FP16(d);
+
+        uint32_t qh = 0;
+
+        for (int j = 0; j < qk/2; ++j) {
+            const float x0 = x[i*qk + 0    + j]*id;
+            const float x1 = x[i*qk + qk/2 + j]*id;
+
+            const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
+            const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
+
+            y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
+
+            // get the 5-th bit and store it in qh at the right position
+            qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
+            qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
+        }
+
+        memcpy(&y[i].qh, &qh, sizeof(qh));
+    }
+}
+
+void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
+    quantize_row_q5_0_reference(x, y, k);
+}
+
+void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
+    const int qk = QK5_1;
+
+    assert(k % qk == 0);
+
+    const int nb = k / qk;
+
+    for (int i = 0; i < nb; i++) {
+        float min = FLT_MAX;
+        float max = -FLT_MAX;
+
+        for (int j = 0; j < qk; j++) {
+            const float v = x[i*qk + j];
+
+            if (v < min) min = v;
+            if (v > max) max = v;
+        }
+
+        const float d  = (max - min) / ((1 << 5) - 1);
+        const float id = d ? 1.0f/d : 0.0f;
+
+        y[i].d = GGML_FP32_TO_FP16(d);
+        y[i].m = GGML_FP32_TO_FP16(min);
+
+        uint32_t qh = 0;
+
+        for (int j = 0; j < qk/2; ++j) {
+            const float x0 = (x[i*qk + 0    + j] - min)*id;
+            const float x1 = (x[i*qk + qk/2 + j] - min)*id;
+
+            const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
+            const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
+
+            y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
+
+            // get the 5-th bit and store it in qh at the right position
+            qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
+            qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
+        }
+
+        memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
+    }
+}
+
+void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
+    quantize_row_q5_1_reference(x, y, k);
+}
+
+// reference implementation for deterministic creation of model files
+void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
+    assert(k % QK8_0 == 0);
+    const int nb = k / QK8_0;
+
+    for (int i = 0; i < nb; i++) {
+        float amax = 0.0f; // absolute max
+
+        for (int j = 0; j < QK8_0; j++) {
+            const float v = x[i*QK8_0 + j];
+            amax = MAX(amax, fabsf(v));
+        }
+
+        const float d = amax / ((1 << 7) - 1);
+        const float id = d ? 1.0f/d : 0.0f;
+
+        y[i].d = GGML_FP32_TO_FP16(d);
+
+        for (int j = 0; j < QK8_0; ++j) {
+            const float x0 = x[i*QK8_0 + j]*id;
+
+            y[i].qs[j] = roundf(x0);
+        }
+    }
+}
+
+void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
+    assert(QK8_0 == 32);
+    assert(k % QK8_0 == 0);
+    const int nb = k / QK8_0;
+
+    block_q8_0 * restrict y = vy;
+
+#if defined(__ARM_NEON)
+    for (int i = 0; i < nb; i++) {
+        float32x4_t srcv [8];
+        float32x4_t asrcv[8];
+        float32x4_t amaxv[8];
+
+        for (int j = 0; j < 8; j++) srcv[j]  = vld1q_f32(x + i*32 + 4*j);
+        for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
+
+        for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
+        for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
+        for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
+
+        const float amax = vmaxvq_f32(amaxv[0]);
+
+        const float d = amax / ((1 << 7) - 1);
+        const float id = d ? 1.0f/d : 0.0f;
+
+        y[i].d = GGML_FP32_TO_FP16(d);
+
+        for (int j = 0; j < 8; j++) {
+            const float32x4_t v  = vmulq_n_f32(srcv[j], id);
+            const int32x4_t   vi = vcvtnq_s32_f32(v);
+
+            y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
+            y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
+            y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
+            y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
+        }
+    }
+#elif defined(__wasm_simd128__)
+    for (int i = 0; i < nb; i++) {
+        v128_t srcv [8];
+        v128_t asrcv[8];
+        v128_t amaxv[8];
+
+        for (int j = 0; j < 8; j++) srcv[j]  = wasm_v128_load(x + i*32 + 4*j);
+        for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
+
+        for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
+        for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
+        for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
+
+        const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
+                                   wasm_f32x4_extract_lane(amaxv[0], 1)),
+                               MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
+                                   wasm_f32x4_extract_lane(amaxv[0], 3)));
+
+        const float d = amax / ((1 << 7) - 1);
+        const float id = d ? 1.0f/d : 0.0f;
+
+        y[i].d = GGML_FP32_TO_FP16(d);
+
+        for (int j = 0; j < 8; j++) {
+            const v128_t v  = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
+            const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
+
+            y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
+            y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
+            y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
+            y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
+        }
+    }
+#elif defined(__AVX2__) || defined(__AVX__)
+    for (int i = 0; i < nb; i++) {
+        // Load elements into 4 AVX vectors
+        __m256 v0 = _mm256_loadu_ps( x );
+        __m256 v1 = _mm256_loadu_ps( x + 8 );
+        __m256 v2 = _mm256_loadu_ps( x + 16 );
+        __m256 v3 = _mm256_loadu_ps( x + 24 );
+        x += 32;
+
+        // Compute max(abs(e)) for the block
+        const __m256 signBit = _mm256_set1_ps( -0.0f );
+        __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
+        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
+        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
+        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
+
+        __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
+        max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
+        max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
+        const float maxScalar = _mm_cvtss_f32( max4 );
+
+        // Quantize these floats
+        const float d = maxScalar / 127.f;
+        y[i].d = GGML_FP32_TO_FP16(d);
+        const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
+        const __m256 mul = _mm256_set1_ps( id );
+
+        // Apply the multiplier
+        v0 = _mm256_mul_ps( v0, mul );
+        v1 = _mm256_mul_ps( v1, mul );
+        v2 = _mm256_mul_ps( v2, mul );
+        v3 = _mm256_mul_ps( v3, mul );
+
+        // Round to nearest integer
+        v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
+        v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
+        v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
+        v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
+
+        // Convert floats to integers
+        __m256i i0 = _mm256_cvtps_epi32( v0 );
+        __m256i i1 = _mm256_cvtps_epi32( v1 );
+        __m256i i2 = _mm256_cvtps_epi32( v2 );
+        __m256i i3 = _mm256_cvtps_epi32( v3 );
+
+#if defined(__AVX2__)
+        // Convert int32 to int16
+        i0 = _mm256_packs_epi32( i0, i1 );	// 0, 1, 2, 3,  8, 9, 10, 11,  4, 5, 6, 7, 12, 13, 14, 15
+        i2 = _mm256_packs_epi32( i2, i3 );	// 16, 17, 18, 19,  24, 25, 26, 27,  20, 21, 22, 23, 28, 29, 30, 31
+                                            // Convert int16 to int8
+        i0 = _mm256_packs_epi16( i0, i2 );	// 0, 1, 2, 3,  8, 9, 10, 11,  16, 17, 18, 19,  24, 25, 26, 27,  4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
+
+        // We got our precious signed bytes, but the order is now wrong
+        // These AVX2 pack instructions process 16-byte pieces independently
+        // The following instruction is fixing the order
+        const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
+        i0 = _mm256_permutevar8x32_epi32( i0, perm );
+
+        _mm256_storeu_si256((__m256i *)y[i].qs, i0);
+#else
+        // Since we don't have in AVX some necessary functions,
+        // we split the registers in half and call AVX2 analogs from SSE
+        __m128i ni0 = _mm256_castsi256_si128( i0 );
+        __m128i ni1 = _mm256_extractf128_si256( i0, 1);
+        __m128i ni2 = _mm256_castsi256_si128( i1 );
+        __m128i ni3 = _mm256_extractf128_si256( i1, 1);
+        __m128i ni4 = _mm256_castsi256_si128( i2 );
+        __m128i ni5 = _mm256_extractf128_si256( i2, 1);
+        __m128i ni6 = _mm256_castsi256_si128( i3 );
+        __m128i ni7 = _mm256_extractf128_si256( i3, 1);
+
+        // Convert int32 to int16
+        ni0 = _mm_packs_epi32( ni0, ni1 );
+        ni2 = _mm_packs_epi32( ni2, ni3 );
+        ni4 = _mm_packs_epi32( ni4, ni5 );
+        ni6 = _mm_packs_epi32( ni6, ni7 );
+        // Convert int16 to int8
+        ni0 = _mm_packs_epi16( ni0, ni2 );
+        ni4 = _mm_packs_epi16( ni4, ni6 );
+
+        _mm_storeu_si128((__m128i *)(y[i].qs +  0), ni0);
+        _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
+#endif
+    }
+#elif defined(__riscv_v_intrinsic)
+
+    size_t vl = __riscv_vsetvl_e32m4(QK8_0);
+
+    for (int i = 0; i < nb; i++) {
+        // load elements
+        vfloat32m4_t v_x   = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
+
+        vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
+        vfloat32m1_t tmp   = __riscv_vfmv_v_f_f32m1(0.0f, vl);
+        vfloat32m1_t vmax  = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
+        float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
+
+        const float d = amax / ((1 << 7) - 1);
+        const float id = d ? 1.0f/d : 0.0f;
+
+        y[i].d = GGML_FP32_TO_FP16(d);
+
+        vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
+
+        // convert to integer
+        vint16m2_t   vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
+        vint8m1_t    vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
+
+        // store result
+        __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
+    }
+#else
+    GGML_UNUSED(nb);
+    // scalar
+    quantize_row_q8_0_reference(x, y, k);
+#endif
+}
+
+// reference implementation for deterministic creation of model files
+void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
+    assert(QK8_1 == 32);
+    assert(k % QK8_1 == 0);
+    const int nb = k / QK8_1;
+
+    for (int i = 0; i < nb; i++) {
+        float amax = 0.0f; // absolute max
+
+        for (int j = 0; j < QK8_1; j++) {
+            const float v = x[i*QK8_1 + j];
+            amax = MAX(amax, fabsf(v));
+        }
+
+        const float d = amax / ((1 << 7) - 1);
+        const float id = d ? 1.0f/d : 0.0f;
+
+        y[i].d = d;
+
+        int sum = 0;
+
+        for (int j = 0; j < QK8_1/2; ++j) {
+            const float v0 = x[i*QK8_1           + j]*id;
+            const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
+
+            y[i].qs[          j] = roundf(v0);
+            y[i].qs[QK8_1/2 + j] = roundf(v1);
+
+            sum += y[i].qs[          j];
+            sum += y[i].qs[QK8_1/2 + j];
+        }
+
+        y[i].s = sum*d;
+    }
+}
+
+void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
+    assert(k % QK8_1 == 0);
+    const int nb = k / QK8_1;
+
+    block_q8_1 * restrict y = vy;
+
+#if defined(__ARM_NEON)
+    for (int i = 0; i < nb; i++) {
+        float32x4_t srcv [8];
+        float32x4_t asrcv[8];
+        float32x4_t amaxv[8];
+
+        for (int j = 0; j < 8; j++) srcv[j]  = vld1q_f32(x + i*32 + 4*j);
+        for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
+
+        for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
+        for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
+        for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
+
+        const float amax = vmaxvq_f32(amaxv[0]);
+
+        const float d = amax / ((1 << 7) - 1);
+        const float id = d ? 1.0f/d : 0.0f;
+
+        y[i].d = d;
+
+        int32x4_t accv = vdupq_n_s32(0);
+
+        for (int j = 0; j < 8; j++) {
+            const float32x4_t v  = vmulq_n_f32(srcv[j], id);
+            const int32x4_t   vi = vcvtnq_s32_f32(v);
+
+            y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
+            y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
+            y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
+            y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
+
+            accv = vaddq_s32(accv, vi);
+        }
+
+        y[i].s = d * vaddvq_s32(accv);
+    }
+#elif defined(__wasm_simd128__)
+    for (int i = 0; i < nb; i++) {
+        v128_t srcv [8];
+        v128_t asrcv[8];
+        v128_t amaxv[8];
+
+        for (int j = 0; j < 8; j++) srcv[j]  = wasm_v128_load(x + i*32 + 4*j);
+        for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
+
+        for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
+        for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
+        for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
+
+        const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
+                                   wasm_f32x4_extract_lane(amaxv[0], 1)),
+                               MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
+                                   wasm_f32x4_extract_lane(amaxv[0], 3)));
+
+        const float d = amax / ((1 << 7) - 1);
+        const float id = d ? 1.0f/d : 0.0f;
+
+        y[i].d = d;
+
+        v128_t accv = wasm_i32x4_splat(0);
+
+        for (int j = 0; j < 8; j++) {
+            const v128_t v  = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
+            const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
+
+            y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
+            y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
+            y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
+            y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
+
+            accv = wasm_i32x4_add(accv, vi);
+        }
+
+        y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
+                      wasm_i32x4_extract_lane(accv, 1) +
+                      wasm_i32x4_extract_lane(accv, 2) +
+                      wasm_i32x4_extract_lane(accv, 3));
+    }
+#elif defined(__AVX2__) || defined(__AVX__)
+    for (int i = 0; i < nb; i++) {
+        // Load elements into 4 AVX vectors
+        __m256 v0 = _mm256_loadu_ps( x );
+        __m256 v1 = _mm256_loadu_ps( x + 8 );
+        __m256 v2 = _mm256_loadu_ps( x + 16 );
+        __m256 v3 = _mm256_loadu_ps( x + 24 );
+        x += 32;
+
+        // Compute max(abs(e)) for the block
+        const __m256 signBit = _mm256_set1_ps( -0.0f );
+        __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
+        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
+        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
+        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
+
+        __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
+        max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
+        max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
+        const float maxScalar = _mm_cvtss_f32( max4 );
+
+        // Quantize these floats
+        const float d = maxScalar / 127.f;
+        y[i].d = d;
+        const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
+        const __m256 mul = _mm256_set1_ps( id );
+
+        // Apply the multiplier
+        v0 = _mm256_mul_ps( v0, mul );
+        v1 = _mm256_mul_ps( v1, mul );
+        v2 = _mm256_mul_ps( v2, mul );
+        v3 = _mm256_mul_ps( v3, mul );
+
+        // Round to nearest integer
+        v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
+        v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
+        v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
+        v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
+
+        // Convert floats to integers
+        __m256i i0 = _mm256_cvtps_epi32( v0 );
+        __m256i i1 = _mm256_cvtps_epi32( v1 );
+        __m256i i2 = _mm256_cvtps_epi32( v2 );
+        __m256i i3 = _mm256_cvtps_epi32( v3 );
+
+#if defined(__AVX2__)
+        // Compute the sum of the quants and set y[i].s
+        y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
+
+        // Convert int32 to int16
+        i0 = _mm256_packs_epi32( i0, i1 );	// 0, 1, 2, 3,  8, 9, 10, 11,  4, 5, 6, 7, 12, 13, 14, 15
+        i2 = _mm256_packs_epi32( i2, i3 );	// 16, 17, 18, 19,  24, 25, 26, 27,  20, 21, 22, 23, 28, 29, 30, 31
+                                            // Convert int16 to int8
+        i0 = _mm256_packs_epi16( i0, i2 );	// 0, 1, 2, 3,  8, 9, 10, 11,  16, 17, 18, 19,  24, 25, 26, 27,  4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
+
+        // We got our precious signed bytes, but the order is now wrong
+        // These AVX2 pack instructions process 16-byte pieces independently
+        // The following instruction is fixing the order
+        const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
+        i0 = _mm256_permutevar8x32_epi32( i0, perm );
+
+        _mm256_storeu_si256((__m256i *)y[i].qs, i0);
+#else
+        // Since we don't have in AVX some necessary functions,
+        // we split the registers in half and call AVX2 analogs from SSE
+        __m128i ni0 = _mm256_castsi256_si128( i0 );
+        __m128i ni1 = _mm256_extractf128_si256( i0, 1);
+        __m128i ni2 = _mm256_castsi256_si128( i1 );
+        __m128i ni3 = _mm256_extractf128_si256( i1, 1);
+        __m128i ni4 = _mm256_castsi256_si128( i2 );
+        __m128i ni5 = _mm256_extractf128_si256( i2, 1);
+        __m128i ni6 = _mm256_castsi256_si128( i3 );
+        __m128i ni7 = _mm256_extractf128_si256( i3, 1);
+
+        // Compute the sum of the quants and set y[i].s
+        const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
+        const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
+        y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
+
+        // Convert int32 to int16
+        ni0 = _mm_packs_epi32( ni0, ni1 );
+        ni2 = _mm_packs_epi32( ni2, ni3 );
+        ni4 = _mm_packs_epi32( ni4, ni5 );
+        ni6 = _mm_packs_epi32( ni6, ni7 );
+        // Convert int16 to int8
+        ni0 = _mm_packs_epi16( ni0, ni2 );
+        ni4 = _mm_packs_epi16( ni4, ni6 );
+
+        _mm_storeu_si128((__m128i *)(y[i].qs +  0), ni0);
+        _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
+#endif
+    }
+#elif defined(__riscv_v_intrinsic)
+
+    size_t vl = __riscv_vsetvl_e32m4(QK8_1);
+
+    for (int i = 0; i < nb; i++) {
+        // load elements
+        vfloat32m4_t v_x   = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
+
+        vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
+        vfloat32m1_t tmp   = __riscv_vfmv_v_f_f32m1(0.0, vl);
+        vfloat32m1_t vmax  = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
+        float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
+
+        const float d  = amax / ((1 << 7) - 1);
+        const float id = d ? 1.0f/d : 0.0f;
+
+        y[i].d = d;
+
+        vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
+
+        // convert to integer
+        vint16m2_t   vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
+        vint8m1_t    vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
+
+        // store result
+        __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
+
+        // compute sum for y[i].s
+        vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
+        vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
+
+        // set y[i].s
+        int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
+        y[i].s = sum*d;
+    }
+#else
+    GGML_UNUSED(nb);
+    // scalar
+    quantize_row_q8_1_reference(x, y, k);
+#endif
+}
+
+void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
+    static const int qk = QK4_0;
+
+    assert(k % qk == 0);
+
+    const int nb = k / qk;
+
+    for (int i = 0; i < nb; i++) {
+        const float d = GGML_FP16_TO_FP32(x[i].d);
+
+        for (int j = 0; j < qk/2; ++j) {
+            const int x0 = (x[i].qs[j] & 0x0F) - 8;
+            const int x1 = (x[i].qs[j] >>   4) - 8;
+
+            y[i*qk + j + 0   ] = x0*d;
+            y[i*qk + j + qk/2] = x1*d;
+        }
+    }
+}
+
+void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
+    static const int qk = QK4_1;
+
+    assert(k % qk == 0);
+
+    const int nb = k / qk;
+
+    for (int i = 0; i < nb; i++) {
+        const float d = GGML_FP16_TO_FP32(x[i].d);
+        const float m = GGML_FP16_TO_FP32(x[i].m);
+
+        for (int j = 0; j < qk/2; ++j) {
+            const int x0 = (x[i].qs[j] & 0x0F);
+            const int x1 = (x[i].qs[j] >>   4);
+
+            y[i*qk + j + 0   ] = x0*d + m;
+            y[i*qk + j + qk/2] = x1*d + m;
+        }
+    }
+}
+
+void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
+    static const int qk = QK5_0;
+
+    assert(k % qk == 0);
+
+    const int nb = k / qk;
+
+    for (int i = 0; i < nb; i++) {
+        const float d = GGML_FP16_TO_FP32(x[i].d);
+
+        uint32_t qh;
+        memcpy(&qh, x[i].qh, sizeof(qh));
+
+        for (int j = 0; j < qk/2; ++j) {
+            const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
+            const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;
+
+            const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
+            const int32_t x1 = ((x[i].qs[j] >>   4) | xh_1) - 16;
+
+            y[i*qk + j + 0   ] = x0*d;
+            y[i*qk + j + qk/2] = x1*d;
+        }
+    }
+}
+
+void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
+    static const int qk = QK5_1;
+
+    assert(k % qk == 0);
+
+    const int nb = k / qk;
+
+    for (int i = 0; i < nb; i++) {
+        const float d = GGML_FP16_TO_FP32(x[i].d);
+        const float m = GGML_FP16_TO_FP32(x[i].m);
+
+        uint32_t qh;
+        memcpy(&qh, x[i].qh, sizeof(qh));
+
+        for (int j = 0; j < qk/2; ++j) {
+            const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
+            const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;
+
+            const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
+            const int x1 = (x[i].qs[j] >>   4) | xh_1;
+
+            y[i*qk + j + 0   ] = x0*d + m;
+            y[i*qk + j + qk/2] = x1*d + m;
+        }
+    }
+}
+
+void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k) {
+    static const int qk = QK8_0;
+
+    assert(k % qk == 0);
+
+    const int nb = k / qk;
+
+    for (int i = 0; i < nb; i++) {
+        const float d = GGML_FP16_TO_FP32(x[i].d);
+
+        for (int j = 0; j < qk; ++j) {
+            y[i*qk + j] = x[i].qs[j]*d;
+        }
+    }
+}
+
+//
+// 2-6 bit quantization in super-blocks
+//
+
+//
+// ===================== Helper functions
+//
+static inline int nearest_int(float fval) {
+    assert(fval <= 4194303.f);
+    float val = fval + 12582912.f;
+    int i; memcpy(&i, &val, sizeof(int));
+    return (i & 0x007fffff) - 0x00400000;
+}
+
+static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) {
+    float max = 0;
+    float amax = 0;
+    for (int i = 0; i < n; ++i) {
+        float ax = fabsf(x[i]);
+        if (ax > amax) { amax = ax; max = x[i]; }
+    }
+    if (amax < 1e-30f) { // all zero
+        for (int i = 0; i < n; ++i) {
+            L[i] = 0;
+        }
+        return 0.f;
+    }
+    float iscale = -nmax / max;
+    if (rmse_type == 0) {
+        for (int i = 0; i < n; ++i) {
+            int l = nearest_int(iscale * x[i]);
+            L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
+        }
+        return 1/iscale;
+    }
+    bool return_early = false;
+    if (rmse_type < 0) {
+        rmse_type = -rmse_type;
+        return_early = true;
+    }
+    int weight_type = rmse_type%2;
+    float sumlx = 0;
+    float suml2 = 0;
+    for (int i = 0; i < n; ++i) {
+        int l = nearest_int(iscale * x[i]);
+        l = MAX(-nmax, MIN(nmax-1, l));
+        L[i] = l + nmax;
+        float w = weight_type == 1 ? x[i] * x[i] : 1;
+        sumlx += w*x[i]*l;
+        suml2 += w*l*l;
+    }
+    float scale = sumlx/suml2;
+    if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
+    float best = scale * sumlx;
+    for (int is = -9; is <= 9; ++is) {
+        if (is == 0) {
+            continue;
+        }
+        iscale = -(nmax + 0.1f*is) / max;
+        sumlx = suml2 = 0;
+        for (int i = 0; i < n; ++i) {
+            int l = nearest_int(iscale * x[i]);
+            l = MAX(-nmax, MIN(nmax-1, l));
+            float w = weight_type == 1 ? x[i] * x[i] : 1;
+            sumlx += w*x[i]*l;
+            suml2 += w*l*l;
+        }
+        if (suml2 > 0 && sumlx*sumlx > best*suml2) {
+            for (int i = 0; i < n; ++i) {
+                int l = nearest_int(iscale * x[i]);
+                L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
+            }
+            scale = sumlx/suml2; best = scale*sumlx;
+        }
+    }
+    return scale;
+}
+
+static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
+    float max = 0;
+    float amax = 0;
+    for (int i = 0; i < n; ++i) {
+        float ax = fabsf(x[i]);
+        if (ax > amax) { amax = ax; max = x[i]; }
+    }
+    if (!amax) { // all zero
+        for (int i = 0; i < n; ++i) { L[i] = 0; }
+        return 0.f;
+    }
+    float iscale = -nmax / max;
+    if (do_rmse) {
+        float sumlx = 0;
+        float suml2 = 0;
+        for (int i = 0; i < n; ++i) {
+            int l = nearest_int(iscale * x[i]);
+            l = MAX(-nmax, MIN(nmax-1, l));
+            L[i] = l;
+            float w = x[i]*x[i];
+            sumlx += w*x[i]*l;
+            suml2 += w*l*l;
+        }
+        for (int itry = 0; itry < 5; ++itry) {
+            int n_changed = 0;
+            for (int i = 0; i < n; ++i) {
+                float w = x[i]*x[i];
+                float slx = sumlx - w*x[i]*L[i];
+                if (slx > 0) {
+                    float sl2 = suml2 - w*L[i]*L[i];
+                    int new_l = nearest_int(x[i] * sl2 / slx);
+                    new_l = MAX(-nmax, MIN(nmax-1, new_l));
+                    if (new_l != L[i]) {
+                        slx += w*x[i]*new_l;
+                        sl2 += w*new_l*new_l;
+                        if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
+                            L[i] = new_l; sumlx = slx; suml2 = sl2;
+                            ++n_changed;
+                        }
+                    }
+                }
+            }
+            if (!n_changed) {
+                break;
+            }
+        }
+        for (int i = 0; i < n; ++i) {
+            L[i] += nmax;
+        }
+        return sumlx / suml2;
+    }
+    for (int i = 0; i < n; ++i) {
+        int l = nearest_int(iscale * x[i]);
+        l = MAX(-nmax, MIN(nmax-1, l));
+        L[i] = l + nmax;
+    }
+    return 1/iscale;
+}
+
+static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
+        int ntry, float alpha) {
+    float min = x[0];
+    float max = x[0];
+    for (int i = 1; i < n; ++i) {
+        if (x[i] < min) min = x[i];
+        if (x[i] > max) max = x[i];
+    }
+    if (max == min) {
+        for (int i = 0; i < n; ++i) L[i] = 0;
+        *the_min = 0;
+        return 0.f;
+    }
+    if (min > 0) min = 0;
+    float iscale = nmax/(max - min);
+    float scale = 1/iscale;
+    for (int itry = 0; itry < ntry; ++itry) {
+        float sumlx = 0; int suml2 = 0;
+        bool did_change = false;
+        for (int i = 0; i < n; ++i) {
+            int l = nearest_int(iscale*(x[i] - min));
+            l = MAX(0, MIN(nmax, l));
+            if (l != L[i]) {
+                L[i] = l;
+                did_change = true;
+            }
+            sumlx += (x[i] - min)*l;
+            suml2 += l*l;
+        }
+        scale = sumlx/suml2;
+        float sum = 0;
+        for (int i = 0; i < n; ++i) {
+            sum += x[i] - scale*L[i];
+        }
+        min = alpha*min + (1 - alpha)*sum/n;
+        if (min > 0) min = 0;
+        iscale = 1/scale;
+        if (!did_change) break;
+    }
+    *the_min = -min;
+    return scale;
+}
+
+static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
+        uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
+        float rmin, float rdelta, int nstep, bool use_mad) {
+    float min = x[0];
+    float max = x[0];
+    float sum_w = weights[0];
+    float sum_x = sum_w * x[0];
+#ifdef HAVE_BUGGY_APPLE_LINKER
+    // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
+    for (volatile int i = 1; i < n; ++i) {
+#else
+    for (int i = 1; i < n; ++i) {
+#endif
+        if (x[i] < min) min = x[i];
+        if (x[i] > max) max = x[i];
+        float w = weights[i];
+        sum_w += w;
+        sum_x += w * x[i];
+    }
+    if (min > 0) min = 0;
+    if (max == min) {
+        for (int i = 0; i < n; ++i) L[i] = 0;
+        *the_min = -min;
+        return 0.f;
+    }
+    float iscale = nmax/(max - min);
+    float scale = 1/iscale;
+    float best_mad = 0;
+    for (int i = 0; i < n; ++i) {
+        int l = nearest_int(iscale*(x[i] - min));
+        L[i] = MAX(0, MIN(nmax, l));
+        float diff = scale * L[i] + min - x[i];
+        diff = use_mad ? fabsf(diff) : diff * diff;
+        float w = weights[i];
+        best_mad += w * diff;
+    }
+    if (nstep < 1) {
+        *the_min = -min;
+        return scale;
+    }
+    for (int is = 0; is <= nstep; ++is) {
+        iscale = (rmin + rdelta*is + nmax)/(max - min);
+        float sum_l = 0, sum_l2 = 0, sum_xl = 0;
+        for (int i = 0; i < n; ++i) {
+            int l = nearest_int(iscale*(x[i] - min));
+            l = MAX(0, MIN(nmax, l));
+            Laux[i] = l;
+            float w = weights[i];
+            sum_l += w*l;
+            sum_l2 += w*l*l;
+            sum_xl += w*l*x[i];
+        }
+        float D = sum_w * sum_l2 - sum_l * sum_l;
+        if (D > 0) {
+            float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
+            float this_min   = (sum_l2 * sum_x - sum_l * sum_xl)/D;
+            if (this_min > 0) {
+                this_min = 0;
+                this_scale = sum_xl / sum_l2;
+            }
+            float mad = 0;
+            for (int i = 0; i < n; ++i) {
+                float diff = this_scale * Laux[i] + this_min - x[i];
+                diff = use_mad ? fabsf(diff) : diff * diff;
+                float w = weights[i];
+                mad += w * diff;
+            }
+            if (mad < best_mad) {
+                for (int i = 0; i < n; ++i) {
+                    L[i] = Laux[i];
+                }
+                best_mad = mad;
+                scale = this_scale;
+                min = this_min;
+            }
+        }
+    }
+    *the_min = -min;
+    return scale;
+}
+
+#if QK_K == 256
+static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
+    if (j < 4) {
+        *d = q[j] & 63; *m = q[j + 4] & 63;
+    } else {
+        *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
+        *m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
+    }
+}
+#endif
+
+//========================- 2-bit (de)-quantization
+
+void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
+    assert(k % QK_K == 0);
+    const int nb = k / QK_K;
+
+    uint8_t L[QK_K];
+    uint8_t Laux[16];
+    float   weights[16];
+    float mins[QK_K/16];
+    float scales[QK_K/16];
+
+    const float q4scale = 15.f;
+
+    for (int i = 0; i < nb; i++) {
+        float max_scale = 0; // as we are deducting the min, scales are always positive
+        float max_min = 0;
+        for (int j = 0; j < QK_K/16; ++j) {
+            for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
+            scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
+            float scale = scales[j];
+            if (scale > max_scale) {
+                max_scale = scale;
+            }
+            float min = mins[j];
+            if (min > max_min) {
+                max_min = min;
+            }
+        }
+
+        if (max_scale > 0) {
+            float iscale = q4scale/max_scale;
+            for (int j = 0; j < QK_K/16; ++j) {
+                int l = nearest_int(iscale*scales[j]);
+                y[i].scales[j] = l;
+            }
+            y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
+        } else {
+            for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
+            y[i].d = GGML_FP32_TO_FP16(0.f);
+        }
+        if (max_min > 0) {
+            float iscale = q4scale/max_min;
+            for (int j = 0; j < QK_K/16; ++j) {
+                int l = nearest_int(iscale*mins[j]);
+                y[i].scales[j] |= (l << 4);
+            }
+            y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
+        } else {
+            y[i].dmin = GGML_FP32_TO_FP16(0.f);
+        }
+        for (int j = 0; j < QK_K/16; ++j) {
+            const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
+            if (!d) continue;
+            const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
+            for (int ii = 0; ii < 16; ++ii) {
+                int l = nearest_int((x[16*j + ii] + dm)/d);
+                l = MAX(0, MIN(3, l));
+                L[16*j + ii] = l;
+            }
+        }
+
+#if QK_K == 256
+        for (int j = 0; j < QK_K; j += 128) {
+            for (int l = 0; l < 32; ++l) {
+                y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
+            }
+        }
+#else
+        for (int l = 0; l < 16; ++l) {
+            y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
+        }
+#endif
+
+        x += QK_K;
+
+    }
+}
+
+void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
+    assert(k % QK_K == 0);
+    const int nb = k / QK_K;
+
+    for (int i = 0; i < nb; i++) {
+
+        const float d = GGML_FP16_TO_FP32(x[i].d);
+        const float min = GGML_FP16_TO_FP32(x[i].dmin);
+
+        const uint8_t * q = x[i].qs;
+
+#if QK_K == 256
+        int is = 0;
+        float dl, ml;
+        for (int n = 0; n < QK_K; n += 128) {
+            int shift = 0;
+            for (int j = 0; j < 4; ++j) {
+
+                uint8_t sc = x[i].scales[is++];
+                dl = d * (sc & 0xF); ml = min * (sc >> 4);
+                for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
+
+                sc = x[i].scales[is++];
+                dl = d * (sc & 0xF); ml = min * (sc >> 4);
+                for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
+
+                shift += 2;
+            }
+            q += 32;
+        }
+#else
+        float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
+        float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
+        float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
+        float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
+        for (int l = 0; l < 16; ++l) {
+            y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
+            y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
+            y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
+            y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
+        }
+        y += QK_K;
+#endif
+    }
+}
+
+void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
+    quantize_row_q2_K_reference(x, vy, k);
+}
+
+size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
+    (void)hist; // TODO: collect histograms
+
+    for (int j = 0; j < n; j += k) {
+        block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
+        quantize_row_q2_K_reference(src + j, y, k);
+    }
+    return (n/QK_K*sizeof(block_q2_K));
+}
+
+//========================= 3-bit (de)-quantization
+
+void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
+    assert(k % QK_K == 0);
+    const int nb = k / QK_K;
+
+    int8_t L[QK_K];
+    float scales[QK_K / 16];
+
+    for (int i = 0; i < nb; i++) {
+
+        float max_scale = 0;
+        float amax = 0;
+        for (int j = 0; j < QK_K/16; ++j) {
+            scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
+            float scale = fabsf(scales[j]);
+            if (scale > amax) {
+                amax = scale; max_scale = scales[j];
+            }
+        }
+
+#if QK_K == 256
+        memset(y[i].scales, 0, 12);
+        if (max_scale) {
+            float iscale = -32.f/max_scale;
+            for (int j = 0; j < QK_K/16; ++j) {
+                int8_t l = nearest_int(iscale*scales[j]);
+                l = MAX(-32, MIN(31, l)) + 32;
+                if (j < 8) {
+                    y[i].scales[j] = l & 0xF;
+                } else {
+                    y[i].scales[j-8] |= ((l & 0xF) << 4);
+                }
+                l >>= 4;
+                y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
+            }
+            y[i].d = GGML_FP32_TO_FP16(1/iscale);
+        } else {
+            y[i].d = GGML_FP32_TO_FP16(0.f);
+        }
+
+        int8_t sc;
+        for (int j = 0; j < QK_K/16; ++j) {
+            sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
+            sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
+            float d = GGML_FP16_TO_FP32(y[i].d) * sc;
+            if (!d) {
+                continue;
+            }
+            for (int ii = 0; ii < 16; ++ii) {
+                int l = nearest_int(x[16*j + ii]/d);
+                l = MAX(-4, MIN(3, l));
+                L[16*j + ii] = l + 4;
+            }
+        }
+#else
+        if (max_scale) {
+            float iscale = -8.f/max_scale;
+            for (int j = 0; j < QK_K/16; j+=2) {
+                int l1 = nearest_int(iscale*scales[j]);
+                l1 = 8 + MAX(-8, MIN(7, l1));
+                int l2 = nearest_int(iscale*scales[j+1]);
+                l2 = 8 + MAX(-8, MIN(7, l2));
+                y[i].scales[j/2] = l1 | (l2 << 4);
+            }
+            y[i].d = GGML_FP32_TO_FP16(1/iscale);
+        } else {
+            for (int j = 0; j < QK_K/16; j+=2) {
+                y[i].scales[j/2] = 0;
+            }
+            y[i].d = GGML_FP32_TO_FP16(0.f);
+        }
+        for (int j = 0; j < QK_K/16; ++j) {
+            int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
+            float d = GGML_FP16_TO_FP32(y[i].d) * (s - 8);
+            if (!d) {
+                continue;
+            }
+            for (int ii = 0; ii < 16; ++ii) {
+                int l = nearest_int(x[16*j + ii]/d);
+                l = MAX(-4, MIN(3, l));
+                L[16*j + ii] = l + 4;
+            }
+        }
+#endif
+
+        memset(y[i].hmask, 0, QK_K/8);
+        // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
+        int m = 0;
+        uint8_t hm = 1;
+        for (int j = 0; j < QK_K; ++j) {
+            if (L[j] > 3) {
+                y[i].hmask[m] |= hm;
+                L[j] -= 4;
+            }
+            if (++m == QK_K/8) {
+                m = 0; hm <<= 1;
+            }
+        }
+#if QK_K == 256
+        for (int j = 0; j < QK_K; j += 128) {
+            for (int l = 0; l < 32; ++l) {
+                y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
+            }
+        }
+#else
+        for (int l = 0; l < 16; ++l) {
+            y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
+        }
+#endif
+
+        x += QK_K;
+    }
+}
+
+#if QK_K == 256
+void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
+    assert(k % QK_K == 0);
+    const int nb = k / QK_K;
+
+    const uint32_t kmask1 = 0x03030303;
+    const uint32_t kmask2 = 0x0f0f0f0f;
+
+    uint32_t aux[4];
+    const int8_t * scales = (const int8_t*)aux;
+
+    for (int i = 0; i < nb; i++) {
+
+        const float d_all = GGML_FP16_TO_FP32(x[i].d);
+
+        const uint8_t * restrict q = x[i].qs;
+        const uint8_t * restrict hm = x[i].hmask;
+        uint8_t m = 1;
+
+        memcpy(aux, x[i].scales, 12);
+        uint32_t tmp = aux[2];
+        aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
+        aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
+        aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
+        aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
+
+        int is = 0;
+        float dl;
+        for (int n = 0; n < QK_K; n += 128) {
+            int shift = 0;
+            for (int j = 0; j < 4; ++j) {
+
+                dl = d_all * (scales[is++] - 32);
+                for (int l = 0; l < 16; ++l) {
+                    *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
+                }
+
+                dl = d_all * (scales[is++] - 32);
+                for (int l = 0; l < 16; ++l) {
+                    *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
+                }
+
+                shift += 2;
+                m <<= 1;
+            }
+            q += 32;
+        }
+
+    }
+}
+#else
+void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
+    assert(k % QK_K == 0);
+    assert(QK_K == 64);
+    const int nb = k / QK_K;
+
+    for (int i = 0; i < nb; i++) {
+
+        const float d_all = GGML_FP16_TO_FP32(x[i].d);
+
+        const uint8_t * restrict q = x[i].qs;
+        const uint8_t * restrict hm = x[i].hmask;
+
+        const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
+        const float d2 = d_all * ((x[i].scales[0] >>  4) - 8);
+        const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
+        const float d4 = d_all * ((x[i].scales[1] >>  4) - 8);
+
+        for (int l=0; l<8; ++l) {
+            uint8_t h = hm[l];
+            y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
+            y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
+            y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
+            y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
+            y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
+            y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
+            y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
+            y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
+        }
+        y += QK_K;
+    }
+}
+#endif
+
+void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
+    quantize_row_q3_K_reference(x, vy, k);
+}
+
+size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
+    (void)hist; // TODO: collect histograms
+
+    for (int j = 0; j < n; j += k) {
+        block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
+        quantize_row_q3_K_reference(src + j, y, k);
+    }
+    return (n/QK_K*sizeof(block_q3_K));
+}
+
+// ====================== 4-bit (de)-quantization
+
+void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
+    assert(k % QK_K == 0);
+    const int nb = k / QK_K;
+
+    uint8_t L[QK_K];
+    uint8_t Laux[32];
+    float   weights[32];
+    float mins[QK_K/32];
+    float scales[QK_K/32];
+
+    for (int i = 0; i < nb; i++) {
+
+        float max_scale = 0; // as we are deducting the min, scales are always positive
+        float max_min = 0;
+        for (int j = 0; j < QK_K/32; ++j) {
+            //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
+            float sum_x2 = 0;
+            for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
+            float av_x = sqrtf(sum_x2/32);
+            for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
+            scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
+            float scale = scales[j];
+            if (scale > max_scale) {
+                max_scale = scale;
+            }
+            float min = mins[j];
+            if (min > max_min) {
+                max_min = min;
+            }
+        }
+
+#if QK_K == 256
+        float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
+        float inv_min   = max_min   > 0 ? 63.f/max_min   : 0.f;
+        for (int j = 0; j < QK_K/32; ++j) {
+            uint8_t ls = nearest_int(inv_scale*scales[j]);
+            uint8_t lm = nearest_int(inv_min*mins[j]);
+            ls = MIN(63, ls);
+            lm = MIN(63, lm);
+            if (j < 4) {
+                y[i].scales[j] = ls;
+                y[i].scales[j+4] = lm;
+            } else {
+                y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
+                y[i].scales[j-4] |= ((ls >> 4) << 6);
+                y[i].scales[j-0] |= ((lm >> 4) << 6);
+            }
+        }
+        y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
+        y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
+
+        uint8_t sc, m;
+        for (int j = 0; j < QK_K/32; ++j) {
+            get_scale_min_k4(j, y[i].scales, &sc, &m);
+            const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
+            if (!d) continue;
+            const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
+            for (int ii = 0; ii < 32; ++ii) {
+                int l = nearest_int((x[32*j + ii] + dm)/d);
+                l = MAX(0, MIN(15, l));
+                L[32*j + ii] = l;
+            }
+        }
+#else
+        const float s_factor = 15.f;
+        float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
+        float inv_min   = max_min   > 0 ? s_factor/max_min   : 0.f;
+        int d1 = nearest_int(inv_scale*scales[0]);
+        int m1 = nearest_int(inv_min*mins[0]);
+        int d2 = nearest_int(inv_scale*scales[1]);
+        int m2 = nearest_int(inv_min*mins[1]);
+        y[i].scales[0] = d1 | (m1 << 4);
+        y[i].scales[1] = d2 | (m2 << 4);
+        y[i].d[0] = GGML_FP32_TO_FP16(max_scale/s_factor);
+        y[i].d[1] = GGML_FP32_TO_FP16(max_min/s_factor);
+
+        float sumlx = 0;
+        int   suml2 = 0;
+        for (int j = 0; j < QK_K/32; ++j) {
+            const uint8_t sd = y[i].scales[j] & 0xF;
+            const uint8_t sm = y[i].scales[j] >>  4;
+            const float d = GGML_FP16_TO_FP32(y[i].d[0]) * sd;
+            if (!d) continue;
+            const float m = GGML_FP16_TO_FP32(y[i].d[1]) * sm;
+            for (int ii = 0; ii < 32; ++ii) {
+                int l = nearest_int((x[32*j + ii] + m)/d);
+                l = MAX(0, MIN(15, l));
+                L[32*j + ii] = l;
+                sumlx += (x[32*j + ii] + m)*l*sd;
+                suml2 += l*l*sd*sd;
+            }
+        }
+        if (suml2) {
+            y[i].d[0] = GGML_FP32_TO_FP16(sumlx/suml2);
+        }
+#endif
+        uint8_t * q = y[i].qs;
+        for (int j = 0; j < QK_K; j += 64) {
+            for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
+            q += 32;
+        }
+
+        x += QK_K;
+
+    }
+}
+
+void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
+    assert(k % QK_K == 0);
+    const int nb = k / QK_K;
+
+    for (int i = 0; i < nb; i++) {
+
+        const uint8_t * q = x[i].qs;
+
+#if QK_K == 256
+
+        const float d   = GGML_FP16_TO_FP32(x[i].d);
+        const float min = GGML_FP16_TO_FP32(x[i].dmin);
+
+        int is = 0;
+        uint8_t sc, m;
+        for (int j = 0; j < QK_K; j += 64) {
+            get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
+            const float d1 = d * sc; const float m1 = min * m;
+            get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
+            const float d2 = d * sc; const float m2 = min * m;
+            for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
+            for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l]  >> 4) - m2;
+            q += 32; is += 2;
+        }
+#else
+        const float dall = GGML_FP16_TO_FP32(x[i].d[0]);
+        const float mall = GGML_FP16_TO_FP32(x[i].d[1]);
+        const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
+        const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
+        for (int l = 0; l < 32; ++l) {
+            y[l+ 0] = d1 * (q[l] & 0xF) - m1;
+            y[l+32] = d2 * (q[l] >>  4) - m2;
+        }
+        y += QK_K;
+#endif
+
+    }
+}
+
+void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
+    assert(k % QK_K == 0);
+    block_q4_K * restrict y = vy;
+    quantize_row_q4_K_reference(x, y, k);
+}
+
+size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
+    assert(k % QK_K == 0);
+    (void)hist; // TODO: collect histograms
+
+    for (int j = 0; j < n; j += k) {
+        block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
+        quantize_row_q4_K_reference(src + j, y, k);
+    }
+    return (n/QK_K*sizeof(block_q4_K));
+}
+
+// ====================== 5-bit (de)-quantization
+
+void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
+    assert(k % QK_K == 0);
+    const int nb = k / QK_K;
+
+#if QK_K == 256
+    uint8_t L[QK_K];
+    float mins[QK_K/32];
+    float scales[QK_K/32];
+    float weights[32];
+    uint8_t Laux[32];
+#else
+    int8_t L[QK_K];
+    float scales[QK_K/16];
+#endif
+
+    for (int i = 0; i < nb; i++) {
+
+#if QK_K == 256
+
+        float max_scale = 0; // as we are deducting the min, scales are always positive
+        float max_min = 0;
+        for (int j = 0; j < QK_K/32; ++j) {
+            //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
+            float sum_x2 = 0;
+            for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
+            float av_x = sqrtf(sum_x2/32);
+            for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
+            scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
+            float scale = scales[j];
+            if (scale > max_scale) {
+                max_scale = scale;
+            }
+            float min = mins[j];
+            if (min > max_min) {
+                max_min = min;
+            }
+        }
+
+        float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
+        float inv_min   = max_min   > 0 ? 63.f/max_min   : 0.f;
+        for (int j = 0; j < QK_K/32; ++j) {
+            uint8_t ls = nearest_int(inv_scale*scales[j]);
+            uint8_t lm = nearest_int(inv_min*mins[j]);
+            ls = MIN(63, ls);
+            lm = MIN(63, lm);
+            if (j < 4) {
+                y[i].scales[j] = ls;
+                y[i].scales[j+4] = lm;
+            } else {
+                y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
+                y[i].scales[j-4] |= ((ls >> 4) << 6);
+                y[i].scales[j-0] |= ((lm >> 4) << 6);
+            }
+        }
+        y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
+        y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
+
+        uint8_t sc, m;
+        for (int j = 0; j < QK_K/32; ++j) {
+            get_scale_min_k4(j, y[i].scales, &sc, &m);
+            const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
+            if (!d) continue;
+            const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
+            for (int ii = 0; ii < 32; ++ii) {
+                int l = nearest_int((x[32*j + ii] + dm)/d);
+                l = MAX(0, MIN(31, l));
+                L[32*j + ii] = l;
+            }
+        }
+
+        uint8_t * restrict qh = y[i].qh;
+        uint8_t * restrict ql = y[i].qs;
+        memset(qh, 0, QK_K/8);
+
+        uint8_t m1 = 1, m2 = 2;
+        for (int n = 0; n < QK_K; n += 64) {
+            for (int j = 0; j < 32; ++j) {
+                int l1 = L[n + j];
+                if (l1 > 15) {
+                    l1 -= 16; qh[j] |= m1;
+                }
+                int l2 = L[n + j + 32];
+                if (l2 > 15) {
+                    l2 -= 16; qh[j] |= m2;
+                }
+                ql[j] = l1 | (l2 << 4);
+            }
+            m1 <<= 2; m2 <<= 2;
+            ql += 32;
+        }
+#else
+        float max_scale = 0, amax = 0;
+        for (int j = 0; j < QK_K/16; ++j) {
+            scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1);
+            float abs_scale = fabsf(scales[j]);
+            if (abs_scale > amax) {
+                amax = abs_scale;
+                max_scale = scales[j];
+            }
+        }
+
+        float iscale = -128.f/max_scale;
+        for (int j = 0; j < QK_K/16; ++j) {
+            int l = nearest_int(iscale*scales[j]);
+            y[i].scales[j] = MAX(-128, MIN(127, l));
+        }
+        y[i].d = GGML_FP32_TO_FP16(1/iscale);
+
+        for (int j = 0; j < QK_K/16; ++j) {
+            const float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
+            if (!d) continue;
+            for (int ii = 0; ii < 16; ++ii) {
+                int l = nearest_int(x[16*j + ii]/d);
+                l = MAX(-16, MIN(15, l));
+                L[16*j + ii] = l + 16;
+            }
+        }
+
+        uint8_t * restrict qh = y[i].qh;
+        uint8_t * restrict ql = y[i].qs;
+        memset(qh, 0, QK_K/8);
+
+        for (int j = 0; j < 32; ++j) {
+            int jm = j%8;
+            int is = j/8;
+            int l1 = L[j];
+            if (l1 > 15) {
+                l1 -= 16; qh[jm] |= (1 << is);
+            }
+            int l2 = L[j + 32];
+            if (l2 > 15) {
+                l2 -= 16; qh[jm] |= (1 << (4 + is));
+            }
+            ql[j] = l1 | (l2 << 4);
+        }
+#endif
+
+        x += QK_K;
+
+    }
+}
+
+void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
+    assert(k % QK_K == 0);
+    const int nb = k / QK_K;
+
+    for (int i = 0; i < nb; i++) {
+
+        const uint8_t * ql = x[i].qs;
+        const uint8_t * qh = x[i].qh;
+
+#if QK_K == 256
+
+        const float d = GGML_FP16_TO_FP32(x[i].d);
+        const float min = GGML_FP16_TO_FP32(x[i].dmin);
+
+        int is = 0;
+        uint8_t sc, m;
+        uint8_t u1 = 1, u2 = 2;
+        for (int j = 0; j < QK_K; j += 64) {
+            get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
+            const float d1 = d * sc; const float m1 = min * m;
+            get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
+            const float d2 = d * sc; const float m2 = min * m;
+            for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
+            for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l]  >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
+            ql += 32; is += 2;
+            u1 <<= 2; u2 <<= 2;
+        }
+#else
+        float d = GGML_FP16_TO_FP32(x[i].d);
+        const int8_t * restrict s = x[i].scales;
+        for (int l = 0; l < 8; ++l) {
+            y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
+            y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
+            y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
+            y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
+            y[l+32] = d * s[2] * ((ql[l+ 0] >>  4) - (qh[l] & 0x10 ? 0 : 16));
+            y[l+40] = d * s[2] * ((ql[l+ 8] >>  4) - (qh[l] & 0x20 ? 0 : 16));
+            y[l+48] = d * s[3] * ((ql[l+16] >>  4) - (qh[l] & 0x40 ? 0 : 16));
+            y[l+56] = d * s[3] * ((ql[l+24] >>  4) - (qh[l] & 0x80 ? 0 : 16));
+        }
+        y += QK_K;
+#endif
+    }
+}
+
+void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
+    assert(k % QK_K == 0);
+    block_q5_K * restrict y = vy;
+    quantize_row_q5_K_reference(x, y, k);
+}
+
+size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
+    assert(k % QK_K == 0);
+    (void)hist; // TODO: collect histograms
+
+    for (int j = 0; j < n; j += k) {
+        block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
+        quantize_row_q5_K_reference(src + j, y, k);
+    }
+    return (n/QK_K*sizeof(block_q5_K));
+}
+
+// ====================== 6-bit (de)-quantization
+
+void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
+    assert(k % QK_K == 0);
+    const int nb = k / QK_K;
+
+    int8_t L[QK_K];
+    float   scales[QK_K/16];
+
+    for (int i = 0; i < nb; i++) {
+
+        float max_scale = 0;
+        float max_abs_scale = 0;
+
+        for (int ib = 0; ib < QK_K/16; ++ib) {
+
+            const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1);
+            scales[ib] = scale;
+
+            const float abs_scale = fabsf(scale);
+            if (abs_scale > max_abs_scale) {
+                max_abs_scale = abs_scale;
+                max_scale = scale;
+            }
+
+        }
+
+        if (!max_abs_scale) {
+            memset(&y[i], 0, sizeof(block_q6_K));
+            y[i].d = GGML_FP32_TO_FP16(0.f);
+            x += QK_K;
+            continue;
+        }
+
+        float iscale = -128.f/max_scale;
+        y[i].d = GGML_FP32_TO_FP16(1/iscale);
+        for (int ib = 0; ib < QK_K/16; ++ib) {
+            y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
+        }
+
+        for (int j = 0; j < QK_K/16; ++j) {
+            float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
+            if (!d) {
+                continue;
+            }
+            for (int ii = 0; ii < 16; ++ii) {
+                int l = nearest_int(x[16*j + ii]/d);
+                l = MAX(-32, MIN(31, l));
+                L[16*j + ii] = l + 32;
+            }
+        }
+
+        uint8_t * restrict ql = y[i].ql;
+        uint8_t * restrict qh = y[i].qh;
+#if QK_K == 256
+        for (int j = 0; j < QK_K; j += 128) {
+            for (int l = 0; l < 32; ++l) {
+                const uint8_t q1 = L[j + l +  0] & 0xF;
+                const uint8_t q2 = L[j + l + 32] & 0xF;
+                const uint8_t q3 = L[j + l + 64] & 0xF;
+                const uint8_t q4 = L[j + l + 96] & 0xF;
+                ql[l+ 0] = q1 | (q3 << 4);
+                ql[l+32] = q2 | (q4 << 4);
+                qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
+            }
+            ql += 64;
+            qh += 32;
+        }
+#else
+        for (int l = 0; l < 32; ++l) {
+            const uint8_t q1 = L[l +  0] & 0xF;
+            const uint8_t q2 = L[l + 32] & 0xF;
+            ql[l] = q1 | (q2 << 4);
+        }
+        for (int l = 0; l < 16; ++l) {
+            qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
+        }
+#endif
+
+        x += QK_K;
+
+    }
+}
+
+void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
+    assert(k % QK_K == 0);
+    const int nb = k / QK_K;
+
+    for (int i = 0; i < nb; i++) {
+
+        const float d = GGML_FP16_TO_FP32(x[i].d);
+
+        const uint8_t * restrict ql = x[i].ql;
+        const uint8_t * restrict qh = x[i].qh;
+        const int8_t  * restrict sc = x[i].scales;
+
+#if QK_K == 256
+        for (int n = 0; n < QK_K; n += 128) {
+            for (int l = 0; l < 32; ++l) {
+                int is = l/16;
+                const int8_t q1 = (int8_t)((ql[l +  0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
+                const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
+                const int8_t q3 = (int8_t)((ql[l +  0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
+                const int8_t q4 = (int8_t)((ql[l + 32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
+                y[l +  0] = d * sc[is + 0] * q1;
+                y[l + 32] = d * sc[is + 2] * q2;
+                y[l + 64] = d * sc[is + 4] * q3;
+                y[l + 96] = d * sc[is + 6] * q4;
+            }
+            y  += 128;
+            ql += 64;
+            qh += 32;
+            sc += 8;
+        }
+#else
+        for (int l = 0; l < 16; ++l) {
+            const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
+            const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
+            const int8_t q3 = (int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
+            const int8_t q4 = (int8_t)((ql[l+16]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
+            y[l+ 0] = d * sc[0] * q1;
+            y[l+16] = d * sc[1] * q2;
+            y[l+32] = d * sc[2] * q3;
+            y[l+48] = d * sc[3] * q4;
+        }
+        y  += 64;
+#endif
+
+    }
+}
+
+void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
+    assert(k % QK_K == 0);
+    block_q6_K * restrict y = vy;
+    quantize_row_q6_K_reference(x, y, k);
+}
+
+size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
+    assert(k % QK_K == 0);
+    (void)hist; // TODO: collect histograms
+
+    for (int j = 0; j < n; j += k) {
+        block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
+        quantize_row_q6_K_reference(src + j, y, k);
+    }
+    return (n/QK_K*sizeof(block_q6_K));
+}
+
+//===================================== Q8_K ==============================================
+
+void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
+    assert(k % QK_K == 0);
+    const int nb = k / QK_K;
+
+    for (int i = 0; i < nb; i++) {
+
+        float max = 0;
+        float amax = 0;
+        for (int j = 0; j < QK_K; ++j) {
+            float ax = fabsf(x[j]);
+            if (ax > amax) {
+                amax = ax; max = x[j];
+            }
+        }
+        if (!amax) {
+            y[i].d = 0;
+            memset(y[i].qs, 0, QK_K);
+            x += QK_K;
+            continue;
+        }
+        const float iscale = -128.f/max;
+        for (int j = 0; j < QK_K; ++j) {
+            int v = nearest_int(iscale*x[j]);
+            y[i].qs[j] = MIN(127, v);
+        }
+        for (int j = 0; j < QK_K/16; ++j) {
+            int sum = 0;
+            for (int ii = 0; ii < 16; ++ii) {
+                sum += y[i].qs[j*16 + ii];
+            }
+            y[i].bsums[j] = sum;
+        }
+        y[i].d = 1/iscale;
+        x += QK_K;
+    }
+}
+
+void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
+    assert(k % QK_K == 0);
+    const int nb = k / QK_K;
+
+    for (int i = 0; i < nb; i++) {
+        for (int j = 0; j < QK_K; ++j) {
+            *y++ = x[i].d * x[i].qs[j];
+        }
+    }
+}
+
+void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
+    quantize_row_q8_K_reference(x, y, k);
+}
+
+//===================================== Dot ptoducts =================================
+
+//
+// Helper functions
+//
+#if __AVX__ || __AVX2__ || __AVX512F__
+
+// shuffles to pick the required scales in dot products
+static inline __m256i get_scale_shuffle_q3k(int i) {
+    static const uint8_t k_shuffle[128] = {
+         0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,     2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
+         4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,     6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
+         8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,    10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
+        12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,    14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
+    };
+    return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
+}
+static inline __m256i get_scale_shuffle_k4(int i) {
+    static const uint8_t k_shuffle[256] = {
+         0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
+         2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
+         4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
+         6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
+         8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
+        10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
+        12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
+        14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
+    };
+    return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
+}
+static inline __m128i get_scale_shuffle(int i) {
+    static const uint8_t k_shuffle[128] = {
+         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
+         2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
+         4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
+         6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
+         8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
+        10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
+        12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
+        14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
+    };
+    return _mm_loadu_si128((const __m128i*)k_shuffle + i);
+}
+#endif
+
+void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+    const int qk = QK8_0;
+    const int nb = n / qk;
+
+    assert(n % qk == 0);
+
+    const block_q4_0 * restrict x = vx;
+    const block_q8_0 * restrict y = vy;
+
+#if defined(__ARM_NEON)
+    float32x4_t sumv0 = vdupq_n_f32(0.0f);
+    float32x4_t sumv1 = vdupq_n_f32(0.0f);
+
+    assert(nb % 2 == 0); // TODO: handle odd nb
+
+    for (int i = 0; i < nb; i += 2) {
+        const block_q4_0 * restrict x0 = &x[i + 0];
+        const block_q4_0 * restrict x1 = &x[i + 1];
+        const block_q8_0 * restrict y0 = &y[i + 0];
+        const block_q8_0 * restrict y1 = &y[i + 1];
+
+        const uint8x16_t m4b = vdupq_n_u8(0x0F);
+        const int8x16_t  s8b = vdupq_n_s8(0x8);
+
+        const uint8x16_t v0_0 = vld1q_u8(x0->qs);
+        const uint8x16_t v0_1 = vld1q_u8(x1->qs);
+
+        // 4-bit -> 8-bit
+        const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
+        const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
+        const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
+        const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
+
+        // sub 8
+        const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
+        const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
+        const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
+        const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
+
+        // load y
+        const int8x16_t v1_0l = vld1q_s8(y0->qs);
+        const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
+        const int8x16_t v1_1l = vld1q_s8(y1->qs);
+        const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
+
+#if defined(__ARM_FEATURE_DOTPROD)
+        // dot product into int32x4_t
+        const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
+        const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
+
+        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
+        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
+#else
+        const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
+        const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
+        const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
+        const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
+
+        const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
+        const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
+        const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
+        const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
+
+        const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
+        const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
+        const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
+        const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
+
+        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
+        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
+#endif
+    }
+
+    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
+#elif defined(__AVX2__)
+    // Initialize accumulator with zeros
+    __m256 acc = _mm256_setzero_ps();
+
+    // Main loop
+    for (int i = 0; i < nb; ++i) {
+        /* Compute combined scale for the block */
+        const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
+
+        __m256i bx = bytes_from_nibbles_32(x[i].qs);
+
+        // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
+        const __m256i off = _mm256_set1_epi8( 8 );
+        bx = _mm256_sub_epi8( bx, off );
+
+        __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
+
+        const __m256 q = mul_sum_i8_pairs_float(bx, by);
+
+        /* Multiply q with scale and accumulate */
+        acc = _mm256_fmadd_ps( d, q, acc );
+    }
+
+    *s = hsum_float_8(acc);
+#elif defined(__AVX__)
+    // Initialize accumulator with zeros
+    __m256 acc = _mm256_setzero_ps();
+
+    // Main loop
+    for (int i = 0; i < nb; ++i) {
+        // Compute combined scale for the block
+        const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
+
+        const __m128i lowMask = _mm_set1_epi8(0xF);
+        const __m128i off = _mm_set1_epi8(8);
+
+        const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
+
+        __m128i bx = _mm_and_si128(lowMask, tmp);
+        __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
+        bx = _mm_sub_epi8(bx, off);
+        const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
+
+        bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
+        by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
+        bx = _mm_sub_epi8(bx, off);
+        const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
+
+        // Convert int32_t to float
+        __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
+
+        // Apply the scale, and accumulate
+        acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
+    }
+
+    *s = hsum_float_8(acc);
+#elif defined(__SSSE3__)
+    // set constants
+    const __m128i lowMask = _mm_set1_epi8(0xF);
+    const __m128i off = _mm_set1_epi8(8);
+
+    // Initialize accumulator with zeros
+    __m128 acc_0 = _mm_setzero_ps();
+    __m128 acc_1 = _mm_setzero_ps();
+    __m128 acc_2 = _mm_setzero_ps();
+    __m128 acc_3 = _mm_setzero_ps();
+
+    // First round without accumulation
+    {
+        _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
+        _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
+
+        // Compute combined scale for the block 0 and 1
+        const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
+
+        const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
+
+        __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
+        __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
+        bx_0 = _mm_sub_epi8(bx_0, off);
+        const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
+
+        __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
+        __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
+        bx_1 = _mm_sub_epi8(bx_1, off);
+        const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
+
+        _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
+        _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
+
+        // Compute combined scale for the block 2 and 3
+        const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
+
+        const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
+
+        __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
+        __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
+        bx_2 = _mm_sub_epi8(bx_2, off);
+        const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
+
+        __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
+        __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
+        bx_3 = _mm_sub_epi8(bx_3, off);
+        const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
+
+        // Convert int32_t to float
+        __m128 p0 = _mm_cvtepi32_ps(i32_0);
+        __m128 p1 = _mm_cvtepi32_ps(i32_1);
+        __m128 p2 = _mm_cvtepi32_ps(i32_2);
+        __m128 p3 = _mm_cvtepi32_ps(i32_3);
+
+        // Apply the scale
+        acc_0 = _mm_mul_ps( d_0_1, p0 );
+        acc_1 = _mm_mul_ps( d_0_1, p1 );
+        acc_2 = _mm_mul_ps( d_2_3, p2 );
+        acc_3 = _mm_mul_ps( d_2_3, p3 );
+    }
+
+    assert(nb % 2 == 0); // TODO: handle odd nb
+
+    // Main loop
+    for (int i = 2; i < nb; i+=2) {
+        _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
+        _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
+
+        // Compute combined scale for the block 0 and 1
+        const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
+
+        const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
+
+        __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
+        __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
+        bx_0 = _mm_sub_epi8(bx_0, off);
+        const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
+
+        __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
+        __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
+        bx_1 = _mm_sub_epi8(bx_1, off);
+        const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
+
+        _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
+        _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
+
+        // Compute combined scale for the block 2 and 3
+        const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
+
+        const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
+
+        __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
+        __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
+        bx_2 = _mm_sub_epi8(bx_2, off);
+        const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
+
+        __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
+        __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
+        bx_3 = _mm_sub_epi8(bx_3, off);
+        const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
+
+        // Convert int32_t to float
+        __m128 p0 = _mm_cvtepi32_ps(i32_0);
+        __m128 p1 = _mm_cvtepi32_ps(i32_1);
+        __m128 p2 = _mm_cvtepi32_ps(i32_2);
+        __m128 p3 = _mm_cvtepi32_ps(i32_3);
+
+        // Apply the scale
+        __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
+        __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
+        __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
+        __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
+
+        // Acummulate
+        acc_0 = _mm_add_ps(p0_d, acc_0);
+        acc_1 = _mm_add_ps(p1_d, acc_1);
+        acc_2 = _mm_add_ps(p2_d, acc_2);
+        acc_3 = _mm_add_ps(p3_d, acc_3);
+    }
+
+    *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
+#elif defined(__riscv_v_intrinsic)
+    float sumf = 0.0;
+
+    size_t vl = __riscv_vsetvl_e8m1(qk/2);
+
+    for (int i = 0; i < nb; i++) {
+        // load elements
+        vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
+
+        vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
+        vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
+
+        // mask and store lower part of x, and then upper part
+        vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
+        vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
+
+        vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
+        vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
+
+        // subtract offset
+        vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
+        vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
+
+        vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
+        vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
+
+        vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
+
+        vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
+        vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
+
+        int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
+
+        sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
+    }
+
+    *s = sumf;
+#else
+    // scalar
+    float sumf = 0.0;
+
+    for (int i = 0; i < nb; i++) {
+        int sumi = 0;
+
+        for (int j = 0; j < qk/2; ++j) {
+            const int v0 = (x[i].qs[j] & 0x0F) - 8;
+            const int v1 = (x[i].qs[j] >>   4) - 8;
+
+            sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
+        }
+
+        sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
+    }
+
+    *s = sumf;
+#endif
+}
+
+void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+    const int qk = QK8_1;
+    const int nb = n / qk;
+
+    assert(n % qk == 0);
+
+    const block_q4_1 * restrict x = vx;
+    const block_q8_1 * restrict y = vy;
+
+    // TODO: add WASM SIMD
+#if defined(__ARM_NEON)
+    float32x4_t sumv0 = vdupq_n_f32(0.0f);
+    float32x4_t sumv1 = vdupq_n_f32(0.0f);
+
+    float summs = 0;
+
+    assert(nb % 2 == 0); // TODO: handle odd nb
+
+    for (int i = 0; i < nb; i += 2) {
+        const block_q4_1 * restrict x0 = &x[i + 0];
+        const block_q4_1 * restrict x1 = &x[i + 1];
+        const block_q8_1 * restrict y0 = &y[i + 0];
+        const block_q8_1 * restrict y1 = &y[i + 1];
+
+        summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
+
+        const uint8x16_t m4b = vdupq_n_u8(0x0F);
+
+        const uint8x16_t v0_0 = vld1q_u8(x0->qs);
+        const uint8x16_t v0_1 = vld1q_u8(x1->qs);
+
+        // 4-bit -> 8-bit
+        const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
+        const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
+        const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
+        const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
+
+        // load y
+        const int8x16_t v1_0l = vld1q_s8(y0->qs);
+        const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
+        const int8x16_t v1_1l = vld1q_s8(y1->qs);
+        const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
+
+#if defined(__ARM_FEATURE_DOTPROD)
+        // dot product into int32x4_t
+        const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
+        const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
+
+        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
+        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
+#else
+        const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
+        const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
+        const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
+        const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
+
+        const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
+        const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
+        const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
+        const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
+
+        const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
+        const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
+        const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
+        const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
+
+        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
+        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
+#endif
+    }
+
+    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
+#elif defined(__AVX2__) || defined(__AVX__)
+    // Initialize accumulator with zeros
+    __m256 acc = _mm256_setzero_ps();
+
+    float summs = 0;
+
+    // Main loop
+    for (int i = 0; i < nb; ++i) {
+        const float d0 = GGML_FP16_TO_FP32(x[i].d);
+        const float d1 = y[i].d;
+
+        summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
+
+        const __m256 d0v = _mm256_set1_ps( d0 );
+        const __m256 d1v = _mm256_set1_ps( d1 );
+
+        // Compute combined scales
+        const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
+
+        // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
+        const __m256i bx = bytes_from_nibbles_32(x[i].qs);
+        const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
+
+        const __m256 xy = mul_sum_us8_pairs_float(bx, by);
+
+        // Accumulate d0*d1*x*y
+#if defined(__AVX2__)
+        acc = _mm256_fmadd_ps( d0d1, xy, acc );
+#else
+        acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
+#endif
+    }
+
+    *s = hsum_float_8(acc) + summs;
+#elif defined(__riscv_v_intrinsic)
+    float sumf = 0.0;
+
+    size_t vl = __riscv_vsetvl_e8m1(qk/2);
+
+    for (int i = 0; i < nb; i++) {
+        // load elements
+        vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
+
+        vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
+        vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
+
+        // mask and store lower part of x, and then upper part
+        vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
+        vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
+
+        vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
+        vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
+
+        vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
+        vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
+
+        vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
+
+        vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
+        vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
+
+        int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
+
+        sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
+    }
+
+    *s = sumf;
+#else
+    // scalar
+    float sumf = 0.0;
+
+    for (int i = 0; i < nb; i++) {
+        int sumi = 0;
+
+        for (int j = 0; j < qk/2; ++j) {
+            const int v0 = (x[i].qs[j] & 0x0F);
+            const int v1 = (x[i].qs[j] >>   4);
+
+            sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
+        }
+
+        sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
+    }
+
+    *s = sumf;
+#endif
+}
+
+void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+    const int qk = QK8_0;
+    const int nb = n / qk;
+
+    assert(n % qk == 0);
+    assert(qk == QK5_0);
+
+    const block_q5_0 * restrict x = vx;
+    const block_q8_0 * restrict y = vy;
+
+#if defined(__ARM_NEON)
+    float32x4_t sumv0 = vdupq_n_f32(0.0f);
+    float32x4_t sumv1 = vdupq_n_f32(0.0f);
+
+    uint32_t qh0;
+    uint32_t qh1;
+
+    uint64_t tmp0[4];
+    uint64_t tmp1[4];
+
+    assert(nb % 2 == 0); // TODO: handle odd nb
+
+    for (int i = 0; i < nb; i += 2) {
+        const block_q5_0 * restrict x0 = &x[i];
+        const block_q5_0 * restrict x1 = &x[i + 1];
+        const block_q8_0 * restrict y0 = &y[i];
+        const block_q8_0 * restrict y1 = &y[i + 1];
+
+        const uint8x16_t m4b = vdupq_n_u8(0x0F);
+
+        // extract the 5th bit via lookup table ((!b) << 4)
+        memcpy(&qh0, x0->qh, sizeof(qh0));
+        memcpy(&qh1, x1->qh, sizeof(qh1));
+
+        tmp0[0] = table_b2b_1[(qh0 >>  0) & 0xFF];
+        tmp0[1] = table_b2b_1[(qh0 >>  8) & 0xFF];
+        tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
+        tmp0[3] = table_b2b_1[(qh0 >> 24)       ];
+
+        tmp1[0] = table_b2b_1[(qh1 >>  0) & 0xFF];
+        tmp1[1] = table_b2b_1[(qh1 >>  8) & 0xFF];
+        tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
+        tmp1[3] = table_b2b_1[(qh1 >> 24)       ];
+
+        const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
+        const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
+        const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
+        const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
+
+        const uint8x16_t v0_0 = vld1q_u8(x0->qs);
+        const uint8x16_t v0_1 = vld1q_u8(x1->qs);
+
+        // 4-bit -> 8-bit
+        int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
+        int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
+        int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
+        int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
+
+        // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
+        const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
+        const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
+        const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
+        const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
+
+        // load y
+        const int8x16_t v1_0l = vld1q_s8(y0->qs);
+        const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
+        const int8x16_t v1_1l = vld1q_s8(y1->qs);
+        const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
+
+#if defined(__ARM_FEATURE_DOTPROD)
+        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
+                        vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
+                        vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
+        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
+                        vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
+                        vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
+#else
+        const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
+        const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
+        const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
+        const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
+
+        const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
+        const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
+        const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
+        const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
+
+        const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
+        const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
+        const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
+        const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
+
+        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
+        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
+#endif
+    }
+
+    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
+#elif defined(__wasm_simd128__)
+    v128_t sumv = wasm_f32x4_splat(0.0f);
+
+    uint32_t qh;
+    uint64_t tmp[4];
+
+    // TODO: check if unrolling this is better
+    for (int i = 0; i < nb; ++i) {
+        const block_q5_0 * restrict x0 = &x[i];
+        const block_q8_0 * restrict y0 = &y[i];
+
+        const v128_t m4b  = wasm_i8x16_splat(0x0F);
+
+        // extract the 5th bit
+        memcpy(&qh, x0->qh, sizeof(qh));
+
+        tmp[0] = table_b2b_1[(qh >>  0) & 0xFF];
+        tmp[1] = table_b2b_1[(qh >>  8) & 0xFF];
+        tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
+        tmp[3] = table_b2b_1[(qh >> 24)       ];
+
+        const v128_t qhl = wasm_v128_load(tmp + 0);
+        const v128_t qhh = wasm_v128_load(tmp + 2);
+
+        const v128_t v0 = wasm_v128_load(x0->qs);
+
+        // 4-bit -> 8-bit
+        const v128_t v0l = wasm_v128_and (v0, m4b);
+        const v128_t v0h = wasm_u8x16_shr(v0, 4);
+
+        // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
+        const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
+        const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
+
+        // load y
+        const v128_t v1l = wasm_v128_load(y0->qs);
+        const v128_t v1h = wasm_v128_load(y0->qs + 16);
+
+        // int8x16 -> int16x8
+        const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
+        const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
+        const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
+        const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
+
+        const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
+        const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
+        const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
+        const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
+
+        // dot product
+        sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
+                        wasm_i32x4_add(
+                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
+                                           wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
+                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
+                                           wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
+                    wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
+    }
+
+    *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
+         wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
+#elif defined(__AVX2__)
+    // Initialize accumulator with zeros
+    __m256 acc = _mm256_setzero_ps();
+
+    // Main loop
+    for (int i = 0; i < nb; i++) {
+        /* Compute combined scale for the block */
+        const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
+
+        __m256i bx = bytes_from_nibbles_32(x[i].qs);
+        __m256i bxhi = bytes_from_bits_32(x[i].qh);
+        bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
+        bx = _mm256_or_si256(bx, bxhi);
+
+        __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
+
+        const __m256 q = mul_sum_i8_pairs_float(bx, by);
+
+        /* Multiply q with scale and accumulate */
+        acc = _mm256_fmadd_ps(d, q, acc);
+    }
+
+    *s = hsum_float_8(acc);
+#elif defined(__AVX__)
+    // Initialize accumulator with zeros
+    __m256 acc = _mm256_setzero_ps();
+    __m128i mask = _mm_set1_epi8((char)0xF0);
+
+    // Main loop
+    for (int i = 0; i < nb; i++) {
+        /* Compute combined scale for the block */
+        const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
+
+        __m256i bx = bytes_from_nibbles_32(x[i].qs);
+        const __m256i bxhi = bytes_from_bits_32(x[i].qh);
+        __m128i bxhil = _mm256_castsi256_si128(bxhi);
+        __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
+        bxhil = _mm_andnot_si128(bxhil, mask);
+        bxhih = _mm_andnot_si128(bxhih, mask);
+        __m128i bxl = _mm256_castsi256_si128(bx);
+        __m128i bxh = _mm256_extractf128_si256(bx, 1);
+        bxl = _mm_or_si128(bxl, bxhil);
+        bxh = _mm_or_si128(bxh, bxhih);
+        bx = MM256_SET_M128I(bxh, bxl);
+
+        const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
+
+        const __m256 q = mul_sum_i8_pairs_float(bx, by);
+
+        /* Multiply q with scale and accumulate */
+        acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
+    }
+
+    *s = hsum_float_8(acc);
+#elif defined(__riscv_v_intrinsic)
+    float sumf = 0.0;
+
+    uint32_t qh;
+
+    size_t vl = __riscv_vsetvl_e8m1(qk/2);
+
+    // These temporary registers are for masking and shift operations
+    vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
+    vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
+
+    vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
+    vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
+
+    for (int i = 0; i < nb; i++) {
+        memcpy(&qh, x[i].qh, sizeof(uint32_t));
+
+        // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
+        vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
+        vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
+        vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
+
+        // ((qh & (1u << (j + 16))) >> (j + 12));
+        vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
+        vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
+
+        // narrowing
+        vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
+        vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
+
+        vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
+        vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
+
+        // load
+        vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
+
+        vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
+        vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
+
+        vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
+        vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
+
+        vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
+        vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
+
+        vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
+        vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
+
+        vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
+        vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
+
+        vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
+        vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
+
+        vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
+
+        vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
+        vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
+
+        int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
+
+        sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
+    }
+
+    *s = sumf;
+#else
+    // scalar
+    float sumf = 0.0;
+
+    for (int i = 0; i < nb; i++) {
+        uint32_t qh;
+        memcpy(&qh, x[i].qh, sizeof(qh));
+
+        int sumi = 0;
+
+        for (int j = 0; j < qk/2; ++j) {
+            const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
+            const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
+
+            const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
+            const int32_t x1 = ((x[i].qs[j] >>   4) | xh_1) - 16;
+
+            sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
+        }
+
+        sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
+    }
+
+    *s = sumf;
+#endif
+}
+
+void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+    const int qk = QK8_1;
+    const int nb = n / qk;
+
+    assert(n % qk == 0);
+    assert(qk == QK5_1);
+
+    const block_q5_1 * restrict x = vx;
+    const block_q8_1 * restrict y = vy;
+
+#if defined(__ARM_NEON)
+    float32x4_t sumv0 = vdupq_n_f32(0.0f);
+    float32x4_t sumv1 = vdupq_n_f32(0.0f);
+
+    float summs0 = 0.0f;
+    float summs1 = 0.0f;
+
+    uint32_t qh0;
+    uint32_t qh1;
+
+    uint64_t tmp0[4];
+    uint64_t tmp1[4];
+
+    assert(nb % 2 == 0); // TODO: handle odd nb
+
+    for (int i = 0; i < nb; i += 2) {
+        const block_q5_1 * restrict x0 = &x[i];
+        const block_q5_1 * restrict x1 = &x[i + 1];
+        const block_q8_1 * restrict y0 = &y[i];
+        const block_q8_1 * restrict y1 = &y[i + 1];
+
+        const uint8x16_t m4b = vdupq_n_u8(0x0F);
+
+        summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
+        summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
+
+        // extract the 5th bit via lookup table ((b) << 4)
+        memcpy(&qh0, x0->qh, sizeof(qh0));
+        memcpy(&qh1, x1->qh, sizeof(qh1));
+
+        tmp0[0] = table_b2b_0[(qh0 >>  0) & 0xFF];
+        tmp0[1] = table_b2b_0[(qh0 >>  8) & 0xFF];
+        tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
+        tmp0[3] = table_b2b_0[(qh0 >> 24)       ];
+
+        tmp1[0] = table_b2b_0[(qh1 >>  0) & 0xFF];
+        tmp1[1] = table_b2b_0[(qh1 >>  8) & 0xFF];
+        tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
+        tmp1[3] = table_b2b_0[(qh1 >> 24)       ];
+
+        const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
+        const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
+        const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
+        const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
+
+        const uint8x16_t v0_0 = vld1q_u8(x0->qs);
+        const uint8x16_t v0_1 = vld1q_u8(x1->qs);
+
+        // 4-bit -> 8-bit
+        const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
+        const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
+        const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
+        const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
+
+        // add high bit
+        const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
+        const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
+        const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
+        const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
+
+        // load y
+        const int8x16_t v1_0l = vld1q_s8(y0->qs);
+        const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
+        const int8x16_t v1_1l = vld1q_s8(y1->qs);
+        const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
+
+#if defined(__ARM_FEATURE_DOTPROD)
+        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
+                        vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
+                        vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
+        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
+                        vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
+                        vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
+#else
+        const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
+        const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
+        const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
+        const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
+
+        const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
+        const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
+        const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
+        const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
+
+        const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
+        const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
+        const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
+        const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
+
+        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
+        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
+#endif
+    }
+
+    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
+#elif defined(__wasm_simd128__)
+    v128_t sumv = wasm_f32x4_splat(0.0f);
+
+    float summs = 0.0f;
+
+    uint32_t qh;
+    uint64_t tmp[4];
+
+    // TODO: check if unrolling this is better
+    for (int i = 0; i < nb; ++i) {
+        const block_q5_1 * restrict x0 = &x[i];
+        const block_q8_1 * restrict y0 = &y[i];
+
+        summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
+
+        const v128_t m4b = wasm_i8x16_splat(0x0F);
+
+        // extract the 5th bit
+        memcpy(&qh, x0->qh, sizeof(qh));
+
+        tmp[0] = table_b2b_0[(qh >>  0) & 0xFF];
+        tmp[1] = table_b2b_0[(qh >>  8) & 0xFF];
+        tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
+        tmp[3] = table_b2b_0[(qh >> 24)       ];
+
+        const v128_t qhl = wasm_v128_load(tmp + 0);
+        const v128_t qhh = wasm_v128_load(tmp + 2);
+
+        const v128_t v0 = wasm_v128_load(x0->qs);
+
+        // 4-bit -> 8-bit
+        const v128_t v0l = wasm_v128_and (v0, m4b);
+        const v128_t v0h = wasm_u8x16_shr(v0, 4);
+
+        // add high bit
+        const v128_t v0lf = wasm_v128_or(v0l, qhl);
+        const v128_t v0hf = wasm_v128_or(v0h, qhh);
+
+        // load y
+        const v128_t v1l = wasm_v128_load(y0->qs);
+        const v128_t v1h = wasm_v128_load(y0->qs + 16);
+
+        // int8x16 -> int16x8
+        const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
+        const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
+        const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
+        const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
+
+        const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
+        const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
+        const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
+        const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
+
+        // dot product
+        sumv = wasm_f32x4_add(sumv,
+                wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
+                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
+                                           wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
+                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
+                                           wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
+                    wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
+    }
+
+    *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
+         wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
+#elif defined(__AVX2__)
+    // Initialize accumulator with zeros
+    __m256 acc = _mm256_setzero_ps();
+
+    float summs = 0.0f;
+
+    // Main loop
+    for (int i = 0; i < nb; i++) {
+        const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
+
+        summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
+
+        __m256i bx = bytes_from_nibbles_32(x[i].qs);
+        __m256i bxhi = bytes_from_bits_32(x[i].qh);
+        bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
+        bx = _mm256_or_si256(bx, bxhi);
+
+        const __m256 dy = _mm256_set1_ps(y[i].d);
+        const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
+
+        const __m256 q = mul_sum_us8_pairs_float(bx, by);
+
+        acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
+    }
+
+    *s = hsum_float_8(acc) + summs;
+#elif defined(__AVX__)
+    // Initialize accumulator with zeros
+    __m256 acc = _mm256_setzero_ps();
+    __m128i mask = _mm_set1_epi8(0x10);
+
+    float summs = 0.0f;
+
+    // Main loop
+    for (int i = 0; i < nb; i++) {
+        const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
+
+        summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
+
+        __m256i bx = bytes_from_nibbles_32(x[i].qs);
+        const __m256i bxhi = bytes_from_bits_32(x[i].qh);
+        __m128i bxhil = _mm256_castsi256_si128(bxhi);
+        __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
+        bxhil = _mm_and_si128(bxhil, mask);
+        bxhih = _mm_and_si128(bxhih, mask);
+        __m128i bxl = _mm256_castsi256_si128(bx);
+        __m128i bxh = _mm256_extractf128_si256(bx, 1);
+        bxl = _mm_or_si128(bxl, bxhil);
+        bxh = _mm_or_si128(bxh, bxhih);
+        bx = MM256_SET_M128I(bxh, bxl);
+
+        const __m256 dy = _mm256_set1_ps(y[i].d);
+        const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
+
+        const __m256 q = mul_sum_us8_pairs_float(bx, by);
+
+        acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
+    }
+
+    *s = hsum_float_8(acc) + summs;
+#elif defined(__riscv_v_intrinsic)
+    float sumf = 0.0;
+
+    uint32_t qh;
+
+    size_t vl = __riscv_vsetvl_e8m1(qk/2);
+
+    // temporary registers for shift operations
+    vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
+    vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
+
+    for (int i = 0; i < nb; i++) {
+        memcpy(&qh, x[i].qh, sizeof(uint32_t));
+
+        // load qh
+        vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
+
+        // ((qh >> (j +  0)) << 4) & 0x10;
+        vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
+        vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
+        vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
+
+        // ((qh >> (j + 12))     ) & 0x10;
+        vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
+        vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
+
+        // narrowing
+        vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
+        vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
+
+        vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
+        vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
+
+        // load
+        vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
+
+        vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
+        vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
+
+        vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
+        vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
+
+        vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
+        vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
+
+        vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
+        vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
+
+        vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
+        vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
+
+        vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
+
+        vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
+        vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
+
+        int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
+
+        sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
+    }
+
+    *s = sumf;
+#else
+    // scalar
+    float sumf = 0.0;
+
+    for (int i = 0; i < nb; i++) {
+        uint32_t qh;
+        memcpy(&qh, x[i].qh, sizeof(qh));
+
+        int sumi = 0;
+
+        for (int j = 0; j < qk/2; ++j) {
+            const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
+            const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;
+
+            const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
+            const int32_t x1 = (x[i].qs[j] >>  4) | xh_1;
+
+            sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
+        }
+
+        sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
+    }
+
+    *s = sumf;
+#endif
+}
+
+void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+    const int qk = QK8_0;
+    const int nb = n / qk;
+
+    assert(n % qk == 0);
+
+    const block_q8_0 * restrict x = vx;
+    const block_q8_0 * restrict y = vy;
+
+#if defined(__ARM_NEON)
+    float32x4_t sumv0 = vdupq_n_f32(0.0f);
+    float32x4_t sumv1 = vdupq_n_f32(0.0f);
+
+    assert(nb % 2 == 0); // TODO: handle odd nb
+
+    for (int i = 0; i < nb; i += 2) {
+        const block_q8_0 * restrict x0 = &x[i + 0];
+        const block_q8_0 * restrict x1 = &x[i + 1];
+        const block_q8_0 * restrict y0 = &y[i + 0];
+        const block_q8_0 * restrict y1 = &y[i + 1];
+
+        const int8x16_t x0_0 = vld1q_s8(x0->qs);
+        const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
+        const int8x16_t x1_0 = vld1q_s8(x1->qs);
+        const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
+
+        // load y
+        const int8x16_t y0_0 = vld1q_s8(y0->qs);
+        const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
+        const int8x16_t y1_0 = vld1q_s8(y1->qs);
+        const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
+
+#if defined(__ARM_FEATURE_DOTPROD)
+        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
+                        vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
+                        vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
+
+        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
+                        vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
+                        vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
+
+#else
+        const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
+        const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
+        const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
+        const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
+
+        const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
+        const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
+        const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
+        const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
+
+        const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
+        const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
+        const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
+        const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
+
+        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
+        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
+#endif
+    }
+
+    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
+#elif defined(__AVX2__) || defined(__AVX__)
+    // Initialize accumulator with zeros
+    __m256 acc = _mm256_setzero_ps();
+
+    // Main loop
+    for (int i = 0; i < nb; ++i) {
+        // Compute combined scale for the block
+        const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
+        __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
+        __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
+
+        const __m256 q = mul_sum_i8_pairs_float(bx, by);
+
+        // Multiply q with scale and accumulate
+#if defined(__AVX2__)
+        acc = _mm256_fmadd_ps( d, q, acc );
+#else
+        acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
+#endif
+    }
+
+    *s = hsum_float_8(acc);
+#elif defined(__riscv_v_intrinsic)
+    float sumf = 0.0;
+    size_t vl = __riscv_vsetvl_e8m1(qk);
+
+    for (int i = 0; i < nb; i++) {
+        // load elements
+        vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl);
+        vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl);
+
+        vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl);
+
+        vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
+        vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
+
+        int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
+
+        sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
+    }
+
+    *s = sumf;
+#else
+    // scalar
+    float sumf = 0.0;
+
+    for (int i = 0; i < nb; i++) {
+        int sumi = 0;
+
+        for (int j = 0; j < qk; j++) {
+            sumi += x[i].qs[j]*y[i].qs[j];
+        }
+
+        sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
+    }
+
+    *s = sumf;
+#endif
+}
+
+#if QK_K == 256
+void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+
+    const block_q2_K * restrict x = vx;
+    const block_q8_K * restrict y = vy;
+
+    const int nb = n / QK_K;
+
+#ifdef __ARM_NEON
+
+    const uint8x16_t m3 = vdupq_n_u8(0x3);
+    const uint8x16_t m4 = vdupq_n_u8(0xF);
+#if defined(__ARM_FEATURE_DOTPROD)
+    const int32x4_t  vzero = vdupq_n_s32(0);
+#endif
+
+    ggml_int8x16x2_t q2bytes;
+    uint8_t aux[16];
+
+    float sum = 0;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        const uint8_t * restrict q2 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+        const uint8_t * restrict sc = x[i].scales;
+
+        const uint8x16_t mins_and_scales = vld1q_u8(sc);
+        const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
+        vst1q_u8(aux, scales);
+
+        const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
+        const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
+        const ggml_int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
+        const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
+                                       vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
+        const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
+                                       vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
+        sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
+
+        int isum = 0;
+        int is = 0;
+
+// We use this macro instead of a function call because for some reason
+// the code runs 2-3% slower, even if the function is declared inline
+#if defined(__ARM_FEATURE_DOTPROD)
+#define MULTIPLY_ACCUM_WITH_SCALE(index)\
+        isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
+        isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
+#else
+#define MULTIPLY_ACCUM_WITH_SCALE(index)\
+        {\
+    const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
+                                   vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
+    const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
+                                   vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
+    isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
+        }
+#endif
+
+#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
+        q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
+        q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
+        q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
+        MULTIPLY_ACCUM_WITH_SCALE((index));
+
+
+        for (int j = 0; j < QK_K/128; ++j) {
+
+            const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
+
+            ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
+            q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
+            q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
+            MULTIPLY_ACCUM_WITH_SCALE(0);
+
+            SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
+
+            SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
+
+            SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
+
+            is += 8;
+        }
+        sum += d * isum;
+
+    }
+
+    *s = sum;
+
+#elif defined __AVX2__
+
+    const __m256i m3 = _mm256_set1_epi8(3);
+    const __m128i m4 = _mm_set1_epi8(0xF);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        const uint8_t * restrict q2 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
+        const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
+        const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
+        const __m256i mins = _mm256_cvtepi8_epi16(mins8);
+        const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
+
+        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
+
+        const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
+        const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
+        const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
+        const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
+
+        __m256i sumi = _mm256_setzero_si256();
+
+        for (int j = 0; j < QK_K/128; ++j) {
+
+            const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
+
+            const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+            const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+            const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+            const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+
+            const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
+            const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
+            const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
+            const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
+
+            __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
+            __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
+            __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
+            __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
+
+            p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
+            p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
+            p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
+            p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
+
+            p0 = _mm256_add_epi32(p0, p1);
+            p2 = _mm256_add_epi32(p2, p3);
+
+            sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
+        }
+
+        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
+
+    }
+
+    *s = hsum_float_8(acc);
+
+#elif defined __AVX__
+
+    const __m128i m3 = _mm_set1_epi8(0x3);
+    const __m128i m4 = _mm_set1_epi8(0xF);
+    const __m128i m2 = _mm_set1_epi8(0x2);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        const uint8_t * restrict q2 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        // load mins and scales from block_q2_K.scales[QK_K/16]
+        const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
+        const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
+        const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
+        const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
+        const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
+
+        // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
+        const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
+        const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
+
+        // sumf += -dmin * summs in 32bits*8
+        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
+
+        const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
+        const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
+        const __m128i scales[2] = { scales_0, scales_1 };
+
+        __m128i sumi_0 = _mm_setzero_si128();
+        __m128i sumi_1 = _mm_setzero_si128();
+
+        for (int j = 0; j < QK_K/128; ++j) {
+
+            // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
+            const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+
+            // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
+            __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
+            const __m128i q2_0 = _mm_and_si128(q2bits, m3);
+            const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
+            const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
+            const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
+            q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
+            const __m128i q2_1 = _mm_and_si128(q2bits, m3);
+            const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
+            const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
+            const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
+
+            // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
+            __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
+            __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
+            __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
+            __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
+            __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
+            __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
+            __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
+            __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
+
+            // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
+            __m128i shuffle = _mm_set1_epi16(0x0100);
+            p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
+
+            p0 = _mm_add_epi32(p0, p1);
+            p2 = _mm_add_epi32(p2, p3);
+            p4 = _mm_add_epi32(p4, p5);
+            p6 = _mm_add_epi32(p6, p7);
+
+            // isum in 32bits*4*2
+            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
+            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
+        }
+
+        // sumf += dall * isum - dmin * summs in 32bits
+        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
+        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
+    }
+
+    *s = hsum_float_8(acc);
+
+#elif defined __riscv_v_intrinsic
+
+    float sumf = 0;
+    uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                            1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
+
+    for (int i = 0; i < nb; ++i) {
+
+        const uint8_t * q2 = x[i].qs;
+        const  int8_t * q8 = y[i].qs;
+        const uint8_t * sc = x[i].scales;
+
+        const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        size_t vl = 16;
+
+        vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
+        vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
+
+        vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
+
+        vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
+        vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
+        vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
+        vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
+        vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
+
+        sumf  += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
+
+        vl = 32;
+
+        vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
+        vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
+
+        uint8_t is=0;
+        int isum=0;
+
+        for (int j = 0; j < QK_K/128; ++j) {
+            // load Q2
+            vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
+
+            vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
+            vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
+            vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
+            vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
+
+            // duplicate scale elements for product
+            vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
+            vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
+            vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
+            vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
+
+            vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
+            vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
+            vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
+            vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
+
+            // load Q8
+            vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
+            vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
+            vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
+            vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
+
+            vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
+            vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
+            vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
+            vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
+
+            vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
+            vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
+
+            isum += __riscv_vmv_x_s_i32m1_i32(isum1);
+
+            q2+=32;  q8+=128;  is=8;
+
+        }
+
+        sumf += dall * isum;
+
+    }
+
+    *s = sumf;
+
+#else
+
+    float sumf = 0;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const uint8_t * q2 = x[i].qs;
+        const  int8_t * q8 = y[i].qs;
+        const uint8_t * sc = x[i].scales;
+
+        int summs = 0;
+        for (int j = 0; j < 16; ++j) {
+            summs += y[i].bsums[j] * (sc[j] >> 4);
+        }
+
+        const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        int isum = 0;
+        int is = 0;
+        int d;
+        for (int k = 0; k < QK_K/128; ++k) {
+            int shift = 0;
+            for (int j = 0; j < 4; ++j) {
+                d = sc[is++] & 0xF;
+                int isuml = 0;
+                for (int l =  0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
+                isum += d * isuml;
+                d = sc[is++] & 0xF;
+                isuml = 0;
+                for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
+                isum += d * isuml;
+                shift += 2;
+                q8 += 32;
+            }
+            q2 += 32;
+        }
+        sumf += dall * isum - dmin * summs;
+    }
+    *s = sumf;
+#endif
+}
+
+#else
+
+void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+
+    const block_q2_K * restrict x = vx;
+    const block_q8_K * restrict y = vy;
+
+    const int nb = n / QK_K;
+
+#ifdef __ARM_NEON
+
+    const uint8x16_t m3 = vdupq_n_u8(0x3);
+#if defined(__ARM_FEATURE_DOTPROD)
+    const int32x4_t  vzero = vdupq_n_s32(0);
+#endif
+
+    ggml_int8x16x4_t q2bytes;
+
+    uint32_t aux32[2];
+    const uint8_t * scales = (const uint8_t *)aux32;
+
+    float sum = 0;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * (float)x[i].d;
+        const float dmin = -y[i].d * (float)x[i].dmin;
+
+        const uint8_t * restrict q2 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+        const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
+
+        aux32[0] = sc[0] & 0x0f0f0f0f;
+        aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
+
+        sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
+
+        int isum1 = 0, isum2 = 0;
+
+        const uint8x16_t q2bits = vld1q_u8(q2);
+
+        const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
+
+        q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
+        q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
+        q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
+        q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
+
+#if defined(__ARM_FEATURE_DOTPROD)
+        isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
+        isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
+        isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
+        isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
+#else
+        const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+                                       vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+        const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+                                       vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+        isum1 += vaddvq_s16(p1) * scales[0];
+        isum2 += vaddvq_s16(p2) * scales[1];
+
+        const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
+                                       vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2])));
+        const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
+                                       vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3])));
+        isum1 += vaddvq_s16(p3) * scales[2];
+        isum2 += vaddvq_s16(p4) * scales[3];
+#endif
+        sum += d * (isum1 + isum2);
+
+    }
+
+    *s = sum;
+
+#elif defined __AVX2__
+
+    const __m256i m3 = _mm256_set1_epi8(3);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    uint32_t ud, um;
+    const uint8_t * restrict db = (const uint8_t *)&ud;
+    const uint8_t * restrict mb = (const uint8_t *)&um;
+
+    float summs = 0;
+
+    // TODO: optimize this
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        const uint8_t * restrict q2 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
+        ud = (sc[0] >> 0) & 0x0f0f0f0f;
+        um = (sc[0] >> 4) & 0x0f0f0f0f;
+
+        int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
+        summs += dmin * smin;
+
+        const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
+        const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
+        const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
+
+        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
+        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
+
+        const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
+        const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
+
+        const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
+        const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
+        const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
+        const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
+
+        acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
+        acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
+        acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
+        acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
+    }
+
+    *s = hsum_float_8(acc) + summs;
+
+#elif defined __AVX__
+
+    const __m128i m3 = _mm_set1_epi8(3);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    uint32_t ud, um;
+    const uint8_t * restrict db = (const uint8_t *)&ud;
+    const uint8_t * restrict mb = (const uint8_t *)&um;
+
+    float summs = 0;
+
+    // TODO: optimize this
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        const uint8_t * restrict q2 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
+        ud = (sc[0] >> 0) & 0x0f0f0f0f;
+        um = (sc[0] >> 4) & 0x0f0f0f0f;
+
+        int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
+        summs += dmin * smin;
+
+        const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
+        const __m128i q2_0 = _mm_and_si128(q2bits, m3);
+        const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
+        const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
+        const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
+
+        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
+        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
+
+        const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
+        const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
+        const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
+        const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
+
+        const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
+        const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
+        const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
+        const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
+
+        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
+        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
+        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
+        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
+    }
+
+    *s = hsum_float_8(acc) + summs;
+
+#elif defined __riscv_v_intrinsic
+
+    uint32_t aux32[2];
+    const uint8_t * scales = (const uint8_t *)aux32;
+
+    float sumf = 0;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * (float)x[i].d;
+        const float dmin = -y[i].d * (float)x[i].dmin;
+
+        const uint8_t * restrict q2 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+        const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
+
+        aux32[0] = sc[0] & 0x0f0f0f0f;
+        aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
+
+        sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
+
+        int isum1 = 0;
+        int isum2 = 0;
+
+        size_t vl = 16;
+
+        vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
+
+        // load Q2
+        vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl);
+
+        vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl));
+        vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl));
+        vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl));
+        vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl));
+
+        // load Q8, and take product with Q2
+        vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
+        vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
+        vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
+        vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
+
+        vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl);
+        vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl);
+        vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl);
+        vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl);
+
+        isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0];
+        isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1];
+        isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2];
+        isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3];
+
+        sumf += d * (isum1 + isum2);
+
+    }
+
+    *s = sumf;
+
+#else
+
+    float sumf = 0;
+
+    int isum[4];
+
+    for (int i = 0; i < nb; ++i) {
+
+        const uint8_t * q2 = x[i].qs;
+        const  int8_t * q8 = y[i].qs;
+        const uint8_t * sc = x[i].scales;
+
+        int summs = 0;
+        for (int j = 0; j < QK_K/16; ++j) {
+            summs += y[i].bsums[j] * (sc[j] >> 4);
+        }
+
+        const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        isum[0] = isum[1] = isum[2] = isum[3] = 0;
+        for (int l =  0; l < 16; ++l) {
+            isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
+            isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
+            isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
+            isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
+        }
+        for (int l = 0; l < 4; ++l) {
+            isum[l] *= (sc[l] & 0xF);
+        }
+        sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
+    }
+    *s = sumf;
+#endif
+}
+#endif
+
+#if QK_K == 256
+void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+    assert(n % QK_K == 0);
+
+    const uint32_t kmask1 = 0x03030303;
+    const uint32_t kmask2 = 0x0f0f0f0f;
+
+    const block_q3_K * restrict x = vx;
+    const block_q8_K * restrict y = vy;
+
+    const int nb = n / QK_K;
+
+#ifdef __ARM_NEON
+
+    uint32_t aux[3];
+    uint32_t utmp[4];
+
+    const uint8x16_t m3b = vdupq_n_u8(0x3);
+#ifdef __ARM_FEATURE_DOTPROD
+    const int32x4_t  vzero = vdupq_n_s32(0);
+#endif
+
+    const uint8x16_t m0 = vdupq_n_u8(1);
+    const uint8x16_t m1 = vshlq_n_u8(m0, 1);
+    const uint8x16_t m2 = vshlq_n_u8(m0, 2);
+    const uint8x16_t m3 = vshlq_n_u8(m0, 3);
+    const int8_t m32 = 32;
+
+    ggml_int8x16x4_t q3bytes;
+
+    float sum = 0;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+
+        const uint8_t * restrict q3 = x[i].qs;
+        const uint8_t * restrict qh = x[i].hmask;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
+
+        ggml_uint8x16x4_t q3h;
+
+        int32_t isum = 0;
+
+        // Set up scales
+        memcpy(aux, x[i].scales, 12);
+        utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
+        utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
+        utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
+        utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
+
+        int8_t * scale = (int8_t *)utmp;
+        for (int j = 0; j < 16; ++j) scale[j] -= m32;
+
+        for (int j = 0; j < QK_K/128; ++j) {
+
+            const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
+            const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
+            const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
+
+            q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
+            q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
+            q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
+            q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
+
+            q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
+            q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
+            q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
+            q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
+
+#if defined(__ARM_FEATURE_DOTPROD)
+            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
+            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
+            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
+            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
+#else
+            int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
+                                     vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
+            int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
+                                     vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
+            int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
+                                     vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
+            int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
+                                     vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
+            isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
+#endif
+            scale += 4;
+
+            q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
+            q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
+            q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
+            q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
+
+            q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
+            q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
+            q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
+            q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
+
+#if defined(__ARM_FEATURE_DOTPROD)
+            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
+            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
+            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
+            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
+#else
+            p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
+                           vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
+            p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
+                           vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
+            p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
+                           vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
+            p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
+                           vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
+            isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
+#endif
+            scale += 4;
+
+            if (j == 0) {
+                qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
+                qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
+            }
+
+        }
+        sum += d * isum;
+
+    }
+
+    *s = sum;
+
+#elif defined __AVX2__
+
+    const __m256i m3 = _mm256_set1_epi8(3);
+    const __m256i mone = _mm256_set1_epi8(1);
+    const __m128i m32 = _mm_set1_epi8(32);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    uint32_t aux[3];
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+
+        const uint8_t * restrict q3 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        // Set up scales
+        memcpy(aux, x[i].scales, 12);
+        __m128i scales128 = _mm_set_epi32(
+                ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
+                ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
+                (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
+                (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
+        scales128 = _mm_sub_epi8(scales128, m32);
+        const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
+        const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
+        const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
+        const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
+
+        // high bit
+        const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
+
+        // integer accumulator
+        __m256i sumi = _mm256_setzero_si256();
+
+        int bit = 0;
+        int is  = 0;
+
+        for (int j = 0; j < QK_K/128; ++j) {
+            // load low 2 bits
+            const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
+
+            // prepare low and high bits
+            const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
+            const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
+            ++bit;
+
+            const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
+            const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
+            ++bit;
+
+            const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
+            const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
+            ++bit;
+
+            const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
+            const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
+            ++bit;
+
+            // load Q8 quants
+            const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+            const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+            const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+            const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+
+            // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
+            // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
+            // and 2 if the high bit was set)
+            __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
+            __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
+            __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
+            __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
+
+            __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
+            __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
+            __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
+            __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
+
+            p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
+            p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
+            p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
+            p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
+
+            // multiply with scales
+            p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
+            p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
+            p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
+            p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
+
+            // accumulate
+            p16_0 = _mm256_add_epi32(p16_0, p16_1);
+            p16_2 = _mm256_add_epi32(p16_2, p16_3);
+            sumi  = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
+
+        }
+
+        // multiply with block scale and accumulate
+        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
+
+    }
+
+    *s = hsum_float_8(acc);
+
+#elif defined __AVX__
+
+    const __m128i m3 = _mm_set1_epi8(3);
+    const __m128i mone = _mm_set1_epi8(1);
+    const __m128i m32 = _mm_set1_epi8(32);
+    const __m128i m2 = _mm_set1_epi8(2);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    const uint32_t *aux;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+
+        const uint8_t * restrict q3 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        // Set up scales
+        aux = (const uint32_t *)x[i].scales;
+        __m128i scales128 = _mm_set_epi32(
+                ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
+                ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
+                (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
+                (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
+        scales128 = _mm_sub_epi8(scales128, m32);
+        const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
+        const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
+        const __m128i scales[2] = { scales_0, scales_1 };
+
+        // high bit *128*2 from block_q3_K.hmask[QK_K/8]
+        const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
+        const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
+
+        // integer accumulator
+        __m128i sumi_0 = _mm_setzero_si128();
+        __m128i sumi_1 = _mm_setzero_si128();
+
+        for (int j = 0; j < QK_K/128; ++j) {
+            // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
+            const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
+            const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
+
+            // prepare low and high bits
+            const int bit = j << 2;
+
+            const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
+            const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
+            const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
+            const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
+
+            const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
+            const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
+            const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
+            const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
+
+            const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
+            const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
+            const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
+            const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
+
+            const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
+            const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
+            const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
+            const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
+
+            // load Q8 quants from block_q8_K.qs[QK_K]
+            const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+
+            // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
+            // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
+            // and 2 if the high bit was set)
+            __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
+            __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
+            __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
+            __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
+            __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
+            __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
+            __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
+            __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
+
+            __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
+            __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
+            __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
+            __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
+            __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
+            __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
+            __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
+            __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
+
+            p16_0 = _mm_sub_epi16(p16_0, q8s_0);
+            p16_1 = _mm_sub_epi16(p16_1, q8s_1);
+            p16_2 = _mm_sub_epi16(p16_2, q8s_2);
+            p16_3 = _mm_sub_epi16(p16_3, q8s_3);
+            p16_4 = _mm_sub_epi16(p16_4, q8s_4);
+            p16_5 = _mm_sub_epi16(p16_5, q8s_5);
+            p16_6 = _mm_sub_epi16(p16_6, q8s_6);
+            p16_7 = _mm_sub_epi16(p16_7, q8s_7);
+
+            // multiply with scales
+            __m128i shuffle = _mm_set1_epi16(0x0100);
+            p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
+
+            // accumulate
+            p16_0 = _mm_add_epi32(p16_0, p16_1);
+            p16_2 = _mm_add_epi32(p16_2, p16_3);
+            p16_4 = _mm_add_epi32(p16_4, p16_5);
+            p16_6 = _mm_add_epi32(p16_6, p16_7);
+            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
+            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
+
+        }
+
+        // multiply with block scale and accumulate
+        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
+        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
+
+    }
+
+    *s = hsum_float_8(acc);
+
+#elif defined __riscv_v_intrinsic
+
+    uint32_t aux[3];
+    uint32_t utmp[4];
+
+    float sumf = 0;
+    for (int i = 0; i < nb; ++i) {
+
+        const uint8_t * restrict q3 = x[i].qs;
+        const uint8_t * restrict qh = x[i].hmask;
+        const  int8_t * restrict q8 = y[i].qs;
+
+        memcpy(aux, x[i].scales, 12);
+        utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
+        utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
+        utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
+        utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
+
+        int8_t * scale = (int8_t *)utmp;
+        for (int j = 0; j < 16; ++j) scale[j] -= 32;
+
+
+        size_t vl = 32;
+        uint8_t m =  1;
+
+        vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
+        vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
+
+        int sum_t = 0;
+
+        for (int j = 0; j < QK_K; j += 128) {
+
+            vl = 32;
+
+            // load Q3
+            vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
+
+            vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
+            vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
+            vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
+            vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
+
+            // compute mask for subtraction
+            vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
+            vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
+            vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
+            m <<= 1;
+
+            vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
+            vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
+            vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
+            m <<= 1;
+
+            vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
+            vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
+            vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
+            m <<= 1;
+
+            vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
+            vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
+            vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
+            m <<= 1;
+
+            // load Q8 and take product with Q3
+            vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
+            vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
+            vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
+            vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
+
+            vl = 16;
+
+            // retrieve lane to multiply with scale
+            vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
+            vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
+            vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
+            vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
+            vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
+            vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
+            vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
+            vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
+
+            vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
+            vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
+            vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
+            vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
+
+            sum_t +=  __riscv_vmv_x_s_i32m1_i32(isum3);
+
+            q3 += 32;    q8 += 128;   scale += 8;
+
+        }
+
+        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
+
+        sumf += d*sum_t;
+
+    }
+
+    *s = sumf;
+
+#else
+    // scalar version
+    // This function is written like this so the compiler can manage to vectorize most of it
+    // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
+    // manually vectorized version above. Every other version I tried would run at least 4 times slower.
+    // The ideal situation would be if we could just write the code once, and the compiler would
+    // automatically produce the best possible set of machine instructions, instead of us having to manually
+    // write vectorized versions for AVX, ARM_NEON, etc.
+
+    int8_t  aux8[QK_K];
+    int16_t aux16[8];
+    float   sums [8];
+    int32_t aux32[8];
+    memset(sums, 0, 8*sizeof(float));
+
+    uint32_t auxs[4];
+    const int8_t * scales = (const int8_t*)auxs;
+
+    float sumf = 0;
+    for (int i = 0; i < nb; ++i) {
+        const uint8_t * restrict q3 = x[i].qs;
+        const uint8_t * restrict hm = x[i].hmask;
+        const  int8_t * restrict q8 = y[i].qs;
+        memset(aux32, 0, 8*sizeof(int32_t));
+        int8_t * restrict a = aux8;
+        uint8_t m = 1;
+        for (int j = 0; j < QK_K; j += 128) {
+            for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
+            for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
+            a += 32; m <<= 1;
+            for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
+            for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
+            a += 32; m <<= 1;
+            for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
+            for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
+            a += 32; m <<= 1;
+            for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
+            for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
+            a += 32; m <<= 1;
+            q3 += 32;
+        }
+        a = aux8;
+
+        memcpy(auxs, x[i].scales, 12);
+        uint32_t tmp = auxs[2];
+        auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
+        auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
+        auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
+        auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
+        for (int j = 0; j < QK_K/16; ++j) {
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
+            q8 += 8; a += 8;
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
+            q8 += 8; a += 8;
+        }
+        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
+        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
+    }
+    for (int l = 0; l < 8; ++l) sumf += sums[l];
+    *s = sumf;
+
+#endif
+
+}
+
+#else
+
+void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+    assert(n % QK_K == 0);
+
+    const block_q3_K * restrict x = vx;
+    const block_q8_K * restrict y = vy;
+
+    const int nb = n / QK_K;
+
+#ifdef __ARM_NEON
+
+#ifdef __ARM_FEATURE_DOTPROD
+    const int32x4_t  vzero = vdupq_n_s32(0);
+#endif
+
+    const uint8x16_t m3b = vdupq_n_u8(0x3);
+    const uint8x16_t mh  = vdupq_n_u8(4);
+
+    ggml_int8x16x4_t q3bytes;
+
+    uint16_t aux16[2];
+    int8_t * scales = (int8_t *)aux16;
+
+    float sum = 0;
+
+    for (int i = 0; i < nb; ++i) {
+
+        ggml_uint8x16x4_t q3h;
+
+        const uint8x8_t  hbits    = vld1_u8(x[i].hmask);
+        const uint8x16_t q3bits   = vld1q_u8(x[i].qs);
+        const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs);
+
+        const uint16_t a = *(const uint16_t *)x[i].scales;
+        aux16[0] = a & 0x0f0f;
+        aux16[1] = (a >> 4) & 0x0f0f;
+
+        for (int j = 0; j < 4; ++j) scales[j] -= 8;
+
+        int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
+
+        const float d = y[i].d * (float)x[i].d;
+
+        const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
+        q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
+        q3h.val[1] = vandq_u8(mh, htmp);
+        q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
+        q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
+
+        q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b),                q3h.val[0]));
+        q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
+        q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
+        q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6),                q3h.val[3]));
+
+#if defined(__ARM_FEATURE_DOTPROD)
+        isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
+        isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
+        isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
+        isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
+#else
+        const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+                                       vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+        const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+                                       vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+        const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
+                                       vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2])));
+        const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
+                                       vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3])));
+        isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3];
+#endif
+
+        sum += d * isum;
+
+    }
+
+    *s = sum;
+
+#elif defined __AVX2__
+
+    const __m256i m3 = _mm256_set1_epi8(3);
+    const __m256i m1 = _mm256_set1_epi8(1);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    uint64_t aux64;
+
+    uint16_t aux16[2];
+    const int8_t * aux8 = (const int8_t *)aux16;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+
+        const uint8_t * restrict q3 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const uint16_t a = *(const uint16_t *)x[i].scales;
+        aux16[0] = a & 0x0f0f;
+        aux16[1] = (a >> 4) & 0x0f0f;
+
+        const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
+        const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
+
+        memcpy(&aux64, x[i].hmask, 8);
+
+        const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
+        __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
+        __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
+        q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
+        q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
+
+        // load low 2 bits
+        const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
+
+        // prepare low and high bits
+        const __m256i q3aux  = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
+        const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
+        const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
+
+        // load Q8 quants
+        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
+        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
+
+        // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
+        // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
+        // and 2 if the high bit was set)
+        const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
+        const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
+
+        __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
+        __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
+
+        p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
+        p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
+
+        // multiply with scales
+        p16_0 = _mm256_madd_epi16(scale_0, p16_0);
+        p16_1 = _mm256_madd_epi16(scale_1, p16_1);
+
+        p16_0 = _mm256_add_epi32(p16_0, p16_1);
+
+        // multiply with block scale and accumulate
+        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
+
+    }
+
+    *s = hsum_float_8(acc);
+
+#elif defined __AVX__
+
+    const __m128i m3 = _mm_set1_epi8(3);
+    const __m128i m1 = _mm_set1_epi8(1);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    uint64_t aux64;
+
+    uint16_t aux16[2];
+    const int8_t * aux8 = (const int8_t *)aux16;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+
+        const uint8_t * restrict q3 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const uint16_t a = *(const uint16_t *)x[i].scales;
+        aux16[0] = a & 0x0f0f;
+        aux16[1] = (a >> 4) & 0x0f0f;
+
+        const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
+        const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
+        const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
+        const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
+
+        memcpy(&aux64, x[i].hmask, 8);
+
+        __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
+        __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
+        __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
+        __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
+        q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
+        q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
+        q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
+        q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
+
+        // load low 2 bits
+        const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
+
+        // prepare low and high bits
+        const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
+        const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
+        const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
+        const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
+
+        // load Q8 quants
+        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
+        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
+
+        // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
+        // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
+        // and 2 if the high bit was set)
+        const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
+        const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
+        const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
+        const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
+
+        __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
+        __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
+        __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
+        __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
+
+        p16_0 = _mm_sub_epi16(p16_0, q8s_0);
+        p16_1 = _mm_sub_epi16(p16_1, q8s_1);
+        p16_2 = _mm_sub_epi16(p16_2, q8s_2);
+        p16_3 = _mm_sub_epi16(p16_3, q8s_3);
+
+        // multiply with scales
+        p16_0 = _mm_madd_epi16(scale_0, p16_0);
+        p16_1 = _mm_madd_epi16(scale_1, p16_1);
+        p16_2 = _mm_madd_epi16(scale_2, p16_2);
+        p16_3 = _mm_madd_epi16(scale_3, p16_3);
+
+        p16_0 = _mm_add_epi32(p16_0, p16_2);
+        p16_1 = _mm_add_epi32(p16_1, p16_3);
+        __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
+
+        // multiply with block scale and accumulate
+        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
+
+    }
+
+    *s = hsum_float_8(acc);
+
+#elif defined __riscv_v_intrinsic
+
+    uint16_t aux16[2];
+    int8_t * scales = (int8_t *)aux16;
+
+    float sumf = 0;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const uint8_t * restrict q3 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const uint16_t a = *(const uint16_t *)x[i].scales;
+        aux16[0] = a & 0x0f0f;
+        aux16[1] = (a >> 4) & 0x0f0f;
+
+        for (int j = 0; j < 4; ++j) scales[j] -= 8;
+
+        int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
+
+        const float d = y[i].d * (float)x[i].d;
+
+        vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
+
+        // load qh
+        vuint8mf4_t qh_x1   = __riscv_vle8_v_u8mf4(x[i].hmask, 8);
+        vuint8mf2_t qh_x2   = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
+
+        size_t vl = 16;
+
+        // extend and combine both qh_x1 and qh_x2
+        vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
+
+        vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
+        vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl);
+        vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
+        vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl);
+
+        // load Q3
+        vuint8mf2_t q3_x  = __riscv_vle8_v_u8mf2(q3, vl);
+
+        vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl);
+        vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl);
+        vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl);
+        vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl);
+
+        vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0);
+        vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1);
+        vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2);
+        vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3);
+
+        // load Q8 and take product with Q3
+        vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
+        vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
+        vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
+        vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
+
+        vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
+        vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
+        vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
+        vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
+
+        isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0];
+        isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2];
+        isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1];
+        isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3];
+
+        sumf += d * isum;
+
+    }
+
+    *s = sumf;
+
+#else
+
+    int8_t  aux8[QK_K];
+    int16_t aux16[8];
+    float   sums [8];
+    int32_t aux32[8];
+    int32_t scales[4];
+    memset(sums, 0, 8*sizeof(float));
+
+    float sumf = 0;
+    for (int i = 0; i < nb; ++i) {
+        const uint8_t * restrict q3 = x[i].qs;
+        const uint8_t * restrict hm = x[i].hmask;
+        const  int8_t * restrict q8 = y[i].qs;
+        int8_t * restrict a = aux8;
+        for (int l = 0; l < 8; ++l) {
+            a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
+            a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
+            a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
+            a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
+            a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
+            a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
+            a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
+            a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
+        }
+
+        scales[0] = (x[i].scales[0] & 0xF) - 8;
+        scales[1] = (x[i].scales[0] >>  4) - 8;
+        scales[2] = (x[i].scales[1] & 0xF) - 8;
+        scales[3] = (x[i].scales[1] >>  4) - 8;
+
+        memset(aux32, 0, 8*sizeof(int32_t));
+        for (int j = 0; j < QK_K/16; ++j) {
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            q8 += 8; a += 8;
+            for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
+            q8 += 8; a += 8;
+            for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
+        }
+        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
+        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
+    }
+    for (int l = 0; l < 8; ++l) sumf += sums[l];
+    *s = sumf;
+
+#endif
+
+}
+#endif
+
+#if QK_K == 256
+void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+    assert(n % QK_K == 0);
+
+    const block_q4_K * restrict x = vx;
+    const block_q8_K * restrict y = vy;
+
+    const int nb = n / QK_K;
+
+    static const uint32_t kmask1 = 0x3f3f3f3f;
+    static const uint32_t kmask2 = 0x0f0f0f0f;
+    static const uint32_t kmask3 = 0x03030303;
+
+    uint32_t utmp[4];
+
+#ifdef __ARM_NEON
+
+    const uint8x16_t m4b = vdupq_n_u8(0xf);
+#ifdef __ARM_FEATURE_DOTPROD
+    const int32x4_t mzero = vdupq_n_s32(0);
+#endif
+
+    ggml_int8x16x2_t q4bytes;
+    ggml_int8x16x2_t q8bytes;
+
+    float sumf = 0;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
+
+        memcpy(utmp, x[i].scales, 12);
+
+        uint32x2_t mins8 = { 0 };
+        mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
+        mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
+
+        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+        utmp[0] &= kmask1;
+
+        const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
+        const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
+                                         vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
+        sumf -= dmin * vaddvq_s32(prod);
+
+        const uint8_t * scales = (const uint8_t *)utmp;
+
+        const uint8_t * restrict q4 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        int32_t sumi1 = 0;
+        int32_t sumi2 = 0;
+
+        for (int j = 0; j < QK_K/64; ++j) {
+
+            const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
+
+#ifdef __ARM_FEATURE_DOTPROD
+            q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
+            q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[0], m4b));
+            q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[1], m4b));
+
+            const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
+            sumi1 += vaddvq_s32(p1) * scales[2*j+0];
+
+            q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
+            q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
+            q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
+
+            const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
+
+            sumi2 += vaddvq_s32(p2) * scales[2*j+1];
+#else
+            q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
+            q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[0], m4b));
+            q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[1], m4b));
+            const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+                                           vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+            const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+                                           vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+            sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
+
+            q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
+            q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
+            q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
+            const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+                                           vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+            const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+                                           vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+            sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
+
+#endif
+        }
+
+        sumf += d * (sumi1 + sumi2);
+
+    }
+
+    *s = sumf;
+
+#elif defined __AVX2__
+
+    const __m256i m4 = _mm256_set1_epi8(0xF);
+
+    __m256 acc = _mm256_setzero_ps();
+    __m128 acc_m = _mm_setzero_ps();
+
+   for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        memcpy(utmp, x[i].scales, 12);
+        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+        const uint32_t uaux = utmp[1] & kmask1;
+        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+        utmp[2] = uaux;
+        utmp[0] &= kmask1;
+
+        const uint8_t * restrict q4 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
+
+        const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
+        const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
+        const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
+        acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
+
+        const __m128i sc128  = _mm256_extracti128_si256(mins_and_scales, 0);
+        const __m256i scales = MM256_SET_M128I(sc128, sc128);
+
+        __m256i sumi = _mm256_setzero_si256();
+
+        for (int j = 0; j < QK_K/64; ++j) {
+
+            const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
+            const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
+
+            const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
+            const __m256i q4l = _mm256_and_si256(q4bits, m4);
+            const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
+
+            const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+            __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
+            p16l = _mm256_madd_epi16(scale_l, p16l);
+
+            const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+            __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
+            p16h = _mm256_madd_epi16(scale_h, p16h);
+            const __m256i sumj = _mm256_add_epi32(p16l, p16h);
+
+            sumi = _mm256_add_epi32(sumi, sumj);
+        }
+
+        __m256 vd = _mm256_set1_ps(d);
+        acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
+
+    }
+
+    acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
+    acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
+
+    *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
+
+#elif defined __AVX__
+
+    const __m128i m4 = _mm_set1_epi8(0xF);
+    const __m128i m2 = _mm_set1_epi8(0x2);
+
+    __m256 acc = _mm256_setzero_ps();
+    __m128 acc_m = _mm_setzero_ps();
+
+   for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        const uint8_t * restrict q4 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        memcpy(utmp, x[i].scales, 12);
+        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+        const uint32_t uaux = utmp[1] & kmask1;
+        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+        utmp[2] = uaux;
+        utmp[0] &= kmask1;
+
+        const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
+        const __m128i scales = _mm_cvtepu8_epi16(utmps);
+        const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
+
+        const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
+        const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
+        const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
+        const __m128i prod = _mm_madd_epi16(mins, q8s);
+        acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
+
+        __m128i sumi_0 = _mm_setzero_si128();
+        __m128i sumi_1 = _mm_setzero_si128();
+
+        __m128i shuffle = _mm_set1_epi16(0x0100);
+        for (int j = 0; j < QK_K/64; ++j) {
+
+            const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
+            shuffle = _mm_add_epi16(shuffle, m2);
+
+            __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
+            const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
+            const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
+            q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
+            const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
+            const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
+
+            const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
+            p16l = _mm_madd_epi16(scale_l, p16l);
+            sumi_0 = _mm_add_epi32(sumi_0, p16l);
+            const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
+            p16l = _mm_madd_epi16(scale_l, p16l);
+            sumi_1 = _mm_add_epi32(sumi_1, p16l);
+
+            const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
+            p16h = _mm_madd_epi16(scale_h, p16h);
+            sumi_0 = _mm_add_epi32(sumi_0, p16h);
+            const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
+            p16h = _mm_madd_epi16(scale_h, p16h);
+            sumi_1 = _mm_add_epi32(sumi_1, p16h);
+
+        }
+
+        __m256 vd = _mm256_set1_ps(d);
+        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
+        acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
+
+    }
+
+    acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
+    acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
+
+    *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
+
+#elif defined __riscv_v_intrinsic
+
+    const uint8_t * scales = (const uint8_t*)&utmp[0];
+    const uint8_t * mins   = (const uint8_t*)&utmp[2];
+
+    float sumf = 0;
+
+    for (int i = 0; i < nb; ++i) {
+
+        size_t vl = 8;
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
+        vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
+        vint16mf2_t q8sums   = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
+
+        memcpy(utmp, x[i].scales, 12);
+        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+        const uint32_t uaux = utmp[1] & kmask1;
+        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+        utmp[2] = uaux;
+        utmp[0] &= kmask1;
+
+        vuint8mf4_t mins8  = __riscv_vle8_v_u8mf4(mins, vl);
+        vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
+        vint32m1_t  prod   = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
+
+        vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
+        sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
+
+        const uint8_t * restrict q4 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        vl = 32;
+
+        int32_t sum_1 = 0;
+        int32_t sum_2 = 0;
+
+        vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
+
+        for (int j = 0; j < QK_K/64; ++j) {
+            // load Q4
+            vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
+
+            // load Q8 and multiply it with lower Q4 nibble
+            vint8m1_t  q8_0 = __riscv_vle8_v_i8m1(q8, vl);
+            vint8m1_t  q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
+            vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
+            vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
+
+            sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
+
+            // load Q8 and multiply it with upper Q4 nibble
+            vint8m1_t  q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
+            vint8m1_t  q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
+            vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
+            vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
+
+            sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
+
+            q4 += 32;    q8 += 64;
+
+        }
+
+        sumf += d*(sum_1 + sum_2);
+
+    }
+
+    *s = sumf;
+
+#else
+
+
+    const uint8_t * scales = (const uint8_t*)&utmp[0];
+    const uint8_t * mins   = (const uint8_t*)&utmp[2];
+
+    int8_t  aux8[QK_K];
+    int16_t aux16[8];
+    float   sums [8];
+    int32_t aux32[8];
+    memset(sums, 0, 8*sizeof(float));
+
+    float sumf = 0;
+    for (int i = 0; i < nb; ++i) {
+        const uint8_t * restrict q4 = x[i].qs;
+        const  int8_t * restrict q8 = y[i].qs;
+        memset(aux32, 0, 8*sizeof(int32_t));
+        int8_t * restrict a = aux8;
+        for (int j = 0; j < QK_K/64; ++j) {
+            for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
+            a += 32;
+            for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l]  >> 4);
+            a += 32; q4 += 32;
+        }
+        memcpy(utmp, x[i].scales, 12);
+        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+        const uint32_t uaux = utmp[1] & kmask1;
+        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+        utmp[2] = uaux;
+        utmp[0] &= kmask1;
+
+        int sumi = 0;
+        for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
+        a = aux8;
+        int is = 0;
+        for (int j = 0; j < QK_K/32; ++j) {
+            int32_t scale = scales[is++];
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+            q8 += 8; a += 8;
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+            q8 += 8; a += 8;
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+            q8 += 8; a += 8;
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+            q8 += 8; a += 8;
+        }
+        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
+        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
+        const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
+        sumf -= dmin * sumi;
+    }
+    for (int l = 0; l < 8; ++l) sumf += sums[l];
+    *s = sumf;
+#endif
+}
+#else
+void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+    assert(n % QK_K == 0);
+
+    const block_q4_K * restrict x = vx;
+    const block_q8_K * restrict y = vy;
+
+    const int nb = n / QK_K;
+
+#ifdef __ARM_NEON
+
+    const uint8x16_t m4b = vdupq_n_u8(0xf);
+
+#ifdef __ARM_FEATURE_DOTPROD
+    const int32x4_t mzero = vdupq_n_s32(0);
+#endif
+
+    float sumf = 0;
+
+    ggml_int8x16x2_t q4bytes;
+    ggml_int8x16x4_t q8bytes;
+
+    float sum_mins = 0.f;
+
+    uint16_t aux16[2];
+    const uint8_t * restrict scales = (const uint8_t *)aux16;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const uint8_t * restrict q4 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const uint16_t * restrict a = (const uint16_t *)x[i].scales;
+        aux16[0] = a[0] & 0x0f0f;
+        aux16[1] = (a[0] >> 4) & 0x0f0f;
+
+        const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
+        sum_mins += y[i].d * (float)x[i].d[1] * summi;
+
+        const float d = y[i].d * (float)x[i].d[0];
+
+        const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
+
+#ifdef __ARM_FEATURE_DOTPROD
+        q8bytes = ggml_vld1q_s8_x4(q8);
+        q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[0], m4b));
+        q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[1], m4b));
+
+        const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
+        const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
+
+        q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
+        q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
+
+        const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
+        const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
+
+#else
+        q8bytes = ggml_vld1q_s8_x4(q8);
+        q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[0], m4b));
+        q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[1], m4b));
+        const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+                                       vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+        const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+                                       vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+        int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0];
+
+        q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
+        q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
+        const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])),
+                                       vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2])));
+        const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])),
+                                       vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3])));
+        int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1];
+
+#endif
+        sumf += d * (sumi1 + sumi2);
+
+    }
+
+    *s = sumf - sum_mins;
+
+#elif defined __AVX2__
+
+    const __m256i m4 = _mm256_set1_epi8(0xF);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    float summs = 0;
+
+    uint16_t aux16[2];
+    const uint8_t * scales = (const uint8_t *)aux16;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
+        const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
+        const __m256 vd = _mm256_set1_ps(d);
+
+        const uint16_t * a = (const uint16_t *)x[i].scales;
+        aux16[0] = a[0] & 0x0f0f;
+        aux16[1] = (a[0] >> 4) & 0x0f0f;
+
+        summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
+
+        const uint8_t * restrict q4 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
+        const __m256i q4l = _mm256_and_si256(q4bits, m4);
+        const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
+
+        const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
+        const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
+
+        const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
+        const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
+
+        const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
+        acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
+
+        const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
+        acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
+
+    }
+
+    *s = hsum_float_8(acc) - summs;
+
+#elif defined __AVX__
+
+    const __m128i m4 = _mm_set1_epi8(0xF);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    float summs = 0;
+
+    uint16_t aux16[2];
+    const uint8_t * scales = (const uint8_t *)aux16;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
+        const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
+        const __m256 vd = _mm256_set1_ps(d);
+
+        const uint16_t * a = (const uint16_t *)x[i].scales;
+        aux16[0] = a[0] & 0x0f0f;
+        aux16[1] = (a[0] >> 4) & 0x0f0f;
+
+        summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
+
+        const uint8_t * restrict q4 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
+        const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
+        const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
+        const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
+        const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
+        const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
+        const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
+
+        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
+        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
+
+        const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
+        const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
+        const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
+        const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
+
+        const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
+        const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
+        acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
+
+        const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
+        const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
+        acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
+
+    }
+
+    *s = hsum_float_8(acc) - summs;
+
+#elif defined __riscv_v_intrinsic
+
+    uint16_t s16[2];
+    const uint8_t * restrict scales = (const uint8_t *)s16;
+
+    float sumf = 0;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const uint8_t * restrict q4 = x[i].qs;
+        const  int8_t * restrict q8 = y[i].qs;
+
+        const uint16_t * restrict b = (const uint16_t *)x[i].scales;
+        s16[0] = b[0] & 0x0f0f;
+        s16[1] = (b[0] >> 4) & 0x0f0f;
+
+        sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
+
+        size_t vl = 32;
+
+        vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
+
+        // load Q4
+        vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
+
+        // load Q8 and multiply it with lower Q4 nibble
+        vint8m1_t  q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
+        vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl);
+        vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl);
+
+        sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1);
+
+        // load Q8 and multiply it with upper Q4 nibble
+        vint8m1_t  q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
+        vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl);
+        vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl);
+
+        sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2);
+
+    }
+
+    *s = sumf;
+
+#else
+
+    uint8_t aux8[QK_K];
+    int16_t aux16[16];
+    float   sums [8];
+    memset(sums, 0, 8*sizeof(float));
+
+    uint16_t s16[2];
+    const uint8_t * restrict scales = (const uint8_t *)s16;
+
+    float sumf = 0;
+    for (int i = 0; i < nb; ++i) {
+        const uint8_t * restrict q4 = x[i].qs;
+        const  int8_t * restrict q8 = y[i].qs;
+        uint8_t * restrict a = aux8;
+        for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
+        for (int l = 0; l < 32; ++l) a[l+32] = q4[l]  >> 4;
+
+        const uint16_t * restrict b = (const uint16_t *)x[i].scales;
+        s16[0] = b[0] & 0x0f0f;
+        s16[1] = (b[0] >> 4) & 0x0f0f;
+
+        sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
+
+        for (int j = 0; j < QK_K/32; ++j) {
+            for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
+            q8 += 16; a += 16;
+            for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
+            q8 += 16; a += 16;
+            const float dl = d * scales[j];
+            for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
+        }
+    }
+    for (int l = 0; l < 8; ++l) sumf += sums[l];
+    *s = sumf;
+#endif
+}
+#endif
+
+#if QK_K == 256
+void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+    assert(n % QK_K == 0);
+
+    const block_q5_K * restrict x = vx;
+    const block_q8_K * restrict y = vy;
+
+    const int nb = n / QK_K;
+
+    static const uint32_t kmask1 = 0x3f3f3f3f;
+    static const uint32_t kmask2 = 0x0f0f0f0f;
+    static const uint32_t kmask3 = 0x03030303;
+
+    uint32_t utmp[4];
+
+
+#ifdef __ARM_NEON
+
+    const uint8x16_t m4b = vdupq_n_u8(0xf);
+    const uint8x16_t mone = vdupq_n_u8(1);
+    const uint8x16_t mtwo = vdupq_n_u8(2);
+#if defined(__ARM_FEATURE_DOTPROD)
+    const int32x4_t mzero = vdupq_n_s32(0);
+#endif
+
+    ggml_int8x16x4_t q5bytes;
+
+    float sumf = 0;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
+
+        memcpy(utmp, x[i].scales, 12);
+        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+        const uint32_t uaux = utmp[1] & kmask1;
+        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+        utmp[2] = uaux;
+        utmp[0] &= kmask1;
+
+        const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
+        const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
+        const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
+                                         vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
+        int32_t sumi_mins = vaddvq_s32(prod);
+
+        const uint8_t * scales = (const uint8_t *)utmp;
+
+        const uint8_t * restrict q5 = x[i].qs;
+        const uint8_t * restrict qh = x[i].qh;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
+
+        ggml_uint8x16x4_t q5h;
+
+        int32_t sumi = 0;
+
+        for (int j = 0; j < QK_K/64; ++j) {
+
+            const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
+            const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
+
+            q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
+            q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
+            q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
+            q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
+            qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
+            qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
+
+            q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
+            q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
+            q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
+            q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
+
+#if defined(__ARM_FEATURE_DOTPROD)
+
+            sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
+            sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
+#else
+
+            const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+                                           vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+            const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+                                           vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+            sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
+
+            const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
+                                           vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
+            const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
+                                           vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
+            sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
+#endif
+        }
+
+        sumf += d * sumi - dmin * sumi_mins;
+
+    }
+
+    *s = sumf;
+
+#elif defined __AVX2__
+
+    const __m256i m4 = _mm256_set1_epi8(0xF);
+    const __m128i mzero = _mm_setzero_si128();
+    const __m256i mone  = _mm256_set1_epi8(1);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    float summs = 0.f;
+
+   for (int i = 0; i < nb; ++i) {
+
+        const uint8_t * restrict q5 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+#if QK_K == 256
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        memcpy(utmp, x[i].scales, 12);
+        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+        const uint32_t uaux = utmp[1] & kmask1;
+        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+        utmp[2] = uaux;
+        utmp[0] &= kmask1;
+#else
+        // TODO
+        const float d = 0, dmin = 0;
+#endif
+
+        const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
+
+        const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
+        const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
+        const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
+        const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
+        summs += dmin * _mm_extract_epi32(hsum, 0);
+
+        const __m128i sc128  = _mm256_extracti128_si256(mins_and_scales, 0);
+        const __m256i scales = MM256_SET_M128I(sc128, sc128);
+
+        const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
+        __m256i hmask = mone;
+
+        __m256i sumi = _mm256_setzero_si256();
+
+        int bit = 0;
+
+        for (int j = 0; j < QK_K/64; ++j) {
+
+            const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
+            const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
+
+            const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
+
+            const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
+            const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
+            const __m256i q5_0  = _mm256_add_epi8(q5l_0, q5h_0);
+            hmask = _mm256_slli_epi16(hmask, 1);
+
+            const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
+            const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
+            const __m256i q5_1  = _mm256_add_epi8(q5l_1, q5h_1);
+            hmask = _mm256_slli_epi16(hmask, 1);
+
+            const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+            const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+
+            __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
+            __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
+
+            p16_0 = _mm256_madd_epi16(scale_0, p16_0);
+            p16_1 = _mm256_madd_epi16(scale_1, p16_1);
+
+            sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
+
+        }
+
+        __m256 vd = _mm256_set1_ps(d);
+        acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
+
+    }
+
+    *s = hsum_float_8(acc) + summs;
+
+#elif defined __AVX__
+
+    const __m128i m4 = _mm_set1_epi8(0xF);
+    const __m128i mzero = _mm_setzero_si128();
+    const __m128i mone  = _mm_set1_epi8(1);
+    const __m128i m2 = _mm_set1_epi8(2);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    float summs = 0.f;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
+
+        const uint8_t * restrict q5 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        memcpy(utmp, x[i].scales, 12);
+        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+        const uint32_t uaux = utmp[1] & kmask1;
+        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+        utmp[2] = uaux;
+        utmp[0] &= kmask1;
+
+        const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
+        const __m128i scales = _mm_cvtepu8_epi16(utmps);
+        const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
+
+        const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
+        const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
+        const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
+        const __m128i prod = _mm_madd_epi16(mins, q8s);
+        const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
+        summs += dmin * _mm_extract_epi32(hsum, 0);
+
+        const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
+        const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
+        __m128i hmask = mone;
+
+        __m128i sumi_0 = _mm_setzero_si128();
+        __m128i sumi_1 = _mm_setzero_si128();
+
+        int bit = 0;
+
+        __m128i shuffle = _mm_set1_epi16(0x0100);
+        for (int j = 0; j < QK_K/64; ++j) {
+
+            const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
+            shuffle = _mm_add_epi16(shuffle, m2);
+            const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
+            shuffle = _mm_add_epi16(shuffle, m2);
+
+            const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
+            const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
+
+            __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
+            __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
+            __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
+            __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
+            __m128i q5_0  = _mm_add_epi8(q5l_0, q5h_0);
+            __m128i q5_1  = _mm_add_epi8(q5l_1, q5h_1);
+            hmask = _mm_slli_epi16(hmask, 1);
+
+            __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
+            __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
+            p16_0 = _mm_madd_epi16(scale_0, p16_0);
+            p16_1 = _mm_madd_epi16(scale_0, p16_1);
+
+            q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
+            q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
+            q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
+            q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
+            q5_0  = _mm_add_epi8(q5l_0, q5h_0);
+            q5_1  = _mm_add_epi8(q5l_1, q5h_1);
+            hmask = _mm_slli_epi16(hmask, 1);
+
+            q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
+            __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
+            p16_2 = _mm_madd_epi16(scale_1, p16_2);
+            p16_3 = _mm_madd_epi16(scale_1, p16_3);
+
+            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
+            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
+
+        }
+
+        __m256 vd = _mm256_set1_ps(d);
+        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
+        acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
+
+    }
+
+    *s = hsum_float_8(acc) + summs;
+
+#elif defined __riscv_v_intrinsic
+
+    const uint8_t * scales = (const uint8_t*)&utmp[0];
+    const uint8_t * mins   = (const uint8_t*)&utmp[2];
+
+    float sumf = 0;
+    float sums = 0.0;
+
+    size_t vl;
+
+    for (int i = 0; i < nb; ++i) {
+
+        vl = 8;
+
+        const uint8_t * restrict q5 = x[i].qs;
+        const uint8_t * restrict hm = x[i].qh;
+        const  int8_t * restrict q8 = y[i].qs;
+
+        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
+        const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
+
+        vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
+        vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
+        vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
+
+        memcpy(utmp, x[i].scales, 12);
+        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+        const uint32_t uaux = utmp[1] & kmask1;
+        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+        utmp[2] = uaux;
+        utmp[0] &= kmask1;
+
+        vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
+        vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
+        vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
+
+        vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
+        sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
+
+        vl = 32;
+        int32_t aux32 = 0;
+        int is = 0;
+
+        uint8_t m = 1;
+        vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
+        vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
+
+        for (int j = 0; j < QK_K/64; ++j) {
+            // load Q5 and Q8
+            vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
+            vint8m1_t  q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
+            vint8m1_t  q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
+
+            // compute mask for addition
+            vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
+            vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
+            vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
+            vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
+            m <<= 1;
+
+            vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
+            vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
+            vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
+            vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
+            m <<= 1;
+
+            vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
+            vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
+
+            vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
+            vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
+
+            vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
+            vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
+
+            aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
+            q5 += 32;    q8 += 64;
+
+        }
+
+        vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
+        sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
+
+    }
+
+    *s = sumf+sums;
+
+#else
+
+    const uint8_t * scales = (const uint8_t*)&utmp[0];
+    const uint8_t * mins   = (const uint8_t*)&utmp[2];
+
+    int8_t  aux8[QK_K];
+    int16_t aux16[8];
+    float   sums [8];
+    int32_t aux32[8];
+    memset(sums, 0, 8*sizeof(float));
+
+    float sumf = 0;
+    for (int i = 0; i < nb; ++i) {
+        const uint8_t * restrict q4 = x[i].qs;
+        const uint8_t * restrict hm = x[i].qh;
+        const  int8_t * restrict q8 = y[i].qs;
+        memset(aux32, 0, 8*sizeof(int32_t));
+        int8_t * restrict a = aux8;
+        uint8_t m = 1;
+        for (int j = 0; j < QK_K/64; ++j) {
+            for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
+            for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
+            a += 32; m <<= 1;
+            for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l]  >> 4);
+            for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
+            a += 32; m <<= 1;
+            q4 += 32;
+        }
+        memcpy(utmp, x[i].scales, 12);
+        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+        const uint32_t uaux = utmp[1] & kmask1;
+        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+        utmp[2] = uaux;
+        utmp[0] &= kmask1;
+
+        int sumi = 0;
+        for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
+        a = aux8;
+        int is = 0;
+        for (int j = 0; j < QK_K/32; ++j) {
+            int32_t scale = scales[is++];
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+            q8 += 8; a += 8;
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+            q8 += 8; a += 8;
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+            q8 += 8; a += 8;
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+            q8 += 8; a += 8;
+        }
+        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
+        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
+        const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
+        sumf -= dmin * sumi;
+    }
+    for (int l = 0; l < 8; ++l) sumf += sums[l];
+    *s = sumf;
+#endif
+}
+
+#else
+
+void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+    assert(n % QK_K == 0);
+
+    const block_q5_K * restrict x = vx;
+    const block_q8_K * restrict y = vy;
+
+    const int nb = n / QK_K;
+
+#ifdef __ARM_NEON
+
+    const uint8x16_t m4b = vdupq_n_u8(0xf);
+    const uint8x16_t mh = vdupq_n_u8(16);
+#if defined(__ARM_FEATURE_DOTPROD)
+    const int32x4_t mzero = vdupq_n_s32(0);
+#endif
+
+    ggml_int8x16x4_t q5bytes;
+    ggml_uint8x16x4_t q5h;
+
+    float sumf = 0;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * (float)x[i].d;
+        const int8_t * sc = x[i].scales;
+
+        const uint8_t * restrict q5 = x[i].qs;
+        const uint8_t * restrict qh = x[i].qh;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const uint8x8_t qhbits = vld1_u8(qh);
+
+        const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5);
+        const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
+
+        const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
+        q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
+        q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
+        q5h.val[2] = vbicq_u8(mh, htmp);
+        q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
+
+        q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
+        q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
+        q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
+        q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
+
+#if defined(__ARM_FEATURE_DOTPROD)
+
+        int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
+        int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
+        int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
+        int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
+
+        sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
+
+#else
+
+        const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+                                       vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+        const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+                                       vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+        int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1);
+
+        const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
+                                       vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
+        const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
+                                       vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
+        sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3);
+
+        sumf += d*sumi;
+#endif
+
+    }
+
+    *s = sumf;
+
+#elif defined __AVX2__
+
+    const __m256i m4 = _mm256_set1_epi8(0xF);
+    const __m256i mone  = _mm256_set1_epi8(1);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    for (int i = 0; i < nb; ++i) {
+
+        const uint8_t * restrict q5 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+
+        const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
+
+        const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
+        const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
+
+        int64_t aux64;
+        memcpy(&aux64, x[i].qh, 8);
+        const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
+        const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
+
+        const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
+        const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
+
+        const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
+        const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
+
+        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
+        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
+
+        const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
+        const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
+        const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
+        const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
+
+        const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
+
+        acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
+
+    }
+
+    *s = hsum_float_8(acc);
+
+#elif defined __AVX__
+
+    const __m128i m4 = _mm_set1_epi8(0xF);
+    const __m128i mone  = _mm_set1_epi8(1);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    for (int i = 0; i < nb; ++i) {
+
+        const uint8_t * restrict q5 = x[i].qs;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+
+        const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
+
+        const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
+        const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
+        const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
+        const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
+
+        int64_t aux64;
+        memcpy(&aux64, x[i].qh, 8);
+        const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
+        const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
+
+        const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
+        const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
+        const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
+        const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
+
+        const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
+        const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
+        const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
+        const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
+
+        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
+        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
+
+        const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
+        const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
+        const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
+        const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
+        const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
+        const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
+        const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
+        const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
+
+        const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
+        const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
+
+        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
+
+    }
+
+    *s = hsum_float_8(acc);
+
+#elif defined __riscv_v_intrinsic
+
+    float sumf = 0;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * (float)x[i].d;
+        const int8_t * sc = x[i].scales;
+
+        const uint8_t * restrict q5 = x[i].qs;
+        const uint8_t * restrict qh = x[i].qh;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
+
+        // load qh
+        vuint8mf4_t qh_x1   = __riscv_vle8_v_u8mf4(qh, 8);
+        vuint8mf2_t qh_x2   = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
+
+        size_t vl = 16;
+
+        // combine both qh_1 and qh_2
+        vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
+
+        vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
+        vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl);
+        vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl);
+        vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
+
+        vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0);
+        vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1);
+        vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2);
+        vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3);
+
+        // load q5
+        vuint8mf2_t q5_x1  = __riscv_vle8_v_u8mf2(q5, vl);
+        vuint8mf2_t q5_x2  = __riscv_vle8_v_u8mf2(q5+16, vl);
+
+        vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl));
+        vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl));
+        vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl));
+        vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl));
+
+        vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl);
+        vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl);
+        vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl);
+        vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl);
+
+        // load Q8 and multiply it with Q5
+        vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
+        vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
+        vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
+        vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
+
+        vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
+        vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
+        vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
+        vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
+
+        int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0);
+        int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1);
+        int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2);
+        int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3);
+
+        sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
+
+    }
+
+    *s = sumf;
+
+#else
+
+    int8_t aux8[QK_K];
+    int16_t aux16[16];
+    float   sums [8];
+    memset(sums, 0, 8*sizeof(float));
+
+    float sumf = 0;
+    for (int i = 0; i < nb; ++i) {
+        const uint8_t * restrict q4 = x[i].qs;
+        const uint8_t * restrict hm = x[i].qh;
+        const  int8_t * restrict q8 = y[i].qs;
+        int8_t * restrict a = aux8;
+        for (int l = 0; l < 32; ++l) {
+            a[l+ 0] = q4[l] & 0xF;
+            a[l+32] = q4[l]  >> 4;
+        }
+        for (int is = 0; is < 8; ++is) {
+            uint8_t m = 1 << is;
+            for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
+        }
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+        const int8_t * restrict sc = x[i].scales;
+
+        for (int j = 0; j < QK_K/16; ++j) {
+            const float dl = d * sc[j];
+            for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l <  8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
+            q8 += 16; a += 16;
+        }
+    }
+    for (int l = 0; l < 8; ++l) sumf += sums[l];
+    *s = sumf;
+#endif
+}
+#endif
+
+
+#if QK_K == 256
+void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+    assert(n % QK_K == 0);
+
+    const block_q6_K * restrict x = vx;
+    const block_q8_K * restrict y = vy;
+
+    const int nb = n / QK_K;
+
+#ifdef __ARM_NEON
+
+    float sum = 0;
+
+    const uint8x16_t m4b = vdupq_n_u8(0xF);
+#if defined(__ARM_FEATURE_DOTPROD)
+    const int32x4_t  vzero = vdupq_n_s32(0);
+#endif
+    //const int8x16_t  m32s = vdupq_n_s8(32);
+
+    const uint8x16_t mone = vdupq_n_u8(3);
+
+    ggml_int8x16x4_t q6bytes;
+    ggml_uint8x16x4_t q6h;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d_all = GGML_FP16_TO_FP32(x[i].d);
+
+        const uint8_t * restrict q6 = x[i].ql;
+        const uint8_t * restrict qh = x[i].qh;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const int8_t * restrict scale = x[i].scales;
+
+        const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
+        const int8x16_t scales = vld1q_s8(scale);
+        const ggml_int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
+
+        const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
+                                                   vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
+                                         vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
+                                                   vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
+        int32_t isum_mins = vaddvq_s32(prod);
+
+        int32_t isum = 0;
+
+        for (int j = 0; j < QK_K/128; ++j) {
+
+            ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
+            ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
+            ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
+
+            q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
+            q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
+            uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
+            q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+            shifted = vshrq_n_u8(qhbits.val[1], 2);
+            q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+
+            //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
+            //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
+            //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
+            //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
+            q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
+            q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
+            q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
+            q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
+
+#if defined(__ARM_FEATURE_DOTPROD)
+
+            isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
+                    vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
+                    vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
+                    vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
+            scale += 4;
+
+#else
+
+            int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+                                     vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+            int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+                                     vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+            isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
+            scale += 2;
+
+            int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
+                                     vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
+            int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
+                                     vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
+            isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
+            scale += 2;
+#endif
+
+            q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
+
+            shifted = vshrq_n_u8(qhbits.val[0], 4);
+            q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+            shifted = vshrq_n_u8(qhbits.val[1], 4);
+            q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+            shifted = vshrq_n_u8(qhbits.val[0], 6);
+            q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+            shifted = vshrq_n_u8(qhbits.val[1], 6);
+            q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+
+            //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
+            //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
+            //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
+            //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
+            q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
+            q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
+            q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
+            q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
+
+#if defined(__ARM_FEATURE_DOTPROD)
+
+            isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
+                    vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
+                    vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
+                    vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
+            scale += 4;
+
+            //for (int l = 0; l < 4; ++l) {
+            //    const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
+            //    isum += vaddvq_s32(p) * *scale++;
+            //}
+#else
+            p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+                                    vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+            p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+                                    vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+            isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
+            scale += 2;
+
+            p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
+                                    vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
+            p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
+                                    vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
+            isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
+            scale += 2;
+#endif
+
+        }
+        //sum += isum * d_all * y[i].d;
+        sum += d_all * y[i].d * (isum - 32 * isum_mins);
+
+    }
+    *s = sum;
+
+#elif defined __AVX2__
+
+    const __m256i m4 = _mm256_set1_epi8(0xF);
+    const __m256i m2 = _mm256_set1_epi8(3);
+    const __m256i m32s = _mm256_set1_epi8(32);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+
+        const uint8_t * restrict q4 = x[i].ql;
+        const uint8_t * restrict qh = x[i].qh;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
+
+        __m256i sumi = _mm256_setzero_si256();
+
+        int is = 0;
+
+        for (int j = 0; j < QK_K/128; ++j) {
+
+            const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
+            const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
+            const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
+            const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
+            is += 4;
+
+            const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
+            const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
+            const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
+
+            const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
+            const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
+            const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
+            const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
+
+            const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
+            const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
+            const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
+            const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
+
+            const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+            const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+            const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+            const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+
+            __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
+            __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
+            __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
+            __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
+
+            __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
+            __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
+            __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
+            __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
+
+            p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
+            p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
+            p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
+            p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
+
+            p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
+            p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
+            p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
+            p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
+
+            sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
+            sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
+
+        }
+
+        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
+    }
+
+    *s = hsum_float_8(acc);
+
+#elif defined __AVX__
+
+    const __m128i m4 = _mm_set1_epi8(0xF);
+    const __m128i m3 = _mm_set1_epi8(3);
+    const __m128i m32s = _mm_set1_epi8(32);
+    const __m128i m2 = _mm_set1_epi8(2);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+
+        const uint8_t * restrict q4 = x[i].ql;
+        const uint8_t * restrict qh = x[i].qh;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
+
+        __m128i sumi_0 = _mm_setzero_si128();
+        __m128i sumi_1 = _mm_setzero_si128();
+
+        __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
+        for (int j = 0; j < QK_K/128; ++j) {
+
+            const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
+            const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
+
+            const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
+            const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
+            const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
+            const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
+            const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
+            const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
+            const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
+            const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
+
+            const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
+            const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
+            const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
+            const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
+
+            const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
+            const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
+            const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
+            const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
+            const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
+            const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
+            const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
+            const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
+
+            const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+            const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
+
+            __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
+            __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
+            __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
+            __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
+            __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
+            __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
+            __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
+            __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
+
+            __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
+            __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
+            __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
+            __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
+            __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
+            __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
+            __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
+            __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
+
+            p16_0 = _mm_sub_epi16(p16_0, q8s_0);
+            p16_1 = _mm_sub_epi16(p16_1, q8s_1);
+            p16_2 = _mm_sub_epi16(p16_2, q8s_2);
+            p16_3 = _mm_sub_epi16(p16_3, q8s_3);
+            p16_4 = _mm_sub_epi16(p16_4, q8s_4);
+            p16_5 = _mm_sub_epi16(p16_5, q8s_5);
+            p16_6 = _mm_sub_epi16(p16_6, q8s_6);
+            p16_7 = _mm_sub_epi16(p16_7, q8s_7);
+
+            const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
+            shuffle = _mm_add_epi8(shuffle, m2);
+            const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
+            shuffle = _mm_add_epi8(shuffle, m2);
+            const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
+            shuffle = _mm_add_epi8(shuffle, m2);
+            const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
+            shuffle = _mm_add_epi8(shuffle, m2);
+
+            p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
+            p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
+            p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
+            p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
+            p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
+            p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
+            p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
+            p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
+
+            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
+            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
+            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
+            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
+
+        }
+
+        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
+        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
+    }
+
+    *s = hsum_float_8(acc);
+
+#elif defined __riscv_v_intrinsic
+
+    float sumf = 0;
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
+
+        const uint8_t * restrict q6 = x[i].ql;
+        const uint8_t * restrict qh = x[i].qh;
+        const  int8_t * restrict q8 = y[i].qs;
+
+        const int8_t * restrict scale = x[i].scales;
+
+        size_t vl;
+
+        vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
+
+        int sum_t = 0;
+        int is = 0;
+
+        for (int j = 0; j < QK_K/128; ++j) {
+
+            vl = 32;
+
+            // load qh
+            vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
+
+            // load Q6
+            vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
+            vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
+
+            vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
+            vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
+            vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
+            vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
+
+            vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
+            vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
+            vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
+            vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
+
+            vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
+            vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
+            vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
+            vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
+
+            vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
+            vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
+            vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
+            vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
+
+            // load Q8 and take product
+            vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
+            vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
+            vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
+            vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
+
+            vl = 16;
+
+            vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
+            vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
+            vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
+            vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
+            vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
+            vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
+            vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
+            vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
+
+            vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
+            vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
+            vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
+            vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
+
+            sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
+
+            q6 += 64;   qh += 32;   q8 += 128;   is=8;
+
+        }
+
+        sumf += d * sum_t;
+
+    }
+
+    *s = sumf;
+
+#else
+
+    int8_t  aux8[QK_K];
+    int16_t aux16[8];
+    float   sums [8];
+    int32_t aux32[8];
+    memset(sums, 0, 8*sizeof(float));
+
+    float sumf = 0;
+    for (int i = 0; i < nb; ++i) {
+        const uint8_t * restrict q4 = x[i].ql;
+        const uint8_t * restrict qh = x[i].qh;
+        const  int8_t * restrict q8 = y[i].qs;
+        memset(aux32, 0, 8*sizeof(int32_t));
+        int8_t * restrict a = aux8;
+        for (int j = 0; j < QK_K; j += 128) {
+            for (int l = 0; l < 32; ++l) {
+                a[l +  0] = (int8_t)((q4[l +  0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
+                a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
+                a[l + 64] = (int8_t)((q4[l +  0] >>  4) | (((qh[l] >> 4) & 3) << 4)) - 32;
+                a[l + 96] = (int8_t)((q4[l + 32] >>  4) | (((qh[l] >> 6) & 3) << 4)) - 32;
+            }
+            a  += 128;
+            q4 += 64;
+            qh += 32;
+        }
+        a = aux8;
+        int is = 0;
+        for (int j = 0; j < QK_K/16; ++j) {
+            int scale = x[i].scales[is++];
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+            q8 += 8; a += 8;
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+            q8 += 8; a += 8;
+        }
+        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
+        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
+    }
+    for (int l = 0; l < 8; ++l) sumf += sums[l];
+    *s = sumf;
+#endif
+}
+
+#else
+
+void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+    assert(n % QK_K == 0);
+
+    const block_q6_K * restrict x = vx;
+    const block_q8_K * restrict y = vy;
+
+    const int nb = n / QK_K;
+
+#ifdef __ARM_NEON
+
+    float sum = 0;
+
+    const uint8x16_t m4b = vdupq_n_u8(0xF);
+    const int8x16_t  m32s = vdupq_n_s8(32);
+#if defined(__ARM_FEATURE_DOTPROD)
+    const int32x4_t  vzero = vdupq_n_s32(0);
+#endif
+
+    const uint8x16_t mone = vdupq_n_u8(3);
+
+    ggml_int8x16x4_t q6bytes;
+    ggml_uint8x16x4_t q6h;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d_all = (float)x[i].d;
+
+        const uint8_t * restrict q6 = x[i].ql;
+        const uint8_t * restrict qh = x[i].qh;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const int8_t * restrict scale = x[i].scales;
+
+        int32_t isum = 0;
+
+        uint8x16_t qhbits = vld1q_u8(qh);
+        ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6);
+        ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
+
+        q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
+        uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
+        q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+        shifted = vshrq_n_u8(qhbits, 4);
+        q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+        shifted = vshrq_n_u8(qhbits, 6);
+        q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+
+        q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
+        q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
+        q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
+        q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
+
+#if defined(__ARM_FEATURE_DOTPROD)
+
+        isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
+                vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
+                vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
+                vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
+#else
+
+        int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+                                 vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+        int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+                                 vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+        isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
+
+        int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
+                                 vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
+        int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
+                                 vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
+        isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
+#endif
+
+        sum += isum * d_all * y[i].d;
+
+    }
+    *s = sum;
+
+#elif defined __AVX2__
+
+    const __m256i m4 = _mm256_set1_epi8(0xF);
+    const __m256i m2 = _mm256_set1_epi8(3);
+    const __m256i m32s = _mm256_set1_epi8(32);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+
+        const uint8_t * restrict q4 = x[i].ql;
+        const uint8_t * restrict qh = x[i].qh;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
+        const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
+        const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
+        const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
+
+        __m256i sumi = _mm256_setzero_si256();
+
+        const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
+        const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
+
+        const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
+        const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
+
+        const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
+        const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
+
+        const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
+        const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
+
+        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
+        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
+
+        __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
+        __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
+
+        __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
+        __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
+
+        p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
+        p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
+
+        p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
+        p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
+
+        sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
+
+        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
+    }
+
+    *s = hsum_float_8(acc);
+
+#elif defined __AVX__
+
+    const __m128i m4 = _mm_set1_epi8(0xF);
+    const __m128i m2 = _mm_set1_epi8(3);
+    const __m128i m32s = _mm_set1_epi8(32);
+
+    __m256 acc = _mm256_setzero_ps();
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+
+        const uint8_t * restrict q4 = x[i].ql;
+        const uint8_t * restrict qh = x[i].qh;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
+        const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
+        const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
+        const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
+
+        __m128i sumi_0 = _mm_setzero_si128();
+        __m128i sumi_1 = _mm_setzero_si128();
+
+        const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
+        const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
+
+        const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
+        const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
+
+        const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
+        const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
+        const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
+        const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
+
+        const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
+        const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
+        const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
+        const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
+
+        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
+        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
+
+        __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
+        __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
+        __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
+        __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
+
+        __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
+        __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
+        __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
+        __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
+
+        p16_0 = _mm_sub_epi16(p16_0, q8s_0);
+        p16_1 = _mm_sub_epi16(p16_1, q8s_1);
+        p16_2 = _mm_sub_epi16(p16_2, q8s_2);
+        p16_3 = _mm_sub_epi16(p16_3, q8s_3);
+
+        p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
+        p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
+        p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
+        p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
+
+        sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
+        sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
+
+        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
+    }
+
+    *s = hsum_float_8(acc);
+
+#elif defined __riscv_v_intrinsic
+
+    float sumf = 0;
+
+    for (int i = 0; i < nb; ++i) {
+
+        const float d_all = (float)x[i].d;
+
+        const uint8_t * restrict q6 = x[i].ql;
+        const uint8_t * restrict qh = x[i].qh;
+        const int8_t  * restrict q8 = y[i].qs;
+
+        const int8_t * restrict scale = x[i].scales;
+
+        int32_t isum = 0;
+
+        size_t vl = 16;
+
+        vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
+
+        // load Q6
+        vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl);
+        vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl);
+
+        // load qh
+        vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl);
+
+        vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
+        qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
+        vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
+        qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
+        vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
+        qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
+        vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
+
+        vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl);
+        vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl);
+        vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl);
+        vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl);
+
+        vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl);
+        vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl);
+        vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl);
+        vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl);
+
+        // load Q8 and take product
+        vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
+        vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
+        vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
+        vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
+
+        vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
+        vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
+        vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
+        vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
+
+        isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0];
+        isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1];
+        isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2];
+        isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3];
+
+        sumf += isum * d_all * y[i].d;
+
+    }
+
+    *s = sumf;
+
+#else
+
+    int8_t  aux8[QK_K];
+    int16_t aux16[8];
+    float   sums [8];
+    int32_t aux32[8];
+    memset(sums, 0, 8*sizeof(float));
+
+    float sumf = 0;
+    for (int i = 0; i < nb; ++i) {
+        const uint8_t * restrict q4 = x[i].ql;
+        const uint8_t * restrict qh = x[i].qh;
+        const  int8_t * restrict q8 = y[i].qs;
+        memset(aux32, 0, 8*sizeof(int32_t));
+        int8_t * restrict a = aux8;
+        for (int l = 0; l < 16; ++l) {
+            a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
+            a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
+            a[l+32] = (int8_t)((q4[l+ 0] >>  4) | (((qh[l] >> 4) & 3) << 4)) - 32;
+            a[l+48] = (int8_t)((q4[l+16] >>  4) | (((qh[l] >> 6) & 3) << 4)) - 32;
+        }
+        int is = 0;
+        for (int j = 0; j < QK_K/16; ++j) {
+            int scale = x[i].scales[is++];
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+            q8 += 8; a += 8;
+            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+            q8 += 8; a += 8;
+        }
+        const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
+        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
+    }
+    for (int l = 0; l < 8; ++l) sumf += sums[l];
+    *s = sumf;
+#endif
+}
+
+#endif

+ 224 - 0
ggml/src/ggml-quants.h

@@ -0,0 +1,224 @@
+#pragma once
+
+#include "ggml-impl.h"
+
+// GGML internal header
+
+#include <stdint.h>
+#include <stddef.h>
+
+#define QK4_0 32
+typedef struct {
+    ggml_fp16_t d;          // delta
+    uint8_t qs[QK4_0 / 2];  // nibbles / quants
+} block_q4_0;
+static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
+
+#define QK4_1 32
+typedef struct {
+    ggml_fp16_t d;          // delta
+    ggml_fp16_t m;          // min
+    uint8_t qs[QK4_1 / 2];  // nibbles / quants
+} block_q4_1;
+static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
+
+#define QK5_0 32
+typedef struct {
+    ggml_fp16_t d;         // delta
+    uint8_t qh[4];         // 5-th bit of quants
+    uint8_t qs[QK5_0 / 2]; // nibbles / quants
+} block_q5_0;
+static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
+
+#define QK5_1 32
+typedef struct {
+    ggml_fp16_t d;         // delta
+    ggml_fp16_t m;         // min
+    uint8_t qh[4];         // 5-th bit of quants
+    uint8_t qs[QK5_1 / 2]; // nibbles / quants
+} block_q5_1;
+static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
+
+#define QK8_0 32
+typedef struct {
+    ggml_fp16_t d;         // delta
+    int8_t  qs[QK8_0];     // quants
+} block_q8_0;
+static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
+
+#define QK8_1 32
+typedef struct {
+    float d;               // delta
+    float s;               // d * sum(qs[i])
+    int8_t  qs[QK8_1];     // quants
+} block_q8_1;
+static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
+
+//
+// Super-block quantization structures
+//
+
+// Super-block size
+#ifdef GGML_QKK_64
+#define QK_K 64
+#define K_SCALE_SIZE 4
+#else
+#define QK_K 256
+#define K_SCALE_SIZE 12
+#endif
+
+// 2-bit quantization
+// weight is represented as x = a * q + b
+// 16 blocks of 16 elements each
+// Effectively 2.5625 bits per weight
+typedef struct {
+    uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
+    uint8_t qs[QK_K/4];      // quants
+    ggml_fp16_t d;           // super-block scale for quantized scales
+    ggml_fp16_t dmin;        // super-block scale for quantized mins
+} block_q2_K;
+static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
+
+// 3-bit quantization
+// weight is represented as x = a * q
+// 16 blocks of 16 elements each
+// Effectively 3.4375 bits per weight
+#ifdef GGML_QKK_64
+typedef struct {
+    uint8_t hmask[QK_K/8];     // quants - high bit
+    uint8_t qs[QK_K/4];        // quants - low 2 bits
+    uint8_t scales[2];
+    ggml_fp16_t d;             // super-block scale
+} block_q3_K;
+static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
+#else
+typedef struct {
+    uint8_t hmask[QK_K/8];     // quants - high bit
+    uint8_t qs[QK_K/4];        // quants - low 2 bits
+    uint8_t scales[12];        // scales, quantized with 6 bits
+    ggml_fp16_t d;             // super-block scale
+} block_q3_K;
+static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
+#endif
+
+// 4-bit quantization
+// 8 blocks of 32 elements each
+// weight is represented as x = a * q + b
+// Effectively 4.5 bits per weight
+#ifdef GGML_QKK_64
+typedef struct {
+    ggml_fp16_t d[2];          // super-block scales/mins
+    uint8_t scales[2];         // 4-bit block scales/mins
+    uint8_t qs[QK_K/2];        // 4--bit quants
+} block_q4_K;
+static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
+#else
+typedef struct {
+    ggml_fp16_t d;             // super-block scale for quantized scales
+    ggml_fp16_t dmin;          // super-block scale for quantized mins
+    uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
+    uint8_t qs[QK_K/2];        // 4--bit quants
+} block_q4_K;
+static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
+#endif
+
+// 5-bit quantization
+// 8 blocks of 32 elements each
+// weight is represented as x = a * q + b
+// Effectively 5.5 bits per weight
+#ifdef GGML_QKK_64
+typedef struct {
+    ggml_fp16_t d;               // super-block scale
+    int8_t  scales[QK_K/16];     // 8-bit block scales
+    uint8_t qh[QK_K/8];          // quants, high bit
+    uint8_t qs[QK_K/2];          // quants, low 4 bits
+} block_q5_K;
+static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
+#else
+typedef struct {
+    ggml_fp16_t d;               // super-block scale for quantized scales
+    ggml_fp16_t dmin;            // super-block scale for quantized mins
+    uint8_t scales[K_SCALE_SIZE];   // scales and mins, quantized with 6 bits
+    uint8_t qh[QK_K/8];          // quants, high bit
+    uint8_t qs[QK_K/2];          // quants, low 4 bits
+} block_q5_K;
+static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
+#endif
+
+// 6-bit quantization
+// weight is represented as x = a * q
+// 16 blocks of 16 elements each
+// Effectively 6.5625 bits per weight
+typedef struct {
+    uint8_t ql[QK_K/2];      // quants, lower 4 bits
+    uint8_t qh[QK_K/4];      // quants, upper 2 bits
+    int8_t  scales[QK_K/16]; // scales, quantized with 8 bits
+    ggml_fp16_t d;           // super-block scale
+} block_q6_K;
+static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding");
+
+// This is only used for intermediate quantization and dot products
+typedef struct {
+    float   d;              // delta
+    int8_t  qs[QK_K];       // quants
+    int16_t bsums[QK_K/16]; // sum of quants in groups of 16
+} block_q8_K;
+static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
+
+
+// Quantization
+void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k);
+void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k);
+void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k);
+void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k);
+void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k);
+void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k);
+
+void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
+void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
+void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
+void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
+void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
+void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
+
+void quantize_row_q4_0(const float * restrict x, void * restrict y, int k);
+void quantize_row_q4_1(const float * restrict x, void * restrict y, int k);
+void quantize_row_q5_0(const float * restrict x, void * restrict y, int k);
+void quantize_row_q5_1(const float * restrict x, void * restrict y, int k);
+void quantize_row_q8_0(const float * restrict x, void * restrict y, int k);
+void quantize_row_q8_1(const float * restrict x, void * restrict y, int k);
+
+void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
+void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
+void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
+void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
+void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
+void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
+
+// Dequantization
+void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k);
+void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k);
+void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k);
+void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k);
+void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k);
+//void dequantize_row_q8_1(const block_q8_1 * restrict x, float * restrict y, int k);
+
+void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
+void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
+void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
+void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k);
+void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k);
+void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
+
+// Dot product
+void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+
+void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);

Разлика између датотеке није приказан због своје велике величине
+ 69 - 1290
ggml/src/ggml.c


+ 15 - 9
ggml/test_unity_cpp.py

@@ -6,26 +6,27 @@
 
 import ctypes
 import functools
+import shutil
 from ctypes import c_void_p
 from pathlib import Path
-from typing import Any, Iterator, List, Tuple
+from typing import Any, Iterator, Tuple
 
 import fairseq2.nn
 import fairseq2.nn.transformer
 import numpy as np
 import pytest
+import requests  # type: ignore
 import torch
-import torchaudio
+import torchaudio  # type: ignore
+from ctypes_utils import NULLPTR, Ptr
 from fairseq2.data.audio import WaveformToFbankConverter
-from seamless_communication.inference.generator import SequenceGeneratorOptions
 from fairseq2.models.wav2vec2.feature_extractor import Wav2Vec2FbankFeatureExtractor
-from seamless_communication.inference.translator import Modality, Translator
+from ggml_convert import convert_model, read_layer_config
 
 import ggml
-from ctypes_utils import NULLPTR, Ptr
 from ggml import NativeObj
-from ggml_convert import convert_model, read_layer_config
-import requests
+from seamless_communication.inference.generator import SequenceGeneratorOptions
+from seamless_communication.inference.translator import Modality, Translator
 
 Ctx = ggml.ggml_context_p
 
@@ -56,6 +57,10 @@ def _ctx() -> Iterator[Ctx]:
                 no_alloc=True,
             )
         )
+
+        # Create 'dot' folder for temporary dump of ggml graphs
+        (Path(__file__).parent / "dot").mkdir(exist_ok=True)
+
         with torch.inference_mode():
             yield ctx
     finally:
@@ -87,6 +92,7 @@ def load_pt_model() -> Any:
 
 
 def download_sample_audio() -> Any:
+    Path(DATA).mkdir(exist_ok=True)
     response = requests.get(TEST_AUDIO_SAMPLE_URL, stream=True)
     with open(DATA / "LJ037-0171_sr16k.wav", "wb") as file:
         for chunk in response.iter_content(chunk_size=1024):
@@ -180,7 +186,7 @@ def test_Linear_forward(ctx: Ctx, g_model: c_void_p) -> None:
     y_exp = pt_model.text_encoder.layers[0].ffn.inner_proj(x).numpy()
     gx = ggml.from_numpy(ctx, x)
     gy = ggml.forward("Linear", g_model, "text_encoder.layers.0.ffn.inner_proj", gx)
-    gf = ggml.build_and_compute(ctx, gy, dump="dot/test_Linear_forward.dot")
+    ggml.build_and_compute(ctx, gy, dump="dot/test_Linear_forward.dot")
 
     y = ggml.to_numpy(gy)
     assert np.allclose(y_exp, y, atol=1e-5)
@@ -613,7 +619,7 @@ def test_PositionalEmbedding_forward_with_cache(ctx: Ctx, g_model: c_void_p) ->
                 "text_decoder_frontend.pos_encoder",
                 gseq,
             )
-            gf = ggml.build_and_compute(ctx, gy, dump=t == 1)
+            ggml.build_and_compute(ctx, gy, dump=t == 1)
             y = ggml.to_numpy(gy)
 
             y_exp = pos_encoder(seq[:, t : t + 1, :], None, state_bag=state_bag).numpy()

Разлика између датотеке није приказан због своје велике величине
+ 615 - 145
ggml/third_party_ggml.py


Неке датотеке нису приказане због велике количине промена