|
@@ -0,0 +1,146 @@
|
|
|
+# Copyright (c) Meta Platforms, Inc. and affiliates
|
|
|
+# All rights reserved.
|
|
|
+#
|
|
|
+# This source code is licensed under the license found in the
|
|
|
+# LICENSE file in the root directory of this source tree.
|
|
|
+
|
|
|
+from __future__ import annotations
|
|
|
+import pandas
|
|
|
+from fairseq2.typing import Device
|
|
|
+from pathlib import Path
|
|
|
+from typing import Optional
|
|
|
+import json
|
|
|
+from argparse import ArgumentParser, Namespace
|
|
|
+from typing import Dict
|
|
|
+
|
|
|
+from simuleval.evaluator.scorers.quality_scorer import (
|
|
|
+ register_quality_scorer,
|
|
|
+ QualityScorer,
|
|
|
+)
|
|
|
+
|
|
|
+from simuleval.evaluator.instance import LogInstance
|
|
|
+
|
|
|
+from seamless_communication.cli.eval_utils import (
|
|
|
+ compute_quality_metrics,
|
|
|
+)
|
|
|
+
|
|
|
+
|
|
|
+@register_quality_scorer("SEAMLESS_QUALITY_SCORER")
|
|
|
+class SeamlessQualityScorer(QualityScorer): # type: ignore
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ tgt_lang: str,
|
|
|
+ task: str,
|
|
|
+ output_dir: str,
|
|
|
+ device: Device = "cuda:0",
|
|
|
+ whisper_model_name: str = "large",
|
|
|
+ whisper_normalize_text_output: Optional[bool] = None,
|
|
|
+ ref_text_col_name: str = "ref_tgt_text",
|
|
|
+ pred_text_col_name: str = "pred_tgt_text",
|
|
|
+ pred_audio_col_name: str = "pred_tgt_audio",
|
|
|
+ ) -> None:
|
|
|
+ super().__init__()
|
|
|
+ self.tgt_lang = tgt_lang
|
|
|
+ self.task = task.upper()
|
|
|
+ self.device = device
|
|
|
+ self.output_dir = Path(output_dir)
|
|
|
+ self.whisper_model_name = whisper_model_name
|
|
|
+ self.whisper_normalize_text_output = whisper_normalize_text_output
|
|
|
+ if self.whisper_normalize_text_output is None:
|
|
|
+ self.whisper_normalize_text_output = (
|
|
|
+ False if self.task in ["S2TT", "S2ST", "T2TT"] else True
|
|
|
+ )
|
|
|
+ self.ref_text_col_name = ref_text_col_name
|
|
|
+ self.pred_text_col_name = pred_text_col_name
|
|
|
+ self.pred_audio_col_name = pred_audio_col_name
|
|
|
+
|
|
|
+ def __call__(self, instances: Dict[int, LogInstance]) -> float:
|
|
|
+ references = [ins.reference for ins in instances.values()]
|
|
|
+ df = pandas.DataFrame({self.ref_text_col_name: references})
|
|
|
+ if self.task in ["ASR", "S2TT", "T2TT"]:
|
|
|
+ predictions = [ins.prediction for ins in instances.values()]
|
|
|
+ df[self.pred_text_col_name] = predictions
|
|
|
+ else:
|
|
|
+ predictions = [ins.prediction for ins in instances.values()]
|
|
|
+ df[self.pred_audio_col_name] = predictions
|
|
|
+
|
|
|
+ df.to_csv(
|
|
|
+ self.output_dir / "results.tsv",
|
|
|
+ sep="\t",
|
|
|
+ quoting=3,
|
|
|
+ encoding="utf-8",
|
|
|
+ )
|
|
|
+ filename = compute_quality_metrics(
|
|
|
+ self.output_dir / "results.tsv",
|
|
|
+ self.output_dir,
|
|
|
+ self.tgt_lang,
|
|
|
+ self.task,
|
|
|
+ self.device,
|
|
|
+ self.whisper_model_name,
|
|
|
+ self.whisper_normalize_text_output,
|
|
|
+ self.ref_text_col_name,
|
|
|
+ self.pred_text_col_name if self.task in ["ASR", "S2TT", "T2TT"] else None,
|
|
|
+ self.pred_audio_col_name,
|
|
|
+ )
|
|
|
+
|
|
|
+ with open(self.output_dir / filename, "r") as f:
|
|
|
+ corpus_metric_score = json.load(f)["score"]
|
|
|
+
|
|
|
+ return corpus_metric_score # type: ignore[no-any-return]
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def add_args(parser: ArgumentParser) -> None:
|
|
|
+ try:
|
|
|
+ parser.add_argument(
|
|
|
+ "--task", type=str, help="Task to evaluate", required=True
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--tgt-lang",
|
|
|
+ type=str,
|
|
|
+ help="Target language to translate/transcribe into.",
|
|
|
+ required=True,
|
|
|
+ )
|
|
|
+ except:
|
|
|
+ pass
|
|
|
+
|
|
|
+ parser.add_argument(
|
|
|
+ "--whisper-model-name", type=str, help="Whisper model name", default="large"
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--whisper-normalize-text-output",
|
|
|
+ action="store_true",
|
|
|
+ help="Normalize text output",
|
|
|
+ default=None,
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--ref-text-col-name",
|
|
|
+ type=str,
|
|
|
+ help="Reference text column name",
|
|
|
+ default="ref_tgt_text",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--pred-text-col-name",
|
|
|
+ type=str,
|
|
|
+ help="Prediction text column name",
|
|
|
+ default="pred_tgt_text",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--pred-audio-col-name",
|
|
|
+ type=str,
|
|
|
+ help="Prediction audio column name",
|
|
|
+ default="pred_tgt_audio",
|
|
|
+ )
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def from_args(cls, args: Namespace) -> SeamlessQualityScorer:
|
|
|
+ return cls(
|
|
|
+ tgt_lang=args.tgt_lang,
|
|
|
+ task=args.task,
|
|
|
+ output_dir=args.output,
|
|
|
+ device=getattr(args, "device", "cpu"),
|
|
|
+ whisper_model_name=args.whisper_model_name,
|
|
|
+ whisper_normalize_text_output=args.whisper_normalize_text_output,
|
|
|
+ ref_text_col_name=args.ref_text_col_name,
|
|
|
+ pred_text_col_name=args.pred_text_col_name,
|
|
|
+ pred_audio_col_name=args.pred_audio_col_name,
|
|
|
+ )
|