|
@@ -1,760 +0,0 @@
|
|
|
-#include "ggml/ggml.h"
|
|
|
-#include "ggml/ggml-alloc.h"
|
|
|
-
|
|
|
-#include "common.h"
|
|
|
-#include "common-ggml.h"
|
|
|
-#include "math.h"
|
|
|
-
|
|
|
-#include <cassert>
|
|
|
-#include <cmath>
|
|
|
-#include <cstdio>
|
|
|
-#include <cstring>
|
|
|
-#include <fstream>
|
|
|
-#include <unordered_map>
|
|
|
-#include <string>
|
|
|
-#include <vector>
|
|
|
-#include <iostream>
|
|
|
-
|
|
|
-// default hparams
|
|
|
-struct unity_hparams {
|
|
|
- int32_t n_text_vocab = 256206;
|
|
|
- int32_t n_unit_vocab = 10084;
|
|
|
- int32_t n_audio_enc_dim = 1024;
|
|
|
- int32_t n_audio_enc_ffn_dim = 4096;
|
|
|
- int32_t n_audio_enc_feat_dim = 160;
|
|
|
- int32_t n_audio_enc_layer = 24;
|
|
|
- int32_t n_audio_enc_head = 16;
|
|
|
- int32_t ftype = 1;
|
|
|
- float eps = 1e-5f;
|
|
|
-};
|
|
|
-// layer def
|
|
|
-struct audio_enc_layer {
|
|
|
- struct ggml_tensor * self_attn_layer_norm_w;
|
|
|
- struct ggml_tensor * self_attn_layer_norm_b;
|
|
|
-
|
|
|
- struct ggml_tensor * self_attn_linear_k_w;
|
|
|
- struct ggml_tensor * self_attn_linear_k_b;
|
|
|
- struct ggml_tensor * self_attn_linear_q_w;
|
|
|
- struct ggml_tensor * self_attn_linear_q_b;
|
|
|
- struct ggml_tensor * self_attn_linear_v_w;
|
|
|
- struct ggml_tensor * self_attn_linear_v_b;
|
|
|
- struct ggml_tensor * self_attn_linear_out_w;
|
|
|
- struct ggml_tensor * self_attn_linear_out_b;
|
|
|
- struct ggml_tensor * self_attn_linear_pos_w;
|
|
|
-
|
|
|
- struct ggml_tensor * self_attn_pos_bias_u;
|
|
|
- struct ggml_tensor * self_attn_pos_bias_v;
|
|
|
-
|
|
|
- struct ggml_tensor * conv_layer_norm_w;
|
|
|
- struct ggml_tensor * conv_layer_norm_b;
|
|
|
-
|
|
|
- struct ggml_tensor * conv_pointwise_conv1_w;
|
|
|
- struct ggml_tensor * conv_depthwise_conv_w;
|
|
|
- struct ggml_tensor * conv_batch_norm_w;
|
|
|
- struct ggml_tensor * conv_batch_norm_b;
|
|
|
- struct ggml_tensor * conv_batch_norm_running_mean;
|
|
|
- struct ggml_tensor * conv_batch_norm_running_var;
|
|
|
- struct ggml_tensor * conv_batch_norm_num_batches_tracked;
|
|
|
- struct ggml_tensor * conv_pointwise_conv2_w;
|
|
|
-
|
|
|
- struct ggml_tensor * ffn1_layer_norm_w;
|
|
|
- struct ggml_tensor * ffn1_layer_norm_b;
|
|
|
- struct ggml_tensor * ffn1_w1;
|
|
|
- struct ggml_tensor * ffn1_b1;
|
|
|
- struct ggml_tensor * ffn1_w2;
|
|
|
- struct ggml_tensor * ffn1_b2;
|
|
|
-
|
|
|
- struct ggml_tensor * ffn2_layer_norm_w;
|
|
|
- struct ggml_tensor * ffn2_layer_norm_b;
|
|
|
- struct ggml_tensor * ffn2_w1;
|
|
|
- struct ggml_tensor * ffn2_b1;
|
|
|
- struct ggml_tensor * ffn2_w2;
|
|
|
- struct ggml_tensor * ffn2_b2;
|
|
|
-
|
|
|
- struct ggml_tensor * final_layer_norm_w;
|
|
|
- struct ggml_tensor * final_layer_norm_b;
|
|
|
-};
|
|
|
-
|
|
|
-// struct ggml_tensor * conv_ln;
|
|
|
-// struct ggml_tensor * conv_pool_1d;
|
|
|
-
|
|
|
-// model def
|
|
|
-struct unity_model {
|
|
|
- unity_hparams hparams;
|
|
|
- // audio encoder
|
|
|
- struct ggml_tensor * post_extract_proj_w;
|
|
|
- struct ggml_tensor * post_extract_proj_b;
|
|
|
- struct ggml_tensor * audio_enc_pos_conv_wg;
|
|
|
- struct ggml_tensor * audio_enc_pos_conv_wv;
|
|
|
- struct ggml_tensor * audio_enc_pos_conv_b;
|
|
|
- struct ggml_tensor * audio_enc_layer_norm_w;
|
|
|
- struct ggml_tensor * audio_enc_layer_norm_b;
|
|
|
- struct ggml_tensor * audio_enc_pos_enc_w;
|
|
|
- struct ggml_tensor * layer_norm_w;
|
|
|
- struct ggml_tensor * layer_norm_b;
|
|
|
- struct ggml_tensor * memory_k;
|
|
|
- struct ggml_tensor * memory_v;
|
|
|
- std::vector<audio_enc_layer> audio_enc_layers;
|
|
|
-
|
|
|
- // text encoder
|
|
|
- // std::vector<text_enc_layer> text_enc_layers;
|
|
|
-
|
|
|
- // adaptor
|
|
|
- // std::vector<adapter_layer> adapter_layers;
|
|
|
-
|
|
|
- // text decoder
|
|
|
- // std::vector<text_dec_layer> text_dec_layers;
|
|
|
-
|
|
|
- // unit decoder
|
|
|
- // std::vector<unit_dec_layer> unit_dec_layers;
|
|
|
-
|
|
|
- //
|
|
|
- struct ggml_context * ctx;
|
|
|
- std::map<std::string, struct ggml_tensor *> tensors;
|
|
|
-};
|
|
|
-
|
|
|
-// model load
|
|
|
-bool unity_model_load(const std::string & fname, unity_model & model, gpt_vocab & vocab) {
|
|
|
- printf("%s: loading model from '%s'\n", __func__, fname.c_str());
|
|
|
-
|
|
|
- auto fin = std::ifstream(fname, std::ios::binary);
|
|
|
- if (!fin) {
|
|
|
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- // verify magic
|
|
|
- {
|
|
|
- uint32_t magic;
|
|
|
- fin.read((char *) &magic, sizeof(magic));
|
|
|
- if (magic != GGML_FILE_MAGIC) {
|
|
|
- fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
|
|
- return false;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // load hparams
|
|
|
- {
|
|
|
- auto & hparams = model.hparams;
|
|
|
-
|
|
|
- fin.read((char *) &hparams.n_text_vocab, sizeof(hparams.n_text_vocab));
|
|
|
- fin.read((char *) &hparams.n_audio_enc_dim, sizeof(hparams.n_audio_enc_dim));
|
|
|
- fin.read((char *) &hparams.n_audio_enc_ffn_dim, sizeof(hparams.n_audio_enc_ffn_dim));
|
|
|
- fin.read((char *) &hparams.n_audio_enc_feat_dim, sizeof(hparams.n_audio_enc_feat_dim));
|
|
|
- fin.read((char *) &hparams.n_audio_enc_layer, sizeof(hparams.n_audio_enc_layer));
|
|
|
- fin.read((char *) &hparams.n_audio_enc_head, sizeof(hparams.n_audio_enc_head));
|
|
|
- fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
|
|
|
-
|
|
|
- const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
|
|
|
-
|
|
|
- printf("%s: n_text_vocab = %d\n", __func__, hparams.n_text_vocab);
|
|
|
- printf("%s: n_audio_enc_dim = %d\n", __func__, hparams.n_audio_enc_dim);
|
|
|
- printf("%s: n_audio_enc_ffn_dim = %d\n", __func__, hparams.n_audio_enc_ffn_dim);
|
|
|
- printf("%s: n_audio_enc_feat_dim = %d\n", __func__, hparams.n_audio_enc_feat_dim);
|
|
|
- printf("%s: n_audio_enc_layer = %d\n", __func__, hparams.n_audio_enc_layer);
|
|
|
- printf("%s: n_audio_enc_head = %d\n", __func__, hparams.n_audio_enc_head);
|
|
|
- printf("%s: ftype = %d\n", __func__, hparams.ftype);
|
|
|
- printf("%s: qntvr = %d\n", __func__, qntvr);
|
|
|
-
|
|
|
- hparams.ftype %= GGML_QNT_VERSION_FACTOR;
|
|
|
- }
|
|
|
-
|
|
|
- // for the big tensors, we have the option to store the data in 16-bit floats or quantized
|
|
|
- // in order to save memory and also to speed up the computation
|
|
|
- ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
|
|
|
- if (wtype == GGML_TYPE_COUNT) {
|
|
|
- fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
|
|
|
- __func__, fname.c_str(), model.hparams.ftype);
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- auto & ctx = model.ctx;
|
|
|
-
|
|
|
- size_t ctx_size = 0;
|
|
|
-
|
|
|
- {
|
|
|
- const auto & hparams = model.hparams;
|
|
|
-
|
|
|
- const int n_audio_enc_dim = hparams.n_audio_enc_dim;
|
|
|
- const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
|
|
|
- const int n_audio_enc_layer = hparams.n_audio_enc_layer;
|
|
|
- const int n_ctx = 4096; // 20ms * 4096 = 80s
|
|
|
- // const int n_text_vocab = hparams.n_text_vocab;
|
|
|
- const int kernel_size = 31;
|
|
|
-
|
|
|
- ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // self_attn_layer_norm_w
|
|
|
- ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // self_attn_layer_norm_b
|
|
|
-
|
|
|
- ctx_size += n_audio_enc_layer*(5*n_audio_enc_dim*n_audio_enc_dim*ggml_type_sizef(wtype)); // self_attn_w
|
|
|
- ctx_size += n_audio_enc_layer*(4*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // self_attn_b
|
|
|
-
|
|
|
- ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_layer_norm_w
|
|
|
- ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_layer_norm_b
|
|
|
-
|
|
|
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*2*ggml_type_sizef(wtype)); // conv_pointwise_conv1_w
|
|
|
- ctx_size += n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_batch_norm_w
|
|
|
- ctx_size += n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_batch_norm_b
|
|
|
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*kernel_size*ggml_type_sizef(wtype)); // conv_depthwise_conv_w
|
|
|
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*ggml_type_sizef(wtype)); // conv_pointwise_conv2_w
|
|
|
-
|
|
|
- ctx_size += 2 * n_audio_enc_layer * (n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_layer_norm_w
|
|
|
- ctx_size += 2 * n_audio_enc_layer * (n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_layer_norm_b
|
|
|
- ctx_size += 2 * n_audio_enc_layer * (2 * n_audio_enc_dim * n_audio_enc_ffn_dim * ggml_type_sizef(wtype)); // ffn{1,2}_w{1,2}
|
|
|
- ctx_size += 2 * n_audio_enc_layer * (2 * n_audio_enc_dim * ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_b{1,2}
|
|
|
-
|
|
|
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // final_layer_norm_w
|
|
|
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // final_layer_norm_b
|
|
|
-
|
|
|
- ctx_size += n_ctx*n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // memory_k
|
|
|
- ctx_size += n_ctx*n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // memory_v
|
|
|
-
|
|
|
- // Adaptor
|
|
|
- // ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // conv_ln
|
|
|
- // ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // conv_pool_1d
|
|
|
-
|
|
|
- // object overhead might differ depending on the structure and other miscellaneous factors
|
|
|
- ctx_size += (6 + 12*n_audio_enc_layer)*512; // updated object overhead
|
|
|
-
|
|
|
- printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
|
|
|
- printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
|
|
- }
|
|
|
-
|
|
|
- // create the ggml context
|
|
|
- {
|
|
|
- struct ggml_init_params params = {
|
|
|
- /*.mem_size =*/ ctx_size,
|
|
|
- /*.mem_buffer =*/ NULL,
|
|
|
- /*.no_alloc =*/ false,
|
|
|
- };
|
|
|
-
|
|
|
- model.ctx = ggml_init(params);
|
|
|
- if (!model.ctx) {
|
|
|
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
|
|
- return false;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // prepare memory for the weights
|
|
|
- {
|
|
|
- const auto & hparams = model.hparams;
|
|
|
-
|
|
|
- const int n_audio_enc_dim = hparams.n_audio_enc_dim;
|
|
|
- const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
|
|
|
- const int n_audio_enc_feat_dim = hparams.n_audio_enc_feat_dim;
|
|
|
- const int n_audio_enc_layer = hparams.n_audio_enc_layer;
|
|
|
- const int n_audio_enc_head = hparams.n_audio_enc_head;
|
|
|
- const int n_ctx = 4096; // 20ms * 4096 = 80s
|
|
|
- const int pos_conv_kernel_size = 128;
|
|
|
- // const int n_text_vocab = hparams.n_text_vocab;
|
|
|
-
|
|
|
- model.audio_enc_layers.resize(n_audio_enc_layer);
|
|
|
- model.audio_enc_pos_enc_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_ctx * 2 - 1);
|
|
|
- model.tensors["model/enc/pos_enc/w"] = model.audio_enc_pos_enc_w;
|
|
|
-
|
|
|
- model.post_extract_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_feat_dim, n_audio_enc_dim);
|
|
|
- model.post_extract_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- model.tensors["model/post_extract_proj/w"] = model.post_extract_proj_w;
|
|
|
- model.tensors["model/post_extract_proj/b"] = model.post_extract_proj_b;
|
|
|
-
|
|
|
- model.audio_enc_pos_conv_wg = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, pos_conv_kernel_size);
|
|
|
- model.audio_enc_pos_conv_wv = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, pos_conv_kernel_size, 64, n_audio_enc_dim);
|
|
|
- model.audio_enc_pos_conv_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- model.tensors["model/enc/pos_conv/w_g"] = model.audio_enc_pos_conv_wg;
|
|
|
- model.tensors["model/enc/pos_conv/w_v"] = model.audio_enc_pos_conv_wv;
|
|
|
- model.tensors["model/enc/pos_conv/b"] = model.audio_enc_pos_conv_b;
|
|
|
-
|
|
|
- model.audio_enc_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- model.audio_enc_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- model.tensors["model/enc/layer_norm/w"] = model.audio_enc_layer_norm_w;
|
|
|
- model.tensors["model/enc/layer_norm/b"] = model.audio_enc_layer_norm_b;
|
|
|
-
|
|
|
- model.layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_feat_dim);
|
|
|
- model.layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_feat_dim);
|
|
|
- model.tensors["model/layer_norm/w"] = model.layer_norm_w;
|
|
|
- model.tensors["model/layer_norm/b"] = model.layer_norm_b;
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- for (int i = 0; i < n_audio_enc_layer; ++i) {
|
|
|
- auto & layer = model.audio_enc_layers[i];
|
|
|
-
|
|
|
- layer.self_attn_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- layer.self_attn_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
-
|
|
|
- layer.self_attn_linear_k_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
|
|
|
- layer.self_attn_linear_k_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- layer.self_attn_linear_q_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
|
|
|
- layer.self_attn_linear_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- layer.self_attn_linear_v_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
|
|
|
- layer.self_attn_linear_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- layer.self_attn_linear_out_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
|
|
|
- layer.self_attn_linear_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- layer.self_attn_linear_pos_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
|
|
|
-
|
|
|
- layer.self_attn_pos_bias_u = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim / n_audio_enc_head, n_audio_enc_head);
|
|
|
- layer.self_attn_pos_bias_v = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim / n_audio_enc_head, n_audio_enc_head);
|
|
|
-
|
|
|
- layer.conv_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- layer.conv_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
-
|
|
|
- layer.conv_pointwise_conv1_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, 2*n_audio_enc_dim);
|
|
|
- layer.conv_depthwise_conv_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 31, n_audio_enc_dim);
|
|
|
-
|
|
|
- layer.conv_batch_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- layer.conv_batch_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- layer.conv_batch_norm_running_mean = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- layer.conv_batch_norm_running_var = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- layer.conv_batch_norm_num_batches_tracked = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
|
-
|
|
|
- layer.conv_pointwise_conv2_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
|
|
|
-
|
|
|
- layer.ffn1_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- layer.ffn1_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
-
|
|
|
- layer.ffn1_w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_ffn_dim);
|
|
|
- layer.ffn1_b1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim);
|
|
|
-
|
|
|
- layer.ffn1_w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim, n_audio_enc_dim);
|
|
|
- layer.ffn1_b2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
-
|
|
|
- layer.ffn2_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- layer.ffn2_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
-
|
|
|
- layer.ffn2_w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_ffn_dim);
|
|
|
- layer.ffn2_b1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim);
|
|
|
-
|
|
|
- layer.ffn2_w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim, n_audio_enc_dim);
|
|
|
- layer.ffn2_b2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
-
|
|
|
- layer.final_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
- layer.final_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
|
|
|
-
|
|
|
- // map by name
|
|
|
-
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_layer_norm/w"] = layer.self_attn_layer_norm_w;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_layer_norm/b"] = layer.self_attn_layer_norm_b;
|
|
|
-
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_k/w"] = layer.self_attn_linear_k_w;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_k/b"] = layer.self_attn_linear_k_b;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_q/w"] = layer.self_attn_linear_q_w;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_q/b"] = layer.self_attn_linear_q_b;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_v/w"] = layer.self_attn_linear_v_w;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_v/b"] = layer.self_attn_linear_v_b;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_out/w"] = layer.self_attn_linear_out_w;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_out/b"] = layer.self_attn_linear_out_b;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_pos/w"] = layer.self_attn_linear_pos_w;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_pos_bias/u"] = layer.self_attn_pos_bias_u;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_pos_bias/v"] = layer.self_attn_pos_bias_v;
|
|
|
-
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_layer_norm/w"] = layer.conv_layer_norm_w;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_layer_norm/b"] = layer.conv_layer_norm_b;
|
|
|
-
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_pointwise_conv1/w"] = layer.conv_pointwise_conv1_w;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_depthwise_conv/w"] = layer.conv_depthwise_conv_w;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/w"] = layer.conv_batch_norm_w;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/b"] = layer.conv_batch_norm_b;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/m"] = layer.conv_batch_norm_running_mean;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/v"] = layer.conv_batch_norm_running_var;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/n"] = layer.conv_batch_norm_num_batches_tracked;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_pointwise_conv2/w"] = layer.conv_pointwise_conv2_w;
|
|
|
-
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_layer_norm/w"] = layer.ffn1_layer_norm_w;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_layer_norm/b"] = layer.ffn1_layer_norm_b;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_1/w"] = layer.ffn1_w1;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_1/b"] = layer.ffn1_b1;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_2/w"] = layer.ffn1_w2;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_2/b"] = layer.ffn1_b2;
|
|
|
-
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_layer_norm/w"] = layer.ffn2_layer_norm_w;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_layer_norm/b"] = layer.ffn2_layer_norm_b;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_1/w"] = layer.ffn2_w1;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_1/b"] = layer.ffn2_b1;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_2/w"] = layer.ffn2_w2;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_2/b"] = layer.ffn2_b2;
|
|
|
-
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/final_layer_norm/w"] = layer.final_layer_norm_w;
|
|
|
- model.tensors["model/enc/h" + std::to_string(i) + "/final_layer_norm/b"] = layer.final_layer_norm_b;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // load weights
|
|
|
- {
|
|
|
- size_t total_size = 0;
|
|
|
- while (true) {
|
|
|
- int32_t n_dims;
|
|
|
- int32_t length;
|
|
|
- int32_t ttype;
|
|
|
-
|
|
|
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
|
|
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
|
|
- fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
|
|
|
-
|
|
|
- if (fin.eof()) {
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- int32_t nelements = 1;
|
|
|
- int32_t ne[3] = { 1, 1, 1};
|
|
|
- for (int i = 0; i < n_dims; ++i) {
|
|
|
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
|
|
- nelements *= ne[i];
|
|
|
- }
|
|
|
-
|
|
|
- std::string name(length, 0);
|
|
|
- fin.read(&name[0], length);
|
|
|
-
|
|
|
- std::cout << "loading " << name << " " << n_dims << std::endl;
|
|
|
-
|
|
|
- if (model.tensors.find(name) == model.tensors.end()) {
|
|
|
- fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- auto tensor = model.tensors[name];
|
|
|
- if (ggml_nelements(tensor) != nelements) {
|
|
|
- std::cout << ggml_nelements(tensor) << std::endl;
|
|
|
- std::cout << nelements << std::endl;
|
|
|
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
|
|
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
|
|
- __func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- // for debugging
|
|
|
- if (0) {
|
|
|
- printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
|
|
|
- }
|
|
|
-
|
|
|
- const size_t bpe = ggml_type_size(ggml_type(ttype));
|
|
|
-
|
|
|
- if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
|
|
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
|
|
- __func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe);
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
|
|
- total_size += ggml_nbytes(tensor);
|
|
|
- }
|
|
|
-
|
|
|
- printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
|
|
|
- }
|
|
|
-
|
|
|
- fin.close();
|
|
|
-
|
|
|
- return true;
|
|
|
-}
|
|
|
-
|
|
|
-// build the computation graph
|
|
|
-struct ggml_cgraph * unity_graph(
|
|
|
- const unity_model & model,
|
|
|
- struct ggml_allocr * allocr) {
|
|
|
-
|
|
|
- const auto & hparams = model.hparams;
|
|
|
-
|
|
|
- const int n_audio_enc_dim = hparams.n_audio_enc_dim;
|
|
|
- const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
|
|
|
- const int n_audio_enc_feat_dim = hparams.n_audio_enc_feat_dim;
|
|
|
- const int n_audio_enc_layer = hparams.n_audio_enc_layer;
|
|
|
- const int n_audio_enc_head = hparams.n_audio_enc_head;
|
|
|
- const int n_ctx = 4096; // 20ms * 4096 = 80s
|
|
|
- const int pos_conv_kernel_size = 128;
|
|
|
- // const int n_text_vocab = hparams.n_text_vocab;
|
|
|
- const int kernel_size = 31;
|
|
|
-
|
|
|
- // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data
|
|
|
- static size_t buf_size = ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead();
|
|
|
- static std::vector<uint8_t> buf(buf_size);
|
|
|
-
|
|
|
- struct ggml_init_params params = {
|
|
|
- /*.mem_size =*/ buf_size,
|
|
|
- /*.mem_buffer =*/ buf.data(),
|
|
|
- /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
|
|
|
- };
|
|
|
-
|
|
|
- struct ggml_context * ctx0 = ggml_init(params);
|
|
|
-
|
|
|
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
|
|
-
|
|
|
- /// For dev, load an example input before conformer blocks
|
|
|
- auto file = std::ifstream("/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/dev/seqs_before_conformer_block.bin", std::ios::binary);
|
|
|
- if (!file) {
|
|
|
- std::cerr << "Failed to open binary file." << std::endl;
|
|
|
- }
|
|
|
- struct ggml_tensor * inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1024, 137);
|
|
|
- inpL->data = malloc(ggml_nbytes(inpL));
|
|
|
- file.read(reinterpret_cast<char *>(inpL->data), ggml_nbytes(inpL));
|
|
|
- struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, 1);
|
|
|
- ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
|
|
|
- ggml_set_f32(ffn_scale, 0.5f);
|
|
|
-
|
|
|
- for (int il = 0; il < n_audio_enc_layer; ++il) {
|
|
|
- struct ggml_tensor * cur = inpL;
|
|
|
- struct ggml_tensor * residual = cur;
|
|
|
- const audio_enc_layer layer = model.audio_enc_layers[il];
|
|
|
- // FFN1: layernorm
|
|
|
- cur = ggml_norm(ctx0, cur, hparams.eps);
|
|
|
- cur = ggml_add(ctx0,
|
|
|
- ggml_mul(ctx0,
|
|
|
- ggml_repeat(ctx0, layer.ffn1_layer_norm_w, cur),
|
|
|
- cur),
|
|
|
- ggml_repeat(ctx0, layer.ffn1_layer_norm_b, cur));
|
|
|
- // FFN1: proj
|
|
|
- cur = ggml_mul_mat(ctx0, layer.ffn1_w1, cur);
|
|
|
- cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.ffn1_b1, cur), cur);
|
|
|
- cur = ggml_silu(ctx0, cur);
|
|
|
- cur = ggml_mul_mat(ctx0, layer.ffn1_w2, cur);
|
|
|
- cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.ffn1_b2, cur), cur);
|
|
|
- // FFN1: * 0.5
|
|
|
- cur = ggml_mul(ctx0, ggml_repeat(ctx0, ffn_scale, cur), cur);
|
|
|
- // FFN1: + residual
|
|
|
- cur = ggml_add(ctx0, cur, residual);
|
|
|
-
|
|
|
- // self_attn: layernorm
|
|
|
- cur = ggml_norm(ctx0, cur, hparams.eps);
|
|
|
- cur = ggml_add(ctx0,
|
|
|
- ggml_mul(ctx0,
|
|
|
- ggml_repeat(ctx0, layer.self_attn_layer_norm_w, cur),
|
|
|
- cur),
|
|
|
- ggml_repeat(ctx0, layer.self_attn_layer_norm_b, cur));
|
|
|
-
|
|
|
- // self_attn: qkv
|
|
|
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0,
|
|
|
- layer.self_attn_linear_q_w,
|
|
|
- cur);
|
|
|
-
|
|
|
- Qcur = ggml_add(ctx0,
|
|
|
- ggml_repeat(ctx0,
|
|
|
- layer.self_attn_linear_q_b,
|
|
|
- Qcur),
|
|
|
- Qcur);
|
|
|
-
|
|
|
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0,
|
|
|
- layer.self_attn_linear_k_w,
|
|
|
- cur);
|
|
|
- Kcur = ggml_add(ctx0,
|
|
|
- ggml_repeat(ctx0,
|
|
|
- layer.self_attn_linear_k_b,
|
|
|
- Kcur),
|
|
|
- Kcur);
|
|
|
-
|
|
|
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0,
|
|
|
- layer.self_attn_linear_v_w,
|
|
|
- cur);
|
|
|
-
|
|
|
- Vcur = ggml_add(ctx0,
|
|
|
- ggml_repeat(ctx0,
|
|
|
- layer.self_attn_linear_v_b,
|
|
|
- Vcur),
|
|
|
- Vcur);
|
|
|
- // self_attn: rel_pos SDPA
|
|
|
- int32_t S = cur->ne[1];
|
|
|
- int32_t H = n_audio_enc_head;
|
|
|
- int32_t K_h = n_audio_enc_dim / H;
|
|
|
-
|
|
|
- int32_t start_index = n_ctx - S;
|
|
|
- int32_t end_index = n_ctx + S - 1;
|
|
|
-
|
|
|
- int num_indices = end_index - start_index;
|
|
|
-
|
|
|
- struct ggml_tensor *rows = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_indices);
|
|
|
- rows->data = malloc(ggml_nbytes(rows));
|
|
|
-
|
|
|
- for (int i = 0; i < num_indices; i++) {
|
|
|
- ((int32_t *)rows->data)[i] = start_index + i;
|
|
|
- }
|
|
|
- // self_attn: load pos_enc weights & compute_r
|
|
|
- struct ggml_tensor * r = ggml_get_rows(ctx0, model.audio_enc_pos_enc_w, rows);
|
|
|
- r = ggml_mul_mat(ctx0, layer.self_attn_linear_pos_w, r); // TODO: reshape
|
|
|
- r = ggml_dup(ctx0, ggml_permute(ctx0,
|
|
|
- ggml_cpy(ctx0,
|
|
|
- r,
|
|
|
- ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, K_h, H, S*2-1)),
|
|
|
- 0, 2, 1, 3));
|
|
|
-
|
|
|
-
|
|
|
- struct ggml_tensor * u_bias = ggml_reshape_3d(ctx0, layer.self_attn_pos_bias_u, K_h, 1, H);
|
|
|
- struct ggml_tensor * v_bias = ggml_reshape_3d(ctx0, layer.self_attn_pos_bias_v, K_h, 1, H);
|
|
|
-
|
|
|
- // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
|
|
|
- struct ggml_tensor * Q =
|
|
|
- ggml_dup(ctx0, ggml_permute(ctx0,
|
|
|
- ggml_cpy(ctx0,
|
|
|
- Qcur,
|
|
|
- ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, K_h, H, S)),
|
|
|
- 0, 2, 1, 3));
|
|
|
- struct ggml_tensor * K =
|
|
|
- ggml_dup(ctx0, ggml_permute(ctx0,
|
|
|
- ggml_cpy(ctx0,
|
|
|
- Kcur,
|
|
|
- ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, K_h, H, S)),
|
|
|
- 0, 2, 1, 3));
|
|
|
- // struct ggml_tensor * V =
|
|
|
- // ggml_dup(ctx0, ggml_permute(ctx0,
|
|
|
- // ggml_cpy(ctx0,
|
|
|
- // Vcur,
|
|
|
- // ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, K_h, H, S)),
|
|
|
- // 1, 2, 0, 3));
|
|
|
- struct ggml_tensor * V =
|
|
|
- ggml_dup(ctx0, ggml_permute(ctx0,
|
|
|
- ggml_cpy(ctx0,
|
|
|
- Vcur,
|
|
|
- ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, K_h, H, S)),
|
|
|
- 1, 2, 0, 3));
|
|
|
-
|
|
|
- // (K_h, S, H)
|
|
|
- struct ggml_tensor * q_with_u_bias = ggml_add(ctx0, Q, u_bias);
|
|
|
- struct ggml_tensor * q_with_v_bias = ggml_add(ctx0, Q, v_bias);
|
|
|
-
|
|
|
- struct ggml_tensor * ac = ggml_mul_mat(ctx0, K, q_with_u_bias);
|
|
|
- struct ggml_tensor * bd = ggml_mul_mat(ctx0, r, q_with_v_bias);
|
|
|
-
|
|
|
- // self_attn: shift_bd
|
|
|
- bd = ggml_dup(ctx0, ggml_permute(ctx0, bd, 2, 1, 0, 3)); // H, S, 2S-1
|
|
|
-
|
|
|
-
|
|
|
- struct ggml_tensor * pad = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, H, S, 1);
|
|
|
- pad->data = malloc(ggml_nbytes(pad));
|
|
|
-
|
|
|
- pad = ggml_set_f32(pad, 0.0);
|
|
|
- bd = ggml_concat(ctx0, pad, bd); // bd[i][j][0] == 0
|
|
|
- bd = ggml_dup(ctx0, ggml_permute(ctx0, bd, 2, 1, 0, 3)); // ok -> (2S, S, H) = pytorch (H, S, 2S)
|
|
|
-
|
|
|
- bd = ggml_dup(ctx0, ggml_reshape_3d(ctx0, bd, S, 2*S, H)); // ok. (S, 2S, H)
|
|
|
-
|
|
|
- bd = ggml_remove_head_row(ctx0, bd);
|
|
|
-
|
|
|
- bd = ggml_reshape_3d(ctx0, bd, 2*S-1, S, H);
|
|
|
-
|
|
|
- bd = ggml_get_first_cols_by_rows(ctx0, bd);
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- // self_attn: compute attn / weights
|
|
|
-
|
|
|
- struct ggml_tensor * attn_weights = ggml_add(ctx0, ac, bd);
|
|
|
- // inpL = ggml_sum(ctx0, attn_weights);
|
|
|
-
|
|
|
-
|
|
|
- struct ggml_tensor * attn_scale = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, 1);
|
|
|
- attn_scale->data = malloc(ggml_nbytes(attn_scale));
|
|
|
- ggml_set_f32(attn_scale, 1.0 / pow(K_h, 0.5));
|
|
|
- attn_weights = ggml_mul(ctx0, ggml_repeat(ctx0, attn_scale, attn_weights), attn_weights);
|
|
|
- attn_weights = ggml_soft_max(ctx0, attn_weights);
|
|
|
- struct ggml_tensor * attn = ggml_mul_mat(ctx0, V, attn_weights);
|
|
|
- inpL = attn;
|
|
|
- break;
|
|
|
-
|
|
|
-
|
|
|
- // conv
|
|
|
-
|
|
|
- // ffn2
|
|
|
-
|
|
|
- // norm
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- ggml_build_forward_expand(gf, inpL);
|
|
|
- ggml_free(ctx0);
|
|
|
-
|
|
|
- return gf;
|
|
|
-}
|
|
|
-
|
|
|
-bool unity_eval(
|
|
|
- const unity_model & model,
|
|
|
- struct ggml_allocr * allocr,
|
|
|
- const int n_threads) {
|
|
|
-
|
|
|
- const auto & hparams = model.hparams;
|
|
|
-
|
|
|
- // reset the allocator to free all the memory allocated during the previous inference
|
|
|
- ggml_allocr_reset(allocr);
|
|
|
-
|
|
|
- struct ggml_cgraph * gf = unity_graph(model, allocr);
|
|
|
-
|
|
|
- // allocate tensors
|
|
|
- ggml_allocr_alloc_graph(allocr, gf);
|
|
|
-
|
|
|
- // run the computation
|
|
|
- struct ggml_cplan plan = ggml_graph_plan(gf, n_threads);
|
|
|
- static std::vector<uint8_t> work_buffer;
|
|
|
- work_buffer.resize(plan.work_size);
|
|
|
- plan.work_data = work_buffer.data();
|
|
|
- ggml_graph_compute(gf, &plan);
|
|
|
-
|
|
|
- // in this case, the output tensor is the last one in the graph
|
|
|
- struct ggml_tensor * inpL = gf->nodes[gf->n_nodes - 1];
|
|
|
- for (int i = 0; i < 1000; ++i) {
|
|
|
- printf("%8.4f ", ((float *)(inpL->data))[i]);
|
|
|
- }
|
|
|
-
|
|
|
- return true;
|
|
|
-}
|
|
|
-
|
|
|
-int main(int argc, char ** argv) {
|
|
|
- // ggml_time_init();
|
|
|
-
|
|
|
- // const int64_t t_main_start_us = ggml_time_us();
|
|
|
-
|
|
|
- gpt_params params;
|
|
|
-
|
|
|
- if (gpt_params_parse(argc, argv, params) == false) {
|
|
|
- return 1;
|
|
|
- }
|
|
|
-
|
|
|
- if (params.seed < 0) {
|
|
|
- params.seed = time(NULL);
|
|
|
- }
|
|
|
-
|
|
|
- printf("%s: seed = %d\n", __func__, params.seed);
|
|
|
-
|
|
|
- std::mt19937 rng(params.seed);
|
|
|
- if (params.prompt.empty()) {
|
|
|
- params.prompt = gpt_random_prompt(rng);
|
|
|
- }
|
|
|
-
|
|
|
- gpt_vocab vocab;
|
|
|
- unity_model model;
|
|
|
-
|
|
|
- // load the model
|
|
|
- {
|
|
|
- if (!unity_model_load(params.model, model, vocab)) {
|
|
|
- fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
|
- return 1;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // keep this buffer alive while evaluating the model
|
|
|
- std::vector<uint8_t> compute_buffer;
|
|
|
- struct ggml_allocr * allocr = NULL;
|
|
|
- // allocate the compute buffer
|
|
|
- {
|
|
|
- allocr = ggml_allocr_new_measure(GGML_MEM_ALIGN);
|
|
|
- struct ggml_cgraph * gf = unity_graph(model, allocr);
|
|
|
-
|
|
|
-
|
|
|
- // compute the required memory
|
|
|
- size_t mem_size = ggml_allocr_alloc_graph(allocr, gf) + GGML_MEM_ALIGN;
|
|
|
-
|
|
|
- // recreate the allocator with the required memory
|
|
|
- ggml_allocr_free(allocr);
|
|
|
- compute_buffer.resize(mem_size);
|
|
|
- allocr = ggml_allocr_new(compute_buffer.data(), mem_size, GGML_MEM_ALIGN);
|
|
|
-
|
|
|
- fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0/1024.0);
|
|
|
- }
|
|
|
-
|
|
|
- if (!unity_eval(model, allocr, 1)) {
|
|
|
- printf("Failed to predict\n");
|
|
|
- return 1;
|
|
|
- }
|
|
|
-
|
|
|
- ggml_free(model.ctx);
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|