|
@@ -47,7 +47,7 @@ class UnitYEncoderAdaptor(TransformerEncoder):
|
|
|
adaptor_layers: Iterable[TransformerEncoderLayer],
|
|
|
*,
|
|
|
inner_layer_norm: bool = False,
|
|
|
- layer_norm_fn: Optional[LayerNormFactory] = None,
|
|
|
+ layer_norm_factory: Optional[LayerNormFactory] = None,
|
|
|
device: Optional[Device] = None,
|
|
|
dtype: Optional[DataType] = None,
|
|
|
) -> None:
|
|
@@ -58,20 +58,20 @@ class UnitYEncoderAdaptor(TransformerEncoder):
|
|
|
The adaptor layers to stack on top of ``inner``.
|
|
|
:param inner_layer_norm:
|
|
|
If ``True``, applies Layer Normalization to outputs of ``inner``.
|
|
|
- :param layer_norm_fn:
|
|
|
+ :param layer_norm_factory:
|
|
|
The factory to use to construct the Layer Normalization modules.
|
|
|
"""
|
|
|
model_dim = inner.model_dim
|
|
|
|
|
|
super().__init__(model_dim)
|
|
|
|
|
|
- if layer_norm_fn is None:
|
|
|
- layer_norm_fn = create_default_layer_norm
|
|
|
+ if layer_norm_factory is None:
|
|
|
+ layer_norm_factory = create_default_layer_norm
|
|
|
|
|
|
self.inner = inner
|
|
|
|
|
|
if inner_layer_norm:
|
|
|
- self.inner_layer_norm = layer_norm_fn(model_dim, device=device, dtype=dtype)
|
|
|
+ self.inner_layer_norm = layer_norm_factory(model_dim, device=device, dtype=dtype)
|
|
|
else:
|
|
|
self.register_module("inner_layer_norm", None)
|
|
|
|
|
@@ -91,7 +91,7 @@ class UnitYEncoderAdaptor(TransformerEncoder):
|
|
|
|
|
|
self.adaptor_layers = layer_list
|
|
|
|
|
|
- self.layer_norm = layer_norm_fn(model_dim, device=device, dtype=dtype)
|
|
|
+ self.layer_norm = layer_norm_factory(model_dim, device=device, dtype=dtype)
|
|
|
|
|
|
check_model_dim(self)
|
|
|
|
|
@@ -161,7 +161,7 @@ class UnitYTransformerAdaptorLayer(TransformerEncoderLayer):
|
|
|
stride: int,
|
|
|
*,
|
|
|
dropout_p: float = 0.1,
|
|
|
- layer_norm_fn: Optional[LayerNormFactory] = None,
|
|
|
+ layer_norm_factory: Optional[LayerNormFactory] = None,
|
|
|
device: Optional[Device] = None,
|
|
|
dtype: Optional[DataType] = None,
|
|
|
) -> None:
|
|
@@ -177,20 +177,20 @@ class UnitYTransformerAdaptorLayer(TransformerEncoderLayer):
|
|
|
:param dropout_p:
|
|
|
The dropout probability on outputs of the self attention layer and
|
|
|
the feed-forward network.
|
|
|
- :param layer_norm_fn:
|
|
|
+ :param layer_norm_factory:
|
|
|
The factory to use to construct the Layer Normalization modules.
|
|
|
"""
|
|
|
model_dim = self_attn.model_dim
|
|
|
|
|
|
super().__init__(model_dim)
|
|
|
|
|
|
- if layer_norm_fn is None:
|
|
|
- layer_norm_fn = create_default_layer_norm
|
|
|
+ if layer_norm_factory is None:
|
|
|
+ layer_norm_factory = create_default_layer_norm
|
|
|
|
|
|
self.kernel_size = kernel_size
|
|
|
self.stride = stride
|
|
|
|
|
|
- self.residual_layer_norm = layer_norm_fn(model_dim, device=device, dtype=dtype)
|
|
|
+ self.residual_layer_norm = layer_norm_factory(model_dim, device=device, dtype=dtype)
|
|
|
|
|
|
self.residual_conv = Conv1d(
|
|
|
model_dim,
|
|
@@ -204,7 +204,7 @@ class UnitYTransformerAdaptorLayer(TransformerEncoderLayer):
|
|
|
|
|
|
self.residual_activation = GLU(dim=1)
|
|
|
|
|
|
- self.self_attn_layer_norm = layer_norm_fn(model_dim, device=device, dtype=dtype)
|
|
|
+ self.self_attn_layer_norm = layer_norm_factory(model_dim, device=device, dtype=dtype)
|
|
|
|
|
|
self.self_attn_conv = Conv1d(
|
|
|
model_dim,
|
|
@@ -225,7 +225,7 @@ class UnitYTransformerAdaptorLayer(TransformerEncoderLayer):
|
|
|
else:
|
|
|
self.register_module("self_attn_dropout", None)
|
|
|
|
|
|
- self.ffn_layer_norm = layer_norm_fn(model_dim, device=device, dtype=dtype)
|
|
|
+ self.ffn_layer_norm = layer_norm_factory(model_dim, device=device, dtype=dtype)
|
|
|
|
|
|
self.ffn = ffn
|
|
|
|
|
@@ -347,7 +347,7 @@ class UnitYConformerAdaptorLayer(TransformerEncoderLayer):
|
|
|
stride: int,
|
|
|
*,
|
|
|
layer_norm: bool = False,
|
|
|
- layer_norm_fn: Optional[LayerNormFactory] = None,
|
|
|
+ layer_norm_factory: Optional[LayerNormFactory] = None,
|
|
|
device: Optional[Device] = None,
|
|
|
dtype: Optional[DataType] = None,
|
|
|
) -> None:
|
|
@@ -360,19 +360,19 @@ class UnitYConformerAdaptorLayer(TransformerEncoderLayer):
|
|
|
The stride for 1D pooling convolutions.
|
|
|
:param layer_norm:
|
|
|
If ``True``, applies Layer Normalization to inputs before pooling.
|
|
|
- :param layer_norm_fn:
|
|
|
+ :param layer_norm_factory:
|
|
|
The factory to use to construct the Layer Normalization modules.
|
|
|
"""
|
|
|
super().__init__(block.model_dim)
|
|
|
|
|
|
- if layer_norm_fn is None:
|
|
|
- layer_norm_fn = create_default_layer_norm
|
|
|
+ if layer_norm_factory is None:
|
|
|
+ layer_norm_factory = create_default_layer_norm
|
|
|
|
|
|
self.kernel_size = kernel_size
|
|
|
self.stride = stride
|
|
|
|
|
|
if layer_norm:
|
|
|
- self.layer_norm = layer_norm_fn(self.model_dim, device=device, dtype=dtype)
|
|
|
+ self.layer_norm = layer_norm_factory(self.model_dim, device=device, dtype=dtype)
|
|
|
else:
|
|
|
self.register_module("layer_norm", None)
|
|
|
|