|
@@ -0,0 +1,714 @@
|
|
|
+from __future__ import annotations
|
|
|
+
|
|
|
+import gradio as gr
|
|
|
+import numpy as np
|
|
|
+import torch
|
|
|
+import torchaudio
|
|
|
+from huggingface_hub import hf_hub_download
|
|
|
+from seamless_communication.models.inference.translator import Translator
|
|
|
+
|
|
|
+DESCRIPTION = """# SeamlessM4T
|
|
|
+
|
|
|
+[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
|
|
|
+translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
|
|
|
+
|
|
|
+This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
|
|
|
+translation and more, without relying on multiple separate models.
|
|
|
+"""
|
|
|
+
|
|
|
+TASK_NAMES = [
|
|
|
+ "S2ST (Speech to Speech translation)",
|
|
|
+ "S2TT (Speech to Text translation)",
|
|
|
+ "T2ST (Text to Speech translation)",
|
|
|
+ "T2TT (Text to Text translation)",
|
|
|
+ "ASR (Automatic Speech Recognition)",
|
|
|
+]
|
|
|
+
|
|
|
+# Language dict
|
|
|
+language_code_to_name = {
|
|
|
+ "afr": "Afrikaans",
|
|
|
+ "amh": "Amharic",
|
|
|
+ "arb": "Modern Standard Arabic",
|
|
|
+ "ary": "Moroccan Arabic",
|
|
|
+ "arz": "Egyptian Arabic",
|
|
|
+ "asm": "Assamese",
|
|
|
+ "ast": "Asturian",
|
|
|
+ "azj": "North Azerbaijani",
|
|
|
+ "bel": "Belarusian",
|
|
|
+ "ben": "Bengali",
|
|
|
+ "bos": "Bosnian",
|
|
|
+ "bul": "Bulgarian",
|
|
|
+ "cat": "Catalan",
|
|
|
+ "ceb": "Cebuano",
|
|
|
+ "ces": "Czech",
|
|
|
+ "ckb": "Central Kurdish",
|
|
|
+ "cmn": "Mandarin Chinese",
|
|
|
+ "cym": "Welsh",
|
|
|
+ "dan": "Danish",
|
|
|
+ "deu": "German",
|
|
|
+ "ell": "Greek",
|
|
|
+ "eng": "English",
|
|
|
+ "est": "Estonian",
|
|
|
+ "eus": "Basque",
|
|
|
+ "fin": "Finnish",
|
|
|
+ "fra": "French",
|
|
|
+ "gaz": "West Central Oromo",
|
|
|
+ "gle": "Irish",
|
|
|
+ "glg": "Galician",
|
|
|
+ "guj": "Gujarati",
|
|
|
+ "heb": "Hebrew",
|
|
|
+ "hin": "Hindi",
|
|
|
+ "hrv": "Croatian",
|
|
|
+ "hun": "Hungarian",
|
|
|
+ "hye": "Armenian",
|
|
|
+ "ibo": "Igbo",
|
|
|
+ "ind": "Indonesian",
|
|
|
+ "isl": "Icelandic",
|
|
|
+ "ita": "Italian",
|
|
|
+ "jav": "Javanese",
|
|
|
+ "jpn": "Japanese",
|
|
|
+ "kam": "Kamba",
|
|
|
+ "kan": "Kannada",
|
|
|
+ "kat": "Georgian",
|
|
|
+ "kaz": "Kazakh",
|
|
|
+ "kea": "Kabuverdianu",
|
|
|
+ "khk": "Halh Mongolian",
|
|
|
+ "khm": "Khmer",
|
|
|
+ "kir": "Kyrgyz",
|
|
|
+ "kor": "Korean",
|
|
|
+ "lao": "Lao",
|
|
|
+ "lit": "Lithuanian",
|
|
|
+ "ltz": "Luxembourgish",
|
|
|
+ "lug": "Ganda",
|
|
|
+ "luo": "Luo",
|
|
|
+ "lvs": "Standard Latvian",
|
|
|
+ "mai": "Maithili",
|
|
|
+ "mal": "Malayalam",
|
|
|
+ "mar": "Marathi",
|
|
|
+ "mkd": "Macedonian",
|
|
|
+ "mlt": "Maltese",
|
|
|
+ "mni": "Meitei",
|
|
|
+ "mya": "Burmese",
|
|
|
+ "nld": "Dutch",
|
|
|
+ "nno": "Norwegian Nynorsk",
|
|
|
+ "nob": "Norwegian Bokm\u00e5l",
|
|
|
+ "npi": "Nepali",
|
|
|
+ "nya": "Nyanja",
|
|
|
+ "oci": "Occitan",
|
|
|
+ "ory": "Odia",
|
|
|
+ "pan": "Punjabi",
|
|
|
+ "pbt": "Southern Pashto",
|
|
|
+ "pes": "Western Persian",
|
|
|
+ "pol": "Polish",
|
|
|
+ "por": "Portuguese",
|
|
|
+ "ron": "Romanian",
|
|
|
+ "rus": "Russian",
|
|
|
+ "slk": "Slovak",
|
|
|
+ "slv": "Slovenian",
|
|
|
+ "sna": "Shona",
|
|
|
+ "snd": "Sindhi",
|
|
|
+ "som": "Somali",
|
|
|
+ "spa": "Spanish",
|
|
|
+ "srp": "Serbian",
|
|
|
+ "swe": "Swedish",
|
|
|
+ "swh": "Swahili",
|
|
|
+ "tam": "Tamil",
|
|
|
+ "tel": "Telugu",
|
|
|
+ "tgk": "Tajik",
|
|
|
+ "tgl": "Tagalog",
|
|
|
+ "tha": "Thai",
|
|
|
+ "tur": "Turkish",
|
|
|
+ "ukr": "Ukrainian",
|
|
|
+ "urd": "Urdu",
|
|
|
+ "uzn": "Northern Uzbek",
|
|
|
+ "vie": "Vietnamese",
|
|
|
+ "xho": "Xhosa",
|
|
|
+ "yor": "Yoruba",
|
|
|
+ "yue": "Cantonese",
|
|
|
+ "zlm": "Colloquial Malay",
|
|
|
+ "zsm": "Standard Malay",
|
|
|
+ "zul": "Zulu",
|
|
|
+}
|
|
|
+LANGUAGE_NAME_TO_CODE = {v: k for k, v in language_code_to_name.items()}
|
|
|
+
|
|
|
+# Source langs: S2ST / S2TT / ASR don't need source lang
|
|
|
+# T2TT / T2ST use this
|
|
|
+text_source_language_codes = [
|
|
|
+ "afr",
|
|
|
+ "amh",
|
|
|
+ "arb",
|
|
|
+ "ary",
|
|
|
+ "arz",
|
|
|
+ "asm",
|
|
|
+ "azj",
|
|
|
+ "bel",
|
|
|
+ "ben",
|
|
|
+ "bos",
|
|
|
+ "bul",
|
|
|
+ "cat",
|
|
|
+ "ceb",
|
|
|
+ "ces",
|
|
|
+ "ckb",
|
|
|
+ "cmn",
|
|
|
+ "cym",
|
|
|
+ "dan",
|
|
|
+ "deu",
|
|
|
+ "ell",
|
|
|
+ "eng",
|
|
|
+ "est",
|
|
|
+ "eus",
|
|
|
+ "fin",
|
|
|
+ "fra",
|
|
|
+ "gaz",
|
|
|
+ "gle",
|
|
|
+ "glg",
|
|
|
+ "guj",
|
|
|
+ "heb",
|
|
|
+ "hin",
|
|
|
+ "hrv",
|
|
|
+ "hun",
|
|
|
+ "hye",
|
|
|
+ "ibo",
|
|
|
+ "ind",
|
|
|
+ "isl",
|
|
|
+ "ita",
|
|
|
+ "jav",
|
|
|
+ "jpn",
|
|
|
+ "kan",
|
|
|
+ "kat",
|
|
|
+ "kaz",
|
|
|
+ "khk",
|
|
|
+ "khm",
|
|
|
+ "kir",
|
|
|
+ "kor",
|
|
|
+ "lao",
|
|
|
+ "lit",
|
|
|
+ "lug",
|
|
|
+ "luo",
|
|
|
+ "lvs",
|
|
|
+ "mai",
|
|
|
+ "mal",
|
|
|
+ "mar",
|
|
|
+ "mkd",
|
|
|
+ "mlt",
|
|
|
+ "mni",
|
|
|
+ "mya",
|
|
|
+ "nld",
|
|
|
+ "nno",
|
|
|
+ "nob",
|
|
|
+ "npi",
|
|
|
+ "nya",
|
|
|
+ "ory",
|
|
|
+ "pan",
|
|
|
+ "pbt",
|
|
|
+ "pes",
|
|
|
+ "pol",
|
|
|
+ "por",
|
|
|
+ "ron",
|
|
|
+ "rus",
|
|
|
+ "slk",
|
|
|
+ "slv",
|
|
|
+ "sna",
|
|
|
+ "snd",
|
|
|
+ "som",
|
|
|
+ "spa",
|
|
|
+ "srp",
|
|
|
+ "swe",
|
|
|
+ "swh",
|
|
|
+ "tam",
|
|
|
+ "tel",
|
|
|
+ "tgk",
|
|
|
+ "tgl",
|
|
|
+ "tha",
|
|
|
+ "tur",
|
|
|
+ "ukr",
|
|
|
+ "urd",
|
|
|
+ "uzn",
|
|
|
+ "vie",
|
|
|
+ "yor",
|
|
|
+ "yue",
|
|
|
+ "zsm",
|
|
|
+ "zul",
|
|
|
+]
|
|
|
+TEXT_SOURCE_LANGUAGE_NAMES = sorted(
|
|
|
+ [language_code_to_name[code] for code in text_source_language_codes]
|
|
|
+)
|
|
|
+
|
|
|
+# Target langs:
|
|
|
+# S2ST / T2ST
|
|
|
+s2st_target_language_codes = [
|
|
|
+ "eng",
|
|
|
+ "arb",
|
|
|
+ "ben",
|
|
|
+ "cat",
|
|
|
+ "ces",
|
|
|
+ "cmn",
|
|
|
+ "cym",
|
|
|
+ "dan",
|
|
|
+ "deu",
|
|
|
+ "est",
|
|
|
+ "fin",
|
|
|
+ "fra",
|
|
|
+ "hin",
|
|
|
+ "ind",
|
|
|
+ "ita",
|
|
|
+ "jpn",
|
|
|
+ "kor",
|
|
|
+ "mlt",
|
|
|
+ "nld",
|
|
|
+ "pes",
|
|
|
+ "pol",
|
|
|
+ "por",
|
|
|
+ "ron",
|
|
|
+ "rus",
|
|
|
+ "slk",
|
|
|
+ "spa",
|
|
|
+ "swe",
|
|
|
+ "swh",
|
|
|
+ "tel",
|
|
|
+ "tgl",
|
|
|
+ "tha",
|
|
|
+ "tur",
|
|
|
+ "ukr",
|
|
|
+ "urd",
|
|
|
+ "uzn",
|
|
|
+ "vie",
|
|
|
+]
|
|
|
+S2ST_TARGET_LANGUAGE_NAMES = sorted(
|
|
|
+ [language_code_to_name[code] for code in s2st_target_language_codes]
|
|
|
+)
|
|
|
+# S2TT / ASR
|
|
|
+S2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
|
|
+# T2TT
|
|
|
+T2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
|
|
+
|
|
|
+# Download sample input audio files
|
|
|
+filenames = ["assets/sample_input.mp3", "assets/sample_input_2.mp3"]
|
|
|
+for filename in filenames:
|
|
|
+ hf_hub_download(
|
|
|
+ repo_id="facebook/seamless_m4t",
|
|
|
+ repo_type="space",
|
|
|
+ filename=filename,
|
|
|
+ local_dir=".",
|
|
|
+ )
|
|
|
+
|
|
|
+AUDIO_SAMPLE_RATE = 16000.0
|
|
|
+MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
|
|
+DEFAULT_TARGET_LANGUAGE = "French"
|
|
|
+
|
|
|
+device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
+translator = Translator(
|
|
|
+ model_name_or_card="seamlessM4T_large",
|
|
|
+ vocoder_name_or_card="vocoder_36langs",
|
|
|
+ device=device,
|
|
|
+ dtype=torch.float16 if "cuda" in device.type else torch.float32,
|
|
|
+)
|
|
|
+
|
|
|
+
|
|
|
+def predict(
|
|
|
+ task_name: str,
|
|
|
+ audio_source: str,
|
|
|
+ input_audio_mic: str | None,
|
|
|
+ input_audio_file: str | None,
|
|
|
+ input_text: str | None,
|
|
|
+ source_language: str | None,
|
|
|
+ target_language: str,
|
|
|
+) -> tuple[tuple[int, np.ndarray] | None, str]:
|
|
|
+ task_name = task_name.split()[0]
|
|
|
+ source_language_code = (
|
|
|
+ LANGUAGE_NAME_TO_CODE[source_language] if source_language else None
|
|
|
+ )
|
|
|
+ target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
|
|
+
|
|
|
+ if task_name in ["S2ST", "S2TT", "ASR"]:
|
|
|
+ if audio_source == "microphone":
|
|
|
+ input_data = input_audio_mic
|
|
|
+ else:
|
|
|
+ input_data = input_audio_file
|
|
|
+
|
|
|
+ arr, org_sr = torchaudio.load(input_data)
|
|
|
+ new_arr = torchaudio.functional.resample(
|
|
|
+ arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE
|
|
|
+ )
|
|
|
+ max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
|
|
|
+ if new_arr.shape[1] > max_length:
|
|
|
+ new_arr = new_arr[:, :max_length]
|
|
|
+ gr.Warning(
|
|
|
+ f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used."
|
|
|
+ )
|
|
|
+ torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
|
|
+ else:
|
|
|
+ input_data = input_text
|
|
|
+ text_out, wav, sr = translator.predict(
|
|
|
+ input=input_data,
|
|
|
+ task_str=task_name,
|
|
|
+ tgt_lang=target_language_code,
|
|
|
+ src_lang=source_language_code,
|
|
|
+ ngram_filtering=True,
|
|
|
+ )
|
|
|
+ if task_name in ["S2ST", "T2ST"]:
|
|
|
+ return (sr, wav.cpu().detach().numpy()), text_out
|
|
|
+ else:
|
|
|
+ return None, text_out
|
|
|
+
|
|
|
+
|
|
|
+def process_s2st_example(
|
|
|
+ input_audio_file: str, target_language: str
|
|
|
+) -> tuple[tuple[int, np.ndarray] | None, str]:
|
|
|
+ return predict(
|
|
|
+ task_name="S2ST",
|
|
|
+ audio_source="file",
|
|
|
+ input_audio_mic=None,
|
|
|
+ input_audio_file=input_audio_file,
|
|
|
+ input_text=None,
|
|
|
+ source_language=None,
|
|
|
+ target_language=target_language,
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def process_s2tt_example(
|
|
|
+ input_audio_file: str, target_language: str
|
|
|
+) -> tuple[tuple[int, np.ndarray] | None, str]:
|
|
|
+ return predict(
|
|
|
+ task_name="S2TT",
|
|
|
+ audio_source="file",
|
|
|
+ input_audio_mic=None,
|
|
|
+ input_audio_file=input_audio_file,
|
|
|
+ input_text=None,
|
|
|
+ source_language=None,
|
|
|
+ target_language=target_language,
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def process_t2st_example(
|
|
|
+ input_text: str, source_language: str, target_language: str
|
|
|
+) -> tuple[tuple[int, np.ndarray] | None, str]:
|
|
|
+ return predict(
|
|
|
+ task_name="T2ST",
|
|
|
+ audio_source="",
|
|
|
+ input_audio_mic=None,
|
|
|
+ input_audio_file=None,
|
|
|
+ input_text=input_text,
|
|
|
+ source_language=source_language,
|
|
|
+ target_language=target_language,
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def process_t2tt_example(
|
|
|
+ input_text: str, source_language: str, target_language: str
|
|
|
+) -> tuple[tuple[int, np.ndarray] | None, str]:
|
|
|
+ return predict(
|
|
|
+ task_name="T2TT",
|
|
|
+ audio_source="",
|
|
|
+ input_audio_mic=None,
|
|
|
+ input_audio_file=None,
|
|
|
+ input_text=input_text,
|
|
|
+ source_language=source_language,
|
|
|
+ target_language=target_language,
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def process_asr_example(
|
|
|
+ input_audio_file: str, target_language: str
|
|
|
+) -> tuple[tuple[int, np.ndarray] | None, str]:
|
|
|
+ return predict(
|
|
|
+ task_name="ASR",
|
|
|
+ audio_source="file",
|
|
|
+ input_audio_mic=None,
|
|
|
+ input_audio_file=input_audio_file,
|
|
|
+ input_text=None,
|
|
|
+ source_language=None,
|
|
|
+ target_language=target_language,
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
|
|
|
+ mic = audio_source == "microphone"
|
|
|
+ return (
|
|
|
+ gr.update(visible=mic, value=None), # input_audio_mic
|
|
|
+ gr.update(visible=not mic, value=None), # input_audio_file
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def update_input_ui(task_name: str) -> tuple[dict, dict, dict, dict]:
|
|
|
+ task_name = task_name.split()[0]
|
|
|
+ if task_name == "S2ST":
|
|
|
+ return (
|
|
|
+ gr.update(visible=True), # audio_box
|
|
|
+ gr.update(visible=False), # input_text
|
|
|
+ gr.update(visible=False), # source_language
|
|
|
+ gr.update(
|
|
|
+ visible=True,
|
|
|
+ choices=S2ST_TARGET_LANGUAGE_NAMES,
|
|
|
+ value=DEFAULT_TARGET_LANGUAGE,
|
|
|
+ ), # target_language
|
|
|
+ )
|
|
|
+ elif task_name == "S2TT":
|
|
|
+ return (
|
|
|
+ gr.update(visible=True), # audio_box
|
|
|
+ gr.update(visible=False), # input_text
|
|
|
+ gr.update(visible=False), # source_language
|
|
|
+ gr.update(
|
|
|
+ visible=True,
|
|
|
+ choices=S2TT_TARGET_LANGUAGE_NAMES,
|
|
|
+ value=DEFAULT_TARGET_LANGUAGE,
|
|
|
+ ), # target_language
|
|
|
+ )
|
|
|
+ elif task_name == "T2ST":
|
|
|
+ return (
|
|
|
+ gr.update(visible=False), # audio_box
|
|
|
+ gr.update(visible=True), # input_text
|
|
|
+ gr.update(visible=True), # source_language
|
|
|
+ gr.update(
|
|
|
+ visible=True,
|
|
|
+ choices=S2ST_TARGET_LANGUAGE_NAMES,
|
|
|
+ value=DEFAULT_TARGET_LANGUAGE,
|
|
|
+ ), # target_language
|
|
|
+ )
|
|
|
+ elif task_name == "T2TT":
|
|
|
+ return (
|
|
|
+ gr.update(visible=False), # audio_box
|
|
|
+ gr.update(visible=True), # input_text
|
|
|
+ gr.update(visible=True), # source_language
|
|
|
+ gr.update(
|
|
|
+ visible=True,
|
|
|
+ choices=T2TT_TARGET_LANGUAGE_NAMES,
|
|
|
+ value=DEFAULT_TARGET_LANGUAGE,
|
|
|
+ ), # target_language
|
|
|
+ )
|
|
|
+ elif task_name == "ASR":
|
|
|
+ return (
|
|
|
+ gr.update(visible=True), # audio_box
|
|
|
+ gr.update(visible=False), # input_text
|
|
|
+ gr.update(visible=False), # source_language
|
|
|
+ gr.update(
|
|
|
+ visible=True,
|
|
|
+ choices=S2TT_TARGET_LANGUAGE_NAMES,
|
|
|
+ value=DEFAULT_TARGET_LANGUAGE,
|
|
|
+ ), # target_language
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ raise ValueError(f"Unknown task: {task_name}")
|
|
|
+
|
|
|
+
|
|
|
+def update_output_ui(task_name: str) -> tuple[dict, dict]:
|
|
|
+ task_name = task_name.split()[0]
|
|
|
+ if task_name in ["S2ST", "T2ST"]:
|
|
|
+ return (
|
|
|
+ gr.update(visible=True, value=None), # output_audio
|
|
|
+ gr.update(value=None), # output_text
|
|
|
+ )
|
|
|
+ elif task_name in ["S2TT", "T2TT", "ASR"]:
|
|
|
+ return (
|
|
|
+ gr.update(visible=False, value=None), # output_audio
|
|
|
+ gr.update(value=None), # output_text
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ raise ValueError(f"Unknown task: {task_name}")
|
|
|
+
|
|
|
+
|
|
|
+def update_example_ui(task_name: str) -> tuple[dict, dict, dict, dict, dict]:
|
|
|
+ task_name = task_name.split()[0]
|
|
|
+ return (
|
|
|
+ gr.update(visible=task_name == "S2ST"), # s2st_example_row
|
|
|
+ gr.update(visible=task_name == "S2TT"), # s2tt_example_row
|
|
|
+ gr.update(visible=task_name == "T2ST"), # t2st_example_row
|
|
|
+ gr.update(visible=task_name == "T2TT"), # t2tt_example_row
|
|
|
+ gr.update(visible=task_name == "ASR"), # asr_example_row
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+css = """
|
|
|
+h1 {
|
|
|
+ text-align: center;
|
|
|
+}
|
|
|
+
|
|
|
+.contain {
|
|
|
+ max-width: 730px;
|
|
|
+ margin: auto;
|
|
|
+ padding-top: 1.5rem;
|
|
|
+}
|
|
|
+"""
|
|
|
+
|
|
|
+with gr.Blocks(css=css) as demo:
|
|
|
+ gr.Markdown(DESCRIPTION)
|
|
|
+ with gr.Group():
|
|
|
+ task_name = gr.Dropdown(
|
|
|
+ label="Task",
|
|
|
+ choices=TASK_NAMES,
|
|
|
+ value=TASK_NAMES[0],
|
|
|
+ )
|
|
|
+ with gr.Row():
|
|
|
+ source_language = gr.Dropdown(
|
|
|
+ label="Source language",
|
|
|
+ choices=TEXT_SOURCE_LANGUAGE_NAMES,
|
|
|
+ value="English",
|
|
|
+ visible=False,
|
|
|
+ )
|
|
|
+ target_language = gr.Dropdown(
|
|
|
+ label="Target language",
|
|
|
+ choices=S2ST_TARGET_LANGUAGE_NAMES,
|
|
|
+ value=DEFAULT_TARGET_LANGUAGE,
|
|
|
+ )
|
|
|
+ with gr.Row() as audio_box:
|
|
|
+ audio_source = gr.Radio(
|
|
|
+ label="Audio source",
|
|
|
+ choices=["file", "microphone"],
|
|
|
+ value="file",
|
|
|
+ )
|
|
|
+ input_audio_mic = gr.Audio(
|
|
|
+ label="Input speech",
|
|
|
+ type="filepath",
|
|
|
+ source="microphone",
|
|
|
+ visible=False,
|
|
|
+ )
|
|
|
+ input_audio_file = gr.Audio(
|
|
|
+ label="Input speech",
|
|
|
+ type="filepath",
|
|
|
+ source="upload",
|
|
|
+ visible=True,
|
|
|
+ )
|
|
|
+ input_text = gr.Textbox(label="Input text", visible=False)
|
|
|
+ btn = gr.Button("Translate")
|
|
|
+ with gr.Column():
|
|
|
+ output_audio = gr.Audio(
|
|
|
+ label="Translated speech",
|
|
|
+ autoplay=False,
|
|
|
+ streaming=False,
|
|
|
+ type="numpy",
|
|
|
+ )
|
|
|
+ output_text = gr.Textbox(label="Translated text")
|
|
|
+
|
|
|
+ with gr.Row(visible=True) as s2st_example_row:
|
|
|
+ s2st_examples = gr.Examples(
|
|
|
+ examples=[
|
|
|
+ ["assets/sample_input.mp3", "French"],
|
|
|
+ ["assets/sample_input.mp3", "Mandarin Chinese"],
|
|
|
+ ["assets/sample_input_2.mp3", "Hindi"],
|
|
|
+ ["assets/sample_input_2.mp3", "Spanish"],
|
|
|
+ ],
|
|
|
+ inputs=[input_audio_file, target_language],
|
|
|
+ outputs=[output_audio, output_text],
|
|
|
+ fn=process_s2st_example,
|
|
|
+ )
|
|
|
+ with gr.Row(visible=False) as s2tt_example_row:
|
|
|
+ s2tt_examples = gr.Examples(
|
|
|
+ examples=[
|
|
|
+ ["assets/sample_input.mp3", "French"],
|
|
|
+ ["assets/sample_input.mp3", "Mandarin Chinese"],
|
|
|
+ ["assets/sample_input_2.mp3", "Hindi"],
|
|
|
+ ["assets/sample_input_2.mp3", "Spanish"],
|
|
|
+ ],
|
|
|
+ inputs=[input_audio_file, target_language],
|
|
|
+ outputs=[output_audio, output_text],
|
|
|
+ fn=process_s2tt_example,
|
|
|
+ )
|
|
|
+ with gr.Row(visible=False) as t2st_example_row:
|
|
|
+ t2st_examples = gr.Examples(
|
|
|
+ examples=[
|
|
|
+ ["My favorite animal is the elephant.", "English", "French"],
|
|
|
+ ["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
|
|
+ [
|
|
|
+ "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
|
|
+ "English",
|
|
|
+ "Hindi",
|
|
|
+ ],
|
|
|
+ [
|
|
|
+ "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
|
|
+ "English",
|
|
|
+ "Spanish",
|
|
|
+ ],
|
|
|
+ ],
|
|
|
+ inputs=[input_text, source_language, target_language],
|
|
|
+ outputs=[output_audio, output_text],
|
|
|
+ fn=process_t2st_example,
|
|
|
+ )
|
|
|
+ with gr.Row(visible=False) as t2tt_example_row:
|
|
|
+ t2tt_examples = gr.Examples(
|
|
|
+ examples=[
|
|
|
+ ["My favorite animal is the elephant.", "English", "French"],
|
|
|
+ ["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
|
|
+ [
|
|
|
+ "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
|
|
+ "English",
|
|
|
+ "Hindi",
|
|
|
+ ],
|
|
|
+ [
|
|
|
+ "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
|
|
+ "English",
|
|
|
+ "Spanish",
|
|
|
+ ],
|
|
|
+ ],
|
|
|
+ inputs=[input_text, source_language, target_language],
|
|
|
+ outputs=[output_audio, output_text],
|
|
|
+ fn=process_t2tt_example,
|
|
|
+ )
|
|
|
+ with gr.Row(visible=False) as asr_example_row:
|
|
|
+ asr_examples = gr.Examples(
|
|
|
+ examples=[
|
|
|
+ ["assets/sample_input.mp3", "English"],
|
|
|
+ ["assets/sample_input_2.mp3", "English"],
|
|
|
+ ],
|
|
|
+ inputs=[input_audio_file, target_language],
|
|
|
+ outputs=[output_audio, output_text],
|
|
|
+ fn=process_asr_example,
|
|
|
+ )
|
|
|
+
|
|
|
+ audio_source.change(
|
|
|
+ fn=update_audio_ui,
|
|
|
+ inputs=audio_source,
|
|
|
+ outputs=[
|
|
|
+ input_audio_mic,
|
|
|
+ input_audio_file,
|
|
|
+ ],
|
|
|
+ queue=False,
|
|
|
+ api_name=False,
|
|
|
+ )
|
|
|
+ task_name.change(
|
|
|
+ fn=update_input_ui,
|
|
|
+ inputs=task_name,
|
|
|
+ outputs=[
|
|
|
+ audio_box,
|
|
|
+ input_text,
|
|
|
+ source_language,
|
|
|
+ target_language,
|
|
|
+ ],
|
|
|
+ queue=False,
|
|
|
+ api_name=False,
|
|
|
+ ).then(
|
|
|
+ fn=update_output_ui,
|
|
|
+ inputs=task_name,
|
|
|
+ outputs=[output_audio, output_text],
|
|
|
+ queue=False,
|
|
|
+ api_name=False,
|
|
|
+ ).then(
|
|
|
+ fn=update_example_ui,
|
|
|
+ inputs=task_name,
|
|
|
+ outputs=[
|
|
|
+ s2st_example_row,
|
|
|
+ s2tt_example_row,
|
|
|
+ t2st_example_row,
|
|
|
+ t2tt_example_row,
|
|
|
+ asr_example_row,
|
|
|
+ ],
|
|
|
+ queue=False,
|
|
|
+ api_name=False,
|
|
|
+ )
|
|
|
+
|
|
|
+ btn.click(
|
|
|
+ fn=predict,
|
|
|
+ inputs=[
|
|
|
+ task_name,
|
|
|
+ audio_source,
|
|
|
+ input_audio_mic,
|
|
|
+ input_audio_file,
|
|
|
+ input_text,
|
|
|
+ source_language,
|
|
|
+ target_language,
|
|
|
+ ],
|
|
|
+ outputs=[output_audio, output_text],
|
|
|
+ api_name="run",
|
|
|
+ )
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ demo.queue().launch()
|