|
@@ -12,11 +12,11 @@ SeamlessM4T models currently support five tasks:
|
|
## Quick start:
|
|
## Quick start:
|
|
Inference is run with the CLI, from the root directory of the repository.
|
|
Inference is run with the CLI, from the root directory of the repository.
|
|
|
|
|
|
-The model can be specified with `--model_name` `multitask_unity_large` or `multitask_unity_medium`:
|
|
|
|
|
|
+The model can be specified with `--model_name` `seamlessM4T_large` or `seamlessM4T_medium`:
|
|
|
|
|
|
**S2ST**:
|
|
**S2ST**:
|
|
```bash
|
|
```bash
|
|
-python scripts/m4t/predict/predict.py <path_to_input_audio> s2st <tgt_lang> --output_path <path_to_save_audio> --model_name multitask_unity_large
|
|
|
|
|
|
+python scripts/m4t/predict/predict.py <path_to_input_audio> s2st <tgt_lang> --output_path <path_to_save_audio> --model_name seamlessM4T_large
|
|
```
|
|
```
|
|
|
|
|
|
**S2TT**:
|
|
**S2TT**:
|
|
@@ -42,8 +42,8 @@ python scripts/m4t/predict/predict.py <path_to_input_audio> asr <tgt_lang>
|
|
## Inference breakdown
|
|
## Inference breakdown
|
|
|
|
|
|
Inference calls for the `Translator` object instantiated with a Multitasking UnitY model with the options:
|
|
Inference calls for the `Translator` object instantiated with a Multitasking UnitY model with the options:
|
|
-- `multitask_unity_large`
|
|
|
|
-- `multitask_unity_medium`
|
|
|
|
|
|
+- `seamlessM4T_large`
|
|
|
|
+- `seamlessM4T_medium`
|
|
|
|
|
|
and a vocoder `vocoder_36langs`
|
|
and a vocoder `vocoder_36langs`
|
|
|
|
|
|
@@ -54,7 +54,7 @@ from seamless_communication.models.inference import Translator
|
|
|
|
|
|
|
|
|
|
# Initialize a Translator object with a multitask model, vocoder on the GPU.
|
|
# Initialize a Translator object with a multitask model, vocoder on the GPU.
|
|
-translator = Translator("multitask_unity_large", "vocoder_36langs", torch.device("cuda:0"))
|
|
|
|
|
|
+translator = Translator("seamlessM4T_large", "vocoder_36langs", torch.device("cuda:0"))
|
|
```
|
|
```
|
|
|
|
|
|
Now `predict()` can be used to run inference as many times on any of the supported tasks.
|
|
Now `predict()` can be used to run inference as many times on any of the supported tasks.
|