import ggml import ctypes import torch import pytest import numpy as np import torch import fairseq2.nn import fairseq2.nn.transformer import logging import sys import functools from typing import Tuple from pathlib import Path from ctypes_utils import Ptr from ctypes import c_void_p from typing import Any from pathlib import Path from typing import Iterator from ggml import NativeObj from ggml_convert import convert_model from seamless_communication.models.inference.translator import Translator, Modality Ctx = ggml.ggml_context_p UNITY_MODELS = Path(__file__).parent / "examples/unity/models" CTX_PARAMS = ggml.ggml_init_params(mem_size=16 * 1024 * 1024, mem_buffer=None) @pytest.fixture(name="ctx") def _ctx() -> Iterator[Ctx]: """Allocate a new context with 16 MB of memory""" try: ctx = ggml.ggml_init(params=CTX_PARAMS) yield ctx finally: ggml.ggml_free(ctx) def test_ggml_bindings_work(ctx: Ctx) -> None: # Instantiate tensors x = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 1) a = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 1) b = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 1) # Use ggml operations to build a computational graph x2 = ggml.ggml_mul(ctx, x, x) f = ggml.ggml_add(ctx, ggml.ggml_mul(ctx, a, x2), b) gf = ggml.ggml_build_forward(f) # Set the input values ggml.ggml_set_f32(x, 2.0) ggml.ggml_set_f32(a, 3.0) ggml.ggml_set_f32(b, 4.0) # Compute the graph ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1) # Get the output value output = ggml.ggml_get_f32_1d(f, 0) assert output == 16.0 def test_ggml_matmul(ctx: Ctx) -> None: # Instantiate tensors a = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 4, 2) x = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 4, 3) # Use ggml operations to build a computational graph y = ggml.ggml_mul_mat(ctx, a, x) assert ggml.shape(y) == (3, 2) gf = ggml.ggml_build_forward(y) # Set the input values ggml.ggml_set_f32(x, 0.0) for i in range(4 * 3): ggml.ggml_set_f32_1d(x, i, i) ggml.ggml_set_f32(a, 0.0) ggml.ggml_set_f32_1d(a, 1, 1.0) ggml.ggml_set_f32_1d(a, 7, 1.0) ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1) output = [[ggml.ggml_get_f32_1d(y, j * 2 + i) for j in range(3)] for i in range(2)] assert output == [[1, 5, 9], [3, 7, 11]] def test_shape_works(ctx: Ctx) -> None: """GGML shape order convention is the reverse from numpy""" a = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 10) assert ggml.shape(a) == (10,) b = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 11, 21) assert ggml.shape(b) == (21, 11) c = ggml.ggml_new_tensor_3d(ctx, ggml.GGML_TYPE_F32, 12, 22, 32) assert ggml.shape(c) == (32, 22, 12) def test_nb_works(ctx: Ctx) -> None: a = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 10) assert ggml.nb(a) == (4, 40, 40, 40) b = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F16, 11, 21) assert ggml.nb(b) == (2, 22, 462, 462) c = ggml.ggml_new_tensor_3d(ctx, ggml.GGML_TYPE_F32, 12, 22, 32) assert ggml.nb(c) == (4, 48, 1056, 33792) def test_strides_works(ctx: Ctx) -> None: a = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 10) assert ggml.strides(a) == np.ones((10,), dtype=np.float32).strides b = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 11, 21) assert ggml.strides(b) == np.ones((21, 11), dtype=np.float32).strides c = ggml.ggml_new_tensor_3d(ctx, ggml.GGML_TYPE_F32, 12, 22, 32) assert ggml.strides(c) == np.ones((32, 22, 12), dtype=np.float32).strides def test_to_numpy_works_with_f32(ctx: Ctx) -> None: a = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 10) na = ggml.to_numpy(a) for i in range(10): ggml.ggml_set_f32_1d(a, i, i) assert na[5] == 5 assert np.allclose(na, np.array(range(10), dtype=np.float32)) ggml.ggml_set_f32_1d(a, 5, -1.5) assert na[5] == -1.5 # Note: GGML order of dims is reversed wrt numpy shapes b = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 11, 21) for i in range(11 * 21): ggml.ggml_set_f32_1d(b, i, i) nb = ggml.to_numpy(b) # assert nb.shape == (21, 11) assert nb[0, 5] == 5 assert nb[3, 5] == 11 * 3 + 5 assert np.allclose( nb, np.array(range(11 * 21), dtype=np.float32).reshape(ggml.shape(b)) ) ggml.ggml_set_f32_1d(b, 11 * 3 + 5, -1.5) assert nb[3, 5] == -1.5 sum_rows = ggml.ggml_sum_rows(ctx, b) gf = ggml.ggml_build_forward(sum_rows) ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1) np_sum_rows = np.sum(nb, axis=-1, keepdims=True) assert np_sum_rows.shape == ggml.shape(sum_rows) for i in range(11): assert np_sum_rows[i] == ggml.ggml_get_f32_1d(sum_rows, i) c = ggml.ggml_new_tensor_3d(ctx, ggml.GGML_TYPE_F32, 12, 22, 32) for i in range(12 * 22 * 32): ggml.ggml_set_f32_1d(c, i, i) nc = ggml.to_numpy(c) assert ggml.shape(c) == (32, 22, 12) assert nc[3, 5, 11] == 22 * 12 * 3 + 12 * 5 + 11 assert np.allclose( nc, np.array(range(12 * 22 * 32), dtype=np.float32).reshape(ggml.shape(c)) ) ggml.ggml_set_f32_1d(c, 22 * 12 * 3 + 12 * 5 + 11, -1.5) assert nc[3, 5, 11] == -1.5 def test_from_numpy_works_with_f32(ctx: Ctx) -> None: a = np.random.normal(size=(10,)).astype(dtype=np.float32) ga = ggml.from_numpy(ctx, a) assert ggml.shape(ga) == (10,) assert ggml.nb(ga) == ggml.nb(ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 10)) assert np.allclose(a, ggml.to_numpy(ga)) a = np.random.normal(size=(11, 21)).astype(dtype=np.float32) ga = ggml.from_numpy(ctx, a) assert ggml.shape(ga) == (11, 21) assert ggml.nb(ga) == ggml.nb( ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, *a.shape[::-1]) ) assert np.allclose(a, ggml.to_numpy(ga)) a = np.random.normal(size=(12, 22, 32)).astype(dtype=np.float32) ga = ggml.from_numpy(ctx, a) assert ggml.shape(ga) == (12, 22, 32) assert ggml.nb(ga) == ggml.nb( ggml.ggml_new_tensor_3d(ctx, ggml.GGML_TYPE_F32, *a.shape[::-1]) ) assert np.allclose(a, ggml.to_numpy(ga)) def test_to_numpy_works_with_f16(ctx: Ctx) -> None: # We explicitly fill the tensor otherwise they might have non-zero values in them. a = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F16, 10) na = ggml.to_numpy(a) ggml.ggml_set_f32(a, 2.14) assert np.allclose(na, np.ones((10,), dtype=np.float16) * 2.14) ggml.ggml_set_f32(a, 4.28) assert np.allclose(na, np.ones((10,), dtype=np.float16) * 4.28) b = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F16, 11, 21) nb = ggml.to_numpy(b) ggml.ggml_set_f32(b, 4.18) assert np.allclose(nb, np.ones((21, 11), dtype=np.float16) * 4.18) ggml.ggml_set_f32(b, 5.12) assert np.allclose(nb, np.ones((21, 11), dtype=np.float16) * 5.12) c = ggml.ggml_new_tensor_3d(ctx, ggml.GGML_TYPE_F16, 12, 22, 32) nc = ggml.to_numpy(c) ggml.ggml_set_f32(c, 3.16) assert np.allclose(nc, np.ones((32, 22, 12), dtype=np.float16) * 3.16) ggml.ggml_set_f32(c, 5.08) assert np.allclose(nc, np.ones((32, 22, 12), dtype=np.float16) * 5.08) def test_from_numpy_works_with_f16(ctx: Ctx) -> None: a = np.random.normal(size=(10,)).astype(dtype=np.float16) ga = ggml.from_numpy(ctx, a) assert np.allclose(a, ggml.to_numpy(ga)) a = np.random.normal(size=(11, 21)).astype(dtype=np.float16) ga = ggml.from_numpy(ctx, a) assert np.allclose(a, ggml.to_numpy(ga)) a = np.random.normal(size=(12, 22, 32)).astype(dtype=np.float16) ga = ggml.from_numpy(ctx, a) assert np.allclose(a, ggml.to_numpy(ga)) def test_to_numpy_works_with_transposed(ctx: Ctx) -> None: ga = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 10, 5) a = ggml.to_numpy(ga) a[...] = np.arange(50).reshape(5, 10).astype(dtype=np.float32) gat = ggml.ggml_transpose(ctx, ga) at = ggml.to_numpy(gat) assert np.allclose(a.T, at) def test_ggml_slice(ctx: Ctx) -> None: ga = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 10, 5) a = ggml.to_numpy(ga) a[...] = np.arange(50).reshape(5, 10).astype(dtype=np.float32) gs0 = ggml.ggml_slice(ctx, ga, 0, 3, 7) s0 = ggml.to_numpy(gs0) assert np.allclose(a[:, 3:7], s0) gs1 = ggml.ggml_slice(ctx, ga, 1, 2, 5) s1 = ggml.to_numpy(gs1) assert np.allclose(a[2:5, :], s1) @pytest.mark.xfail(reason="to_numpy not implemented") def test_ggml_transpose_and_slice(ctx: Ctx) -> None: ga = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 10, 5) a = ggml.to_numpy(ga) a[...] = np.arange(50).reshape(5, 10).astype(dtype=np.float32) gat = ggml.ggml_transpose(ctx, ga) gs0 = ggml.ggml_slice(ctx, gat, 0, 2, 5) s0 = ggml.to_numpy(gs0) assert np.allclose(a.T[:, 2:5], s0) gs1 = ggml.ggml_slice(ctx, gat, 1, 3, 7) s1 = ggml.to_numpy(gs1) assert np.allclose(a.T[3:7, :], s1) def test_numpy_mul_mat(ctx: Ctx) -> None: slen, d_in, d_out = (5, 4, 2) # torch.nn and fairseq2.nn assumes (seq_len, dim) to represent inputs, x = np.zeros((slen, d_in), dtype=np.float32) # (seq_len, dim_in) x[0, :] = [1, 1 / 3, 0, 0] weight = np.eye(d_out, d_in, dtype=np.float32) weight[1, 1] = 1 # assert weight.shape == (d_out, d_in) # (dim_out, dim_in) y_exp = x @ weight.T # (seq_len, dim_out) gx = ggml.from_numpy(ctx, x) # (dim_in, seq_len) gw = ggml.from_numpy(ctx, weight) # (dim_in, dim_out) # gb = ggml.from_numpy(ctx, linear.bias.numpy()) # (dim_out) # GGML linear impl assert ggml.ggml_can_mul_mat(gw, gx) # gy = ggml.ggml_add(ctx, ggml.ggml_mul_mat(ctx, gw, gx), gb) # (dim_out, seq_len) gy = ggml.ggml_mul_mat(ctx, gw, gx) # (dim_out, seq_len) ggml.build_and_compute(ctx, gy) y = ggml.to_numpy(gy) assert np.allclose(y_exp, y) @pytest.mark.parametrize("ndim", [2, 3, 4]) def test_flatten(ctx: Ctx, ndim: int) -> None: shape = [11, 7, 5, 3][:ndim] # Prime numbers to avoid surprises numel = functools.reduce(lambda a, b: a * b, shape, 1) x = torch.arange(numel, dtype=torch.float32).reshape(shape) for torch_dim in range(ndim - 1): ggml_dim = ndim - 1 - torch_dim n = x.shape[torch_dim + 1] gx = ggml.from_numpy(ctx, x) gx1 = ggml.ggml_flatten_1d(ctx, gx, ggml_dim - 1) gy = ggml.ggml_unflatten_1d(ctx, gx1, ggml_dim - 1, n) x1 = x.flatten(torch_dim, torch_dim + 1) y = x1.unflatten(torch_dim, (-1, n)) assert y.shape == x.shape assert np.allclose(y.numpy(), x.numpy()) assert x1.shape == ggml.shape(gx1) assert np.allclose(x1.numpy(), ggml.to_numpy(gx1)) assert y.shape == ggml.shape(gy) assert np.allclose(y.numpy(), ggml.to_numpy(gy)) @torch.no_grad() def test_torch_spda_vs_ggml_flash_attn(ctx: Ctx) -> None: slen, d_in, num_heads = (5, 4, 2) torch.random.manual_seed(0) q = torch.zeros((num_heads, slen, d_in)) torch.nn.init.uniform_(q, -1, 1) k = torch.zeros((num_heads, slen, d_in)) torch.nn.init.uniform_(k, -1, 1) v = torch.zeros((num_heads, slen, d_in)) torch.nn.init.uniform_(v, -1, 1) # Note: we are using x for both keys and queries, so every position # attends mostly to itself, hence y_exp looks a bit like arange(slen) y_exp = torch.nn.functional.scaled_dot_product_attention(q, k, v, is_causal=True) y_exp = y_exp.numpy() gq = ggml.from_numpy(ctx, q.numpy()) gk = ggml.from_numpy(ctx, k.numpy()) # ggml flash attention expect a different order of axis for v: # (H, slen, H_dim) -> (H, H_dim, slen) gv = ggml.from_numpy(ctx, v.transpose(1, 2).contiguous().numpy()) assert ggml.shape(gv) == (num_heads, d_in, slen) gy = ggml.ggml_flash_attn(ctx, gq, gk, gv, True) gf = ggml.ggml_build_forward(gy) ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1) y = ggml.to_numpy(gy) assert np.allclose(y_exp, y) @pytest.mark.parametrize("shape", [(5, 8, 4), (2, 5, 8, 4)]) def test_ggml_softmax_vs_torch(ctx: Ctx, shape: Tuple[int, ...]) -> None: x = torch.empty(shape) torch.nn.init.uniform_(x, -1, 1) y_exp = torch.softmax(x, dim=-1).numpy() gx = ggml.from_numpy(ctx, x.numpy()) gy = ggml.ggml_soft_max(ctx, gx) ggml.build_and_compute(ctx, gy) y = ggml.to_numpy(gy) assert np.allclose(y_exp, y, rtol=1e-3) assert np.allclose(np.argmax(y_exp, axis=-1), np.argmax(y, axis=-1)) def test_can_return_hypothesis_ptr(ctx: Ctx) -> None: hyp_ptr = ggml._testing_return_hypothesis_ptr(ctx) hyp0, hyp1 = hyp_ptr[0], hyp_ptr[1] assert ggml.to_numpy(hyp0.seq).tolist() == [314] assert hyp0.score == pytest.approx(3.14) assert ggml.to_numpy(hyp1.seq).tolist() == [421] assert hyp1.score == pytest.approx(4.21) @pytest.mark.parametrize("inplace", ["", "inplace"]) def test_set_2d(ctx: Ctx, inplace: bool): a = torch.empty((5, 3, 2)) torch.nn.init.uniform_(a, -1, 1) b = torch.empty((3, 2)) torch.nn.init.uniform_(b, -1, 1) a_original = a.clone() # make a copy of `a` before we modify it ga = ggml.from_numpy(ctx, a.clone().numpy()) gb = ggml.from_numpy(ctx, b.numpy()) a[3, ...] = b set_2d = ggml.ggml_set_2d_inplace if inplace else ggml.ggml_set_2d ga_updated = set_2d(ctx, ga, gb, ggml.nb(ga)[1], ggml.nb(ga)[2] * 3) ggml.build_and_compute(ctx, ga_updated) a_updated = ggml.to_numpy(ga if inplace else ga_updated) assert np.allclose(a.numpy(), a_updated) if not inplace: # When not using set_2d_inplace, the original tensor is unmodified. assert np.allclose(ggml.to_numpy(ga), a_original.numpy()) assert ga.contents.data != ga_updated.contents.data