# Copyright (c) Meta Platforms, Inc. and affiliates # All rights reserved. # # This source code is licensed under the license found in the # MIT_LICENSE file in the root directory of this source tree. from setuptools import find_packages, setup setup( name="seamless_communication", version="1.0.0", packages=find_packages(where="src"), package_dir={"": "src"}, package_data={"": ["py.typed", "cards/*.yaml"]}, description="SeamlessM4T -- Massively Multilingual & Multimodal Machine Translation Model", long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", readme="README.md", python_requires=">=3.8", author="Fundamental AI Research (FAIR) at Meta", url="https://github.com/facebookresearch/seamless_communication", license="Creative Commons", install_requires=[ "datasets", "fairseq2==0.2.*", "fire", "librosa", "openai-whisper", "simuleval~=1.1.3", "soundfile", "scipy", "torchaudio", "tqdm", ], entry_points={ "console_scripts": [ "m4t_evaluate=seamless_communication.cli.m4t.evaluate.evaluate:main", "m4t_predict=seamless_communication.cli.m4t.predict.predict:main", "m4t_finetune=seamless_communication.cli.m4t.finetune.finetune:main", "m4t_prepare_dataset=seamless_communication.cli.m4t.finetune.dataset:main", "m4t_audio_to_units=seamless_communication.cli.m4t.audio_to_units.audio_to_units:main", "expressivity_evaluate=seamless_communication.cli.expressivity.evaluate.evaluate:main", "expressivity_predict=seamless_communication.cli.expressivity.predict.predict:main", "streaming_evaluate=seamless_communication.cli.streaming.evaluate:main", ], }, include_package_data=True, )