# Copyright (c) Meta Platforms, Inc. and affiliates # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path from typing import Iterable import pkg_resources from setuptools import find_packages, setup def _load_requirements(fname: str) -> Iterable[str]: with open(Path(__file__).parent / fname) as fp_in: for req in pkg_resources.parse_requirements(fp_in): yield str(req) default_requirements = list(_load_requirements("requirements.txt")) dev_requirements = list(_load_requirements("dev_requirements.txt")) setup( name="seamless_communication", version="1.0.0", packages=find_packages(where="src") + ['m4t_scripts.finetune', 'm4t_scripts.predict'], package_dir={"m4t_scripts": "scripts/m4t", "seamless_communication": "src/seamless_communication"}, package_data={"": ["seamless_communication/assets/cards/*.yaml"]}, description="SeamlessM4T -- Massively Multilingual & Multimodal Machine Translation Model", long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", readme="README.md", python_requires=">=3.8", author="Fundamental AI Research (FAIR) at Meta", url="https://github.com/facebookresearch/seamless_communication", license="Creative Commons", install_requires=default_requirements, extras_require={"dev": default_requirements + dev_requirements}, entry_points={ "console_scripts": [ "m4t_predict=m4t_scripts.predict.predict:main", "m4t_finetune=m4t_scripts.finetune.finetune:main", "m4t_prepare_dataset=m4t_scripts.finetune.dataset:main", ], }, include_package_data=True, )