#include "ggml.h" #include "fairseq2.h" /// allocate the fairseq2 model and hyperparameters extern "C" fairseq2_model* fairseq2_model_alloc() { // pre-allocate some memory to write hyperparameters and tensors pointers auto* model = new fairseq2_model; model->hparams = new std::uint8_t[8 * 1024]; model->arch = new std::uint64_t[16 * 1024]; // max tensors allowed return model; }; extern "C" void fairseq2_model_free(fairseq2_model* model) { delete (std::uint64_t*)(model->arch); delete (std::uint8_t*)model->hparams; delete model; }; // Linear std::size_t Linear_size(int32_t input_dim, int32_t output_dim) { return (input_dim * output_dim * ggml_type_size(GGML_TYPE_F32)) // weight + (output_dim * ggml_type_size(GGML_TYPE_F32)); // bias }; void Linear_init( Linear& self, fairseq2_model& model, const std::string &prefix, int input_dim, int output_dim, bool bias ) { self.weight = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, output_dim, input_dim); model.tensors[prefix + ".weight"] = self.weight; if (bias) { self.bias = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, output_dim); model.tensors[prefix + ".inner_proj.bias"] = self.bias; } } // LayerNorm std::size_t LayerNorm_size(int32_t dim) { return 2 * dim * ggml_type_size(GGML_TYPE_F32); // weight and bias }; void LayerNorm_init( LayerNorm& self, fairseq2_model& model, const std::string &prefix, int dim ) { self.weight = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, dim); model.tensors[prefix + ".weight"] = self.weight; self.bias = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, dim); model.tensors[prefix + ".bias"] = self.bias; } std::size_t StandardFeedForwardNetwork_size(int32_t dim, int32_t inner_dim) { return LayerNorm_size(dim) + Linear_size(dim, inner_dim) + Linear_size(inner_dim, dim); }; void StandardFeedForwardNetwork_init( StandardFeedForwardNetwork& self, fairseq2_model& model, const std::string &prefix, int model_dim, int inner_dim ) { Linear_init(self.inner_proj, model, prefix + ".inner_proj", model_dim, inner_dim, true); LayerNorm_init(self.inner_layer_norm, model, prefix + ".inner_layer_norm", inner_dim); Linear_init(self.output_proj, model, prefix + ".output_proj", inner_dim, model_dim, true); } ggml_tensor* StandardFeedForwardNetwork_forward( StandardFeedForwardNetwork* self, ggml_tensor* seqs ) { return seqs; } void MultiheadAttention_init( MultiheadAttention& self, fairseq2_model& model, const std::string &prefix, int model_dim, int num_heads ) { int bias = true; int num_key_value_heads = num_heads; int head_dim = model_dim / num_heads; Linear_init(self.q_proj, model, prefix + ".q_proj", model_dim, model_dim, bias); Linear_init(self.k_proj, model, prefix + ".k_proj", model_dim, head_dim * num_key_value_heads, bias); Linear_init(self.v_proj, model, prefix + ".v_proj", model_dim, model_dim, bias); // (H, 1, K_h) self.bias_k = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, num_heads, 1, head_dim * num_key_value_heads/ num_heads); // (H, 1, V_h) self.bias_v = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, num_heads, 1, model_dim / num_heads); } // void TransformerDecoderLayer_init(TransformerDecoderLayer& self);