# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import dataclasses import logging import struct from enum import Enum from io import BufferedWriter from pathlib import Path from typing import Any, Callable, Dict, Optional, Tuple, Union import math import torch import ggml from typing import Callable from typing import Optional from typing import List from fairseq2.assets import AssetCard from fairseq2.models.transformer.frontend import TransformerEmbeddingFrontend from fairseq2.nn import SinusoidalPositionEncoder from seamless_communication.models.unity import load_unity_config, load_unity_model Preprocessor = Callable[[Any], Any] def pos_enc(max_seq_len=4096, encoding_dim=1024): weight = torch.empty( ((max_seq_len * 2) - 1, encoding_dim), dtype=torch.float32 ) # copied from https://github.com/facebookresearch/fairseq2/blob/main/src/fairseq2/nn/transformer/relative_attention.py#L22 dtype = torch.float32 weight = weight.to(dtype) positive_w = weight[: max_seq_len] negative_w = weight[max_seq_len :] device = weight.device # (E / 2) indices = torch.arange(0, encoding_dim, step=2, device=device, dtype=dtype) # (1, E / 2) indices = indices.unsqueeze(0) # (S) steps = torch.arange(max_seq_len, device=device, dtype=dtype) # (S, 1) steps = steps.unsqueeze(1) factors = torch.exp(indices * -math.log(10000) / encoding_dim) # (S, 1) x (1, E / 2) -> (S, E / 2) factors = torch.matmul(steps, factors) flipped_factors = factors.flip([0]) # A mirrored matrix of sinusoidal positive and negative positional # encodings to use in shift trick. # # [max, ..., 3, 2, 1, 0, -1, -2, -3, ..., min] torch.sin(flipped_factors, out=positive_w[:, 0::2]) torch.cos(flipped_factors, out=positive_w[:, 1::2]) torch.sin(-1 * factors[1:], out=negative_w[:, 0::2]) torch.cos(-1 * factors[1:], out=negative_w[:, 1::2]) return weight def convert_model(model_name: str, out: Optional[Path] = None) -> None: if out is None: out = Path(model_name).with_suffix(".ggml") # The type of model depends on the name if "unity" in model_name or "seamlessM4T" in model_name: model_config = load_unity_config(model_name) hparams = flatten_config(dataclasses.asdict(model_config), separator="__") print(hparams) model = load_unity_model(model_name) else: raise ValueError(f"Unsupported model type: {model_name}") state_dict = model.state_dict() fixup_model(model, state_dict) with out.open("wb") as o: write_ggml_file(o, hparams, state_dict) write_layer_config(o, model) with out.with_suffix(".hparams.h").open("w") as h: h.write(generate_hparams_struct(hparams, "unity_hparams")) def _nested_getattr(model: Any, name: str) -> Any: parts = name.split(".") node = model for part in parts: node = getattr(node, part) if node is None: return None return node def find_children(model: torch.nn.Module, t: type) -> List[Tuple[str, torch.nn.Module]]: queue = list(model._modules.items()) modules = [] while queue: name, node = queue.pop() if node is None: continue if isinstance(node, t): modules.append((name, node)) for child_name, child_node in node._modules.items(): queue.append((".".join((name, child_name)), child_node)) return modules def fixup_model(model: torch.nn.Module, state_dict: Dict[str, torch.Tensor]) -> None: # Bake the embedding scaling into the weights frontends = find_children(model, TransformerEmbeddingFrontend) print("Upgrading the following TransformerEmbeddingFrontend:", [x[0] for x in frontends]) for name, frontend in frontends: embed_weights = state_dict[name + ".embed.weight"] state_dict[name + ".embed.weight"] = embed_weights * frontend.scale # Sinusoidal embeddings are typically not saved since they are easily recomputed, # but this allows to avoid porting the sinusoidal logic to GGML pos_encoders = find_children(model, SinusoidalPositionEncoder) print("Upgrading the following SinusoidalPositionEncoder:", [x[0] for x in pos_encoders]) for name, pos_encoder in pos_encoders: assert isinstance(pos_encoder.weight, torch.Tensor) assert name not in state_dict state_dict[name] = pos_encoder.weight state_dict["speech_encoder.pos_enc"] = pos_enc() def write_ggml_file( out: BufferedWriter, hparams: Dict[str, Any], state_dict: Dict[str, torch.Tensor] ) -> None: write_ggml_header(out) # Apppend the byte size to the hparams. if "model_byte_size" not in hparams: # Size of each tensor byte_size = sum(x.numel() * x.element_size() for x in state_dict.values()) # + tensor overhead byte_size += ggml.ggml_tensor_overhead() * (len(state_dict) + 10) hparams["model_byte_size"] = byte_size logging.warning( f"Saving a ggml file with {len(state_dict)} tensors, for an estimated amount of {byte_size / (1024**3)} GGML Gb" ) # 6877961321223123048 hparams["__end_of_hparams__"] = struct.unpack("l", b"hparams_")[0] write_hparams(out, hparams) write_state_dict(out, state_dict) def write_ggml_header(out: BufferedWriter) -> None: """Write GGML header (in reverse cause why not)""" out.write(b"ggml"[::-1]) def write_hparams(out: BufferedWriter, hparams: Dict[str, Any]) -> None: """Write hyper parameters. :params hparams: flattened dict containing model's hyper parameters. """ # TODO: should we preprend the size of the hparams struct ? # this would help catch out of sync writer/loader code for key, value in hparams.items(): try: # TODO: this is not cross platform, what's the standard way of writing hparams in GGML ? ctype, cvalue = to_ctype(value) out.write(struct.pack(ctype, cvalue)) except ValueError: logging.warning(f"Skipping config for key {key}={value!r}") continue def write_state_dict(out: BufferedWriter, state_dict: Dict[str, torch.Tensor]) -> None: """Write pytorch state dict. :paras state_dict: state dict returned by pytorch model """ out.write(struct.pack("i", len(state_dict))) for key, value in state_dict.items(): write_string(out, key) if key.endswith(".bias") and value.ndim == 1 and "adaptor" not in key: # GGML broadcasting isn't as strong as numpy value = value.reshape(1, -1) if "pointwise_conv" in key: # pointwise_conv / depthwise_conv value = value.squeeze(-1) if "depthwise_conv" in key: value = value.squeeze(1) write_tensor(out, value.contiguous()) def write_layer_config(out: BufferedWriter, model: torch.nn.Module) -> None: for name, node in find_children(model, torch.nn.Module): for k, v in node.__dict__.items(): # Skip special members. In particular all children module and tensors # will be hidden in special dicts `_parameters` and `_modules` if k.startswith("_"): continue # All modules have a "training" flag if k == "training": continue if v is None: continue try: ctype, cvalue = to_ctype(v) write_string(out, f"{name}.{k}") out.write(struct.pack(ctype, cvalue)) except ValueError as e: logging.warning(f"Skipping config for {name}.{k}={v!r}") continue def write_string(out: BufferedWriter, value: str) -> None: """Write string in utf-8 format. :params value: string value to dump. """ str_ = value.encode("utf-8") out.write(struct.pack("i", len(str_))) out.write(str_) def write_tensor(out: BufferedWriter, value: torch.Tensor) -> None: """Write torch tensor in ggml format. First we save the number of dimensions and the dtype. Then we save the data as numpy array. :params value: Tensor to dump. """ if value.dtype is torch.int64: # GGML doesn't ahve int64, downcast it value = value.to(dtype=torch.int32) if value.ndim == 0: # GGML doesn't support scalar as tensors. value = value.reshape(1) data = value.numpy() n_dims = data.ndim assert n_dims < 5, "ggml doesn't support 5 dims tensors" assert n_dims >= 1, "ggml doesn't support 0 dim tensors" ftype = torch_to_ggml_type(value.dtype) out.write(struct.pack("i", n_dims)) out.write(struct.pack("i", ftype)) for i in range(n_dims): # ggml uses long for shape out.write(struct.pack("l", data.shape[n_dims - 1 - i])) data.tofile(out) def torch_to_ggml_type(dtype: type) -> int: if dtype is torch.float32: return ggml.GGML_TYPE_F32 elif dtype is torch.float16: return ggml.GGML_TYPE_F16 elif dtype is torch.int32: return ggml.GGML_TYPE_I32 else: raise NotImplementedError(f"{dtype} is not mapped to a GGML_TYPE") def flatten_config( config: Dict[str, Any], separator: str, config_preprocessor: Optional[Preprocessor] = None, ) -> Dict[str, Any]: """Flatten nested dictionnary :param config: nested dictionnary containing model config. :param separator: string separator used when flattening nested hparams :param config_preprocessor: Preprocessor used for config/hparams values :returns: flat dictionnary """ if config_preprocessor is None: config_preprocessor = lambda x: x def __flatten(config: Dict[str, Any], prefix: str = "") -> Dict[str, Any]: result = {} for key in config: new_key = f"{prefix}{key}" if isinstance(config[key], dict): nested_result = __flatten(config[key], f"{new_key}{separator}") result.update(nested_result) else: new_config = config_preprocessor(config[key]) if new_config is not None: result[new_key] = config[key] return result return __flatten(config) def to_ctype(value: Any) -> Tuple[str, Any]: """Transform python type to ctype. :params value: value to cast into ctype :returns: A tuple of ctype and cvalue. """ if isinstance(value, int): return ("l", value) if isinstance(value, float): return ("d", value) if isinstance(value, bool): return ("l", value) if isinstance(value, Enum): return ("l", value.value) if isinstance(value, tuple) and len(value) == 1: return to_ctype(value[0]) if isinstance(value, str) and len(value) < 8: value = bytes(value, "ascii") if len(value) < 8: value = value + (8 - len(value)) * b"\0" return ("l", struct.unpack("l", value)[0]) raise ValueError(f"Unsupported type {type(value)}") def get_cpp_type(value: Any) -> str: """Return equivalent cpp type in string format :params value: value to cast into ctype :returns: str containing cpp type """ # used to have compatibility between types try: ctype, _ = to_ctype(value) except ValueError as e: return f"// Error: {e}" if ctype == "i": return "std::int32_t" if ctype == "l": return "std::int64_t" if ctype == "f": return "float" if ctype == "d": return "double" if ctype == "?": return "bool" raise RuntimeError( f"Should not have reached this part." f"Missing cpp translation for {ctype}" ) def generate_hparams_struct( hparams: Dict[str, Any], struct_name: str, ) -> str: """Generate a c++ struct to hold the model hyper-parameters. :param hparams: Flattened config of the model. :param struct_name: Name of the generated struct. """ struct = f"struct {struct_name} {{" fields = [f" {get_cpp_type(value)} {key};" for key, value in hparams.items()] struct = "\n".join([struct] + fields + ["};\n"]) valid_fields = [ key for key, value in hparams.items() if "Error" not in get_cpp_type(value) ] read_struct = f"void read_{struct_name}({struct_name}& out, std::ifstream &fin) {{" read_fields = [ f" fin.read((char*) &out.{field}, sizeof(out.{field}));" for field in valid_fields ] read_struct = "\n".join([read_struct] + read_fields + ["};\n"]) return "\n".join([struct, read_struct]) if __name__ == "__main__": import func_argparse func_argparse.single_main(convert_model)