# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # MIT_LICENSE file in the root directory of this source tree. import dataclasses import logging import math import struct from enum import Enum from io import BufferedWriter from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from fairseq2.assets import AssetCard from fairseq2.models.transformer.frontend import TransformerEmbeddingFrontend from fairseq2.nn import SinusoidalPositionEncoder from fairseq2.nn.transformer import RelativePositionalEncoding from seamless_communication.models import unity import ggml Preprocessor = Callable[[Any], Any] def convert_model( model_name: Union[str, torch.nn.Module], out: Optional[Path] = None, hparams: Optional[Dict[str, Any]] = None, vocab: Optional[List[Tuple[str, float]]] = None, ) -> None: if isinstance(model_name, str): # Load the corresponding fairseq2 model if out is None: out = Path(model_name).with_suffix(".ggml") # The type of model depends on the name if "unity" in model_name or "seamlessM4T" in model_name: if hparams is None: model_config = unity.load_unity_config(model_name) hparams = flatten_config( dataclasses.asdict(model_config), separator="__" ) print(hparams) model = unity.load_unity_model(model_name) if vocab is None: tokenizer = unity.load_unity_text_tokenizer(model_name) vocab = read_vocab(tokenizer) else: raise ValueError(f"Unsupported model type: {model_name}") else: # Use the model passed explicitly assert ( out is not None ), "output path is required when explicitly passing a module" hparams = hparams or {} model = model_name state_dict = model.state_dict() fixup_model(model, state_dict) layer_config = read_layer_config(model) vocab = vocab or [] write_ggml_file(out, hparams, layer_config, vocab, state_dict) def _nested_getattr(model: Any, name: str) -> Any: parts = name.split(".") node = model for part in parts: node = getattr(node, part) if node is None: return None return node def find_children(model: torch.nn.Module, t: type) -> List[Tuple[str, torch.nn.Module]]: queue = list(model._modules.items()) modules = [] while queue: name, node = queue.pop() if node is None: continue if isinstance(node, t): modules.append((name, node)) for child_name, child_node in node._modules.items(): queue.append((".".join((name, child_name)), child_node)) return modules def fixup_model(model: torch.nn.Module, state_dict: Dict[str, torch.Tensor]) -> None: # Bake the embedding scaling into the weights frontends = find_children(model, TransformerEmbeddingFrontend) print( "Upgrading the following TransformerEmbeddingFrontend:", [x[0] for x in frontends], ) for name, frontend in frontends: embed_weights = state_dict[name + ".embed.weight"] state_dict[name + ".embed.weight"] = embed_weights * frontend.scale # Sinusoidal embeddings are typically not saved since they are easily recomputed, # but this allows to avoid porting the sinusoidal logic to GGML pos_encoders = find_children(model, SinusoidalPositionEncoder) print( "Upgrading the following SinusoidalPositionEncoder:", [x[0] for x in pos_encoders], ) for name, pos_encoder in pos_encoders: assert isinstance(pos_encoder.freqs, torch.Tensor) assert name not in state_dict state_dict[name] = pos_encoder.freqs relative_pos_encs = find_children(model, RelativePositionalEncoding) # speech_encoder has several copies of the relative_pos_enc module. # For efficiency reasons we only make one copy of it to GGML. if relative_pos_encs: print("Merging all speech_encoder RelativePositionalEncoding into one.") _, rel_pos_enc = relative_pos_encs[0] assert isinstance(rel_pos_enc.freqs, torch.Tensor) state_dict["speech_encoder.pos_enc"] = rel_pos_enc.freqs def read_vocab(tokenizer: Any) -> List[Tuple[str, float]]: vocab_info = tokenizer.vocab_info vocab = [ (tokenizer.model.index_to_token(i).replace("▁", " "), -i) for i in range(vocab_info.size) ] return vocab # type: ignore[return-value] def write_ggml_file( out: Path, hparams: Dict[str, Any], layer_config: Dict[str, Any], vocab: List[Tuple[str, float]], state_dict: Dict[str, torch.Tensor], ) -> None: with out.open("wb") as o: write_ggml_header(o) write_hparams(o, hparams) write_hparams(o, layer_config) write_vocab(o, vocab) write_state_dict(o, state_dict) def write_ggml_header(out: BufferedWriter) -> None: """Write GGML header (in reverse cause big-endian)""" out.write(b"ggml"[::-1]) def write_hparams(out: BufferedWriter, hparams: Dict[str, Any]) -> None: """Write hyper parameters. :params hparams: flattened dict containing model's hyper parameters. """ simple_vals = {} for key, value in hparams.items(): try: simple_vals[key] = to_ctype(value) except ValueError: logging.warning(f"Skipping config for key {key}={value!r}") continue out.write(struct.pack(" None: out.write(struct.pack(" None: """Write pytorch state dict. :paras state_dict: state dict returned by pytorch model """ out.write(struct.pack(" None: """Write string in utf-8 format. :params value: string value to dump. """ str_ = value.encode("utf-8") packed_len = struct.pack(" None: """Write torch tensor in ggml format. First we save the number of dimensions and the dtype. Then we save the data as numpy array. :params value: Tensor to dump. """ if value.dtype is torch.int64: # GGML doesn't have int64, downcast it value = value.to(dtype=torch.int32) if value.ndim == 0: # GGML doesn't support scalar as tensors. value = value.reshape(1) data = value.numpy() n_dims = data.ndim assert n_dims < 5, "ggml doesn't support 5 dims tensors" assert n_dims >= 1, "ggml doesn't support 0 dim tensors" ftype = torch_to_ggml_type(value.dtype) out.write(struct.pack(" int: if dtype is torch.float32: return ggml.GGML_TYPE_F32 elif dtype is torch.float16: return ggml.GGML_TYPE_F16 elif dtype is torch.int32: return ggml.GGML_TYPE_I32 elif dtype is torch.int8: return ggml.GGML_TYPE_I8 else: raise NotImplementedError(f"{dtype} is not mapped to a GGML_TYPE") def flatten_config( config: Dict[str, Any], separator: str, config_preprocessor: Optional[Preprocessor] = None, ) -> Dict[str, Any]: """Flatten nested dictionnary :param config: nested dictionnary containing model config. :param separator: string separator used when flattening nested hparams :param config_preprocessor: Preprocessor used for config/hparams values :returns: flat dictionnary """ if config_preprocessor is None: config_preprocessor = lambda x: x def __flatten(config: Dict[str, Any], prefix: str = "") -> Dict[str, Any]: result = {} for key in config: new_key = f"{prefix}{key}" if isinstance(config[key], dict): nested_result = __flatten(config[key], f"{new_key}{separator}") result.update(nested_result) else: new_config = config_preprocessor(config[key]) if new_config is not None: result[new_key] = config[key] return result return __flatten(config) def read_layer_config(model: torch.nn.Module) -> Dict[str, Any]: layer_config = {} def _append_node_config(node: Any, prefix: str) -> None: for k, v in node.__dict__.items(): # Skip special members. In particular all children module and tensors # will be hidden in special dicts `_parameters` and `_modules` if k.startswith("_"): continue # All modules have a "training" flag if k in ("training", "init_fn"): continue if v is None: continue try: to_ctype(v) except ValueError: logging.warning(f"Skipping layer config {k}={v!r}") continue layer_config[prefix + k] = v _append_node_config(model, "") for name, node in find_children(model, torch.nn.Module): _append_node_config(node, name + ".") return layer_config def to_ctype(value: Any) -> Tuple[str, Any]: """Transform python type to ctype. Note: we always use little-endian and 8-byte types. This make the format independent of the current platform. :params value: value to cast into ctype :returns: A tuple of ctype and cvalue. """ if isinstance(value, int): return (" str: """Return equivalent cpp type in string format :params value: value to cast into ctype :returns: str containing cpp type """ # used to have compatibility between types try: ctype, _ = to_ctype(value) except ValueError as e: return f"// Error: {e}" if ctype == "i": return "std::int32_t" if ctype == "l": return "std::int64_t" if ctype == "f": return "float" if ctype == "d": return "double" if ctype == "?": return "bool" raise RuntimeError( f"Should not have reached this part." f"Missing cpp translation for {ctype}" ) def generate_hparams_struct( hparams: Dict[str, Any], struct_name: str, ) -> str: """Generate a c++ struct to hold the model hyper-parameters. :param hparams: Flattened config of the model. :param struct_name: Name of the generated struct. """ struct = f"struct {struct_name} {{" fields = [f" {get_cpp_type(value)} {key};" for key, value in hparams.items()] struct = "\n".join([struct] + fields + ["};\n"]) valid_fields = [ key for key, value in hparams.items() if "Error" not in get_cpp_type(value) ] read_struct = f"void read_{struct_name}({struct_name}& out, std::ifstream &fin) {{" read_fields = [ f" fin.read((char*) &out.{field}, sizeof(out.{field}));" for field in valid_fields ] read_struct = "\n".join([read_struct] + read_fields + ["};\n"]) return "\n".join([struct, read_struct]) if __name__ == "__main__": import func_argparse func_argparse.single_main(convert_model)