fairseq2.cpp 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275
  1. #include <math.h>
  2. #include "kaldi-native-fbank/csrc/feature-fbank.h"
  3. #include "kaldi-native-fbank/csrc/feature-window.h"
  4. #include "ggml.h"
  5. #include "fairseq2.h"
  6. #include <unordered_map>
  7. #include <algorithm>
  8. #include <iostream>
  9. /// allocate the fairseq2 model and hyperparameters
  10. extern "C" fairseq2_model* fairseq2_model_alloc() {
  11. // pre-allocate some memory to write hyperparameters and tensors pointers
  12. auto* model = new fairseq2_model;
  13. model->hparams = new std::uint8_t[8 * 1024];
  14. model->arch = new std::uint64_t[16 * 1024]; // max tensors allowed
  15. model->tensors_ctx = nullptr;
  16. return model;
  17. }
  18. extern "C" void fairseq2_model_free(fairseq2_model* model) {
  19. if (model->tensors_ctx) ggml_free(model->tensors_ctx);
  20. delete (std::uint64_t*)(model->arch);
  21. delete (std::uint8_t*)model->hparams;
  22. delete model;
  23. }
  24. extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
  25. model->ctx = ctx;
  26. }
  27. extern "C" std::string* std_string_alloc(char* c_str) {
  28. return new std::string(c_str);
  29. }
  30. extern "C" void std_string_free(std::string* str) {
  31. delete str;
  32. }
  33. bool has_layer(fairseq2_model& model, const std::string& name) {
  34. return model.tensors.find(name) != model.tensors.end();
  35. }
  36. extern "C" ggml_tensor* Linear_forward(
  37. fairseq2_model& model,
  38. const std::string &prefix,
  39. ggml_tensor* input // (d_in)
  40. ) {
  41. // Note: for now we assumed un-batched input
  42. ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
  43. GGML_ASSERT(weight != nullptr);
  44. ggml_tensor* out = ggml_mul_mat(model.ctx, weight, input); // (d_out)
  45. ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
  46. if (bias == nullptr) return out;
  47. return ggml_add_inplace(model.ctx, out, bias);
  48. }
  49. extern "C" ggml_tensor* LayerNorm_forward(
  50. fairseq2_model& model,
  51. const std::string &prefix,
  52. ggml_tensor* input
  53. ) {
  54. ggml_tensor* weight = model.tensors[prefix + ".weight"];
  55. GGML_ASSERT(weight != nullptr);
  56. ggml_tensor* bias = model.tensors[prefix + ".bias"];
  57. GGML_ASSERT(bias != nullptr);
  58. auto ctx = model.ctx;
  59. // TODO: should `eps` be part of unity hparams ?
  60. input = ggml_norm(ctx, input, /*eps*/1e-5);
  61. return ggml_add_inplace(
  62. ctx,
  63. ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),
  64. ggml_repeat(ctx, bias, input)
  65. );
  66. }
  67. extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
  68. fairseq2_model& model,
  69. const std::string& prefix,
  70. ggml_tensor* seqs
  71. ) {
  72. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  73. // inner_activation = ReLu // TODO: allow other activation
  74. seqs = ggml_relu_inplace(model.ctx, seqs);
  75. if (has_layer(model, prefix + ".inner_layer_norm")) {
  76. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  77. }
  78. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  79. return seqs;
  80. }
  81. extern "C" ggml_tensor* SiluFeedForwardNetwork_forward(
  82. fairseq2_model& model,
  83. const std::string& prefix,
  84. ggml_tensor* seqs
  85. ) {
  86. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  87. seqs = ggml_silu(model.ctx, seqs);
  88. if (has_layer(model, prefix + ".inner_layer_norm")) {
  89. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  90. }
  91. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  92. return seqs;
  93. }
  94. ggml_tensor* ggml_flatten_1d(ggml_context* ctx, ggml_tensor* x, int dim) {
  95. int n_dims = x->n_dims;
  96. GGML_ASSERT(dim >= 0);
  97. GGML_ASSERT(dim < n_dims);
  98. GGML_ASSERT(ggml_is_contiguous(x));
  99. // Nothing to do
  100. if (dim == n_dims - 1) return x;
  101. if (n_dims == 2) {
  102. return ggml_reshape_1d(ctx, x, x->ne[0] * x->ne[1]);
  103. } else if (n_dims == 3) {
  104. if (dim == 0) {
  105. return ggml_reshape_2d(ctx, x, x->ne[0] * x->ne[1], x->ne[2]);
  106. } else { // dim == 1
  107. return ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2]);
  108. }
  109. } else { // n_dims == 4
  110. if (dim == 0) {
  111. return ggml_reshape_3d(ctx, x, x->ne[0] * x->ne[1], x->ne[2], x->ne[3]);
  112. } else if (dim == 1) {
  113. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1] * x->ne[2], x->ne[3]);
  114. } else { // dim == 2
  115. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2] * x->ne[3]);
  116. }
  117. }
  118. }
  119. ggml_tensor* ggml_unflatten_1d(ggml_context* ctx, ggml_tensor* x, int dim, int num_el) {
  120. int n_dims = x->n_dims;
  121. GGML_ASSERT(dim >= 0);
  122. GGML_ASSERT(dim < n_dims);
  123. GGML_ASSERT(n_dims < 4);
  124. if (n_dims == 1) {
  125. return ggml_reshape_2d(ctx, x, num_el, x->ne[0] / num_el);
  126. } else if (n_dims == 2) {
  127. if (dim == 0) {
  128. return ggml_reshape_3d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1]);
  129. } else { // dim == 1
  130. return ggml_reshape_3d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el);
  131. }
  132. } else { // (n_dims == 3)
  133. if (dim == 0) {
  134. return ggml_reshape_4d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->ne[2]);
  135. } else if (dim == 1) {
  136. return ggml_reshape_4d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->ne[2]);
  137. } else { // dim == 2
  138. return ggml_reshape_4d(ctx, x, x->ne[0], x->ne[1], num_el, x->ne[2] / num_el);
  139. }
  140. }
  141. }
  142. ggml_tensor* _reshape_num_head(ggml_context* ctx, ggml_tensor* x, int head_dim) {
  143. // (B, S, dim) -> (B, S, H, H_dim)
  144. x = ggml_unflatten_1d(ctx, x, 0, head_dim);
  145. x = ggml_permute(ctx, x, 0, 2, 1, 3); // (B, H, S, H_dim)
  146. x = ggml_cont(ctx, x);
  147. x = ggml_flatten_1d(ctx, x, 2); // (B * H, S, H_dim)
  148. return x;
  149. }
  150. /// (B, Sk, dim) -> // (B?, H, H_dim, Sk)
  151. ggml_tensor* _reshape_num_head_values(ggml_context* ctx, ggml_tensor* v, int head_dim ) {
  152. // (B, Sk, dim) -> (B, Sk, H, H_dim)
  153. v = ggml_unflatten_1d(ctx, v, 0, head_dim);
  154. v = ggml_permute(ctx, v, 1, 2, 0, 3); // (B?, H, H_dim, Sk)
  155. v = ggml_cont(ctx, v);
  156. v = ggml_flatten_1d(ctx, v, 2); // (B * H, S, H_dim)
  157. return v;
  158. }
  159. // flash_attn doesn't work for cross attention because it assumes Q <= K
  160. // TODO: enable flash_attn only for the encoder
  161. # define UNITY_FLASH_ATTN 0
  162. extern "C" ggml_tensor* MultiheadAttention_forward(
  163. fairseq2_model& model,
  164. const std::string &prefix,
  165. ggml_tensor* queries, // (slen, d_in)
  166. ggml_tensor* keys, // (klen, d_in)
  167. ggml_tensor* values, // (klen, d_out)
  168. ggml_tensor* attn_mask // (klen, slen)
  169. ) {
  170. int model_dim = queries->ne[0];
  171. int num_heads = 16; // TODO: read from hparams
  172. int head_dim = model_dim / num_heads;
  173. GGML_ASSERT(model_dim % num_heads == 0);
  174. ggml_context* ctx = model.ctx;
  175. ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries); // (B, S, H * H_dim)
  176. ggml_set_name(q, "q");
  177. q = _reshape_num_head(ctx, q, head_dim); // (B * H, S, H_dim)
  178. ggml_tensor* k = Linear_forward(model, prefix + ".k_proj", keys);
  179. ggml_set_name(k, "k");
  180. k = _reshape_num_head(ctx, k, head_dim); // (B * H, Sk, H_dim)
  181. ggml_tensor* v = Linear_forward(model, prefix + ".v_proj", values);
  182. ggml_set_name(v, "v");
  183. v = _reshape_num_head_values(ctx, v, head_dim); // (B * H, H_dim, Sk)
  184. v = ggml_cont(ctx, v);
  185. #if UNITY_FLASH_ATTN
  186. // For flash_attn, we assume either no masks, or triangular masks.
  187. ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/attn_mask != nullptr); // (B * H, S, H_dim)
  188. ggml_set_name(attn, "attn");
  189. // TODO test !
  190. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  191. attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (B, S, H, H_dim)
  192. #else
  193. // (B * H, Sk, H_dim) x (B * H, S, H_dim) -> (B * H, S, Sk)
  194. ggml_tensor* qk = ggml_mul_mat(ctx, k, q);
  195. ggml_set_name(qk, "qk");
  196. ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);
  197. ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
  198. qk = ggml_scale(ctx, qk, qk_scale);
  199. ggml_set_name(qk, "qk_scaled");
  200. // TODO: Should we replace this by ggml_diag_mask_inf ?
  201. if (attn_mask) qk = ggml_add(ctx, qk, attn_mask);
  202. // TODO: upgrade qk to float32 if needed
  203. ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (B * H, S, Sk)
  204. ggml_set_name(attn_weights, "attn_weights");
  205. // (B * H, S, Sk) x (B * H, H_dim, Sk) -> (B * H, H_dim, S)
  206. ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);
  207. ggml_set_name(attn, "attn");
  208. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  209. attn = ggml_permute(ctx, attn, 2, 0, 1, 3); // (B, S, H, H_dim)
  210. #endif // UNITY_FLASH_ATTN
  211. attn = ggml_cont(ctx, attn);
  212. attn = ggml_flatten_1d(ctx, attn, 0); // (B, S, H * H_dim)
  213. // out -> (B, S, d_out)
  214. ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
  215. ggml_set_name(out, "out");
  216. return out;
  217. }
  218. extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
  219. fairseq2_model& model,
  220. const std::string& prefix,
  221. ggml_tensor* seqs,
  222. ggml_tensor* padding_mask
  223. ) {
  224. ggml_context* ctx = model.ctx;
  225. // TODO: read norm_order from model
  226. auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
  227. // _forward_self_attn(seqs, padding_mask)
  228. auto residual = seqs;
  229. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  230. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  231. // TODO: add padding_mask to MultiheadAttention_forward
  232. GGML_ASSERT(padding_mask == nullptr);
  233. seqs = MultiheadAttention_forward(
  234. model,
  235. prefix + ".self_attn",
  236. seqs,
  237. seqs,
  238. seqs,
  239. /*attn_mask=*/nullptr
  240. );
  241. if (has_layer(model, prefix + ".self_attn_norm"))
  242. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  243. seqs = ggml_add(ctx, seqs, residual);
  244. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  245. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  246. // _forward_ffn(seqs)
  247. residual = seqs;
  248. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  249. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  250. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  251. // TODO: if self.residual_scale is not None:
  252. // residual = self.residual_scale * residual
  253. seqs = ggml_add(ctx, seqs, residual);
  254. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  255. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  256. return seqs;
  257. }
  258. extern "C" ggml_tensor* WaveformToFbank_forward(
  259. fairseq2_model& model,
  260. const std::string &prefix,
  261. ggml_tensor* waveform
  262. ) {
  263. // Hardcoding: num_bins 80, sample rate 16k, always standardize
  264. ggml_context* ctx = model.ctx;
  265. knf::MelBanksOptions mel_opts{};
  266. mel_opts.num_bins = 80;
  267. knf::FrameExtractionOptions frame_opts{};
  268. frame_opts.samp_freq = 16000;
  269. knf::FbankOptions opts{};
  270. opts.frame_opts = frame_opts;
  271. opts.mel_opts = mel_opts;
  272. std::vector<float_t> signal_frame{};
  273. std::int32_t num_frames = knf::NumFrames(/*num_samples=*/waveform->ne[0], frame_opts);
  274. struct ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 80, num_frames);
  275. knf::FbankComputer native_(opts);
  276. knf::FeatureWindowFunction window_fn_(native_.GetFrameOptions());
  277. for (std::int32_t frame_nr = 0; frame_nr < num_frames; ++frame_nr) {
  278. signal_frame.resize(0);
  279. // Extract the frame from the waveform tensor.
  280. knf::ExtractWindow(
  281. /*sample_offset=*/0,
  282. (float *)(waveform->data),
  283. waveform->ne[0],
  284. frame_nr,
  285. frame_opts,
  286. window_fn_,
  287. &signal_frame);
  288. native_.Compute(
  289. /*signal_raw_log_energy=*/0, /*vtln_warp=*/1.0, &signal_frame, ((float *)(output->data) + frame_nr * 80));
  290. }
  291. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  292. output = ggml_norm(ctx, output, 1e-5);
  293. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  294. if (output->ne[1] % 2 == 1) {
  295. struct ggml_tensor * remove_last = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, output->ne[1]-1);
  296. for (int i = 0; i < output->ne[1]-1; ++i) {
  297. ((int32_t *) remove_last->data)[i] = i;
  298. }
  299. output = ggml_get_rows(ctx, output, remove_last);
  300. }
  301. output = ggml_reshape_2d(ctx, output, output->ne[0] * 2, output->ne[1] / 2);
  302. return output;
  303. }
  304. // TODO: Check if it's possible to merge with standard MHA
  305. extern "C" ggml_tensor* RelativePositionMHA_forward(
  306. fairseq2_model& model,
  307. const std::string& prefix,
  308. ggml_tensor* seqs
  309. ) {
  310. ggml_context* ctx = model.ctx;
  311. ggml_tensor* residual = seqs;
  312. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  313. // self_attn: qkv
  314. struct ggml_tensor * Qcur = Linear_forward(model, prefix + ".q_proj", seqs);
  315. struct ggml_tensor * Kcur = Linear_forward(model, prefix + ".k_proj", seqs);
  316. struct ggml_tensor * Vcur = Linear_forward(model, prefix + ".v_proj", seqs);
  317. // self_attn: rel_pos SDPA
  318. int32_t S = seqs->ne[1];
  319. int32_t H = 16; // TODO: Make this configurable
  320. int32_t n_ctx = 4096;
  321. int32_t K_h = seqs->ne[0] / H;
  322. int32_t start_index = n_ctx - S;
  323. int32_t end_index = n_ctx + S - 1;
  324. int num_indices = end_index - start_index;
  325. struct ggml_tensor *rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, num_indices);
  326. rows->data = malloc(ggml_nbytes(rows));
  327. for (int i = 0; i < num_indices; i++) {
  328. ((int32_t *)rows->data)[i] = start_index + i;
  329. }
  330. // self_attn: load pos_enc weights & compute_r
  331. // In fairseq2 pos_enc weights are calculated on the fly, since some more custom operators might be needed to enable this,
  332. // we store the results (fixed) in checkpoint as model.audio_enc_pos_enc_w and load directly.
  333. struct ggml_tensor * r = ggml_get_rows(ctx, model.tensors["speech_encoder.pos_enc"], rows);
  334. r = ggml_mul_mat(ctx, model.tensors[prefix + ".sdpa.r_proj.weight"], r);
  335. r = ggml_dup(ctx, ggml_permute(ctx,
  336. ggml_cpy(ctx,
  337. r,
  338. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S*2-1)),
  339. 0, 2, 1, 3));
  340. struct ggml_tensor * u_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.u_bias"], K_h, 1, H);
  341. struct ggml_tensor * v_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.v_bias"], K_h, 1, H);
  342. // self_attn: Permute QKV
  343. struct ggml_tensor * Q =
  344. ggml_dup(ctx, ggml_permute(ctx,
  345. ggml_cpy(ctx,
  346. Qcur,
  347. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  348. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  349. struct ggml_tensor * K =
  350. ggml_dup(ctx, ggml_permute(ctx,
  351. ggml_cpy(ctx,
  352. Kcur,
  353. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  354. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  355. struct ggml_tensor * V =
  356. ggml_dup(ctx, ggml_permute(ctx,
  357. ggml_cpy(ctx,
  358. Vcur,
  359. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  360. 1, 2, 0, 3)); // (H * K_h, S) -> (K_h, H, S) -> (H, S, K_h)
  361. struct ggml_tensor * q_with_u_bias = ggml_add(ctx, Q, u_bias); // (K_h, S, H)
  362. struct ggml_tensor * q_with_v_bias = ggml_add(ctx, Q, v_bias); // (K_h, S, H)
  363. struct ggml_tensor * ac = ggml_mul_mat(ctx, K, q_with_u_bias);
  364. struct ggml_tensor * bd = ggml_mul_mat(ctx, r, q_with_v_bias);
  365. // self_attn: shift_bd. Logic follows https://github.com/facebookresearch/fairseq2/blob/main/src/fairseq2/nn/transformer/relative_attention.py#L161
  366. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // H, S, 2S-1
  367. struct ggml_tensor * pad = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, H, S, 1);
  368. pad->data = malloc(ggml_nbytes(pad));
  369. pad = ggml_set_f32(pad, 0.0);
  370. bd = ggml_concat(ctx, pad, bd); // bd[i][j][0] == 0, (H, S, 2S)
  371. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // (2S, S, H)
  372. bd = ggml_dup(ctx, ggml_reshape_3d(ctx, bd, S, 2*S, H)); // (S, 2S, H)
  373. bd = ggml_remove_head_row(ctx, bd); // A custom operator introduced to reduce 1st row (in the 2nd dim)
  374. bd = ggml_reshape_3d(ctx, bd, 2*S-1, S, H);
  375. bd = ggml_get_first_cols_by_rows(ctx, bd); // A custom operator introduced to get first #rows cols.
  376. // self_attn: compute attn / weights
  377. struct ggml_tensor * attn_weights = ggml_add(ctx, ac, bd);
  378. struct ggml_tensor * attn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  379. attn_scale->data = malloc(ggml_nbytes(attn_scale));
  380. ggml_set_f32(attn_scale, 1.0 / pow(K_h, 0.5));
  381. attn_weights = ggml_mul(ctx, ggml_repeat(ctx, attn_scale, attn_weights), attn_weights);
  382. attn_weights = ggml_soft_max(ctx, attn_weights);
  383. struct ggml_tensor * attn = ggml_mul_mat(ctx, V, attn_weights); // K_h, S, H
  384. attn = ggml_dup(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3));
  385. struct ggml_tensor * attn_2d = ggml_reshape_2d(ctx, attn, K_h * H, S);
  386. struct ggml_tensor * attn_out = ggml_mul_mat(ctx, model.tensors[prefix + ".output_proj.weight"], attn_2d);
  387. attn_out = ggml_add(ctx,
  388. ggml_repeat(ctx,
  389. model.tensors[prefix + ".output_proj.bias"],
  390. attn_out),
  391. attn_out);
  392. attn_out = ggml_add(ctx, residual, attn_out);
  393. return attn_out;
  394. }
  395. extern "C" ggml_tensor* ConvModule_forward(
  396. fairseq2_model& model,
  397. const std::string& prefix,
  398. ggml_tensor* seqs
  399. ) {
  400. ggml_context* ctx = model.ctx;
  401. ggml_tensor* residual = seqs;
  402. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  403. // conv: Use matmul for pointwise conv 1 - kernel_size=1, no padding case
  404. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv1.weight"], seqs);
  405. // conv: GLU
  406. seqs = ggml_glu(ctx, seqs);
  407. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  408. // S x C -> (S+K-1) x C -> K x S x C -> S x C
  409. seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".depthwise_conv.weight"], seqs, 1, 15, 1);
  410. // conv: Custom implementation of batch norm
  411. seqs = ggml_batch_norm(ctx, seqs, model.tensors[prefix + ".batch_norm.weight"], model.tensors[prefix + ".batch_norm.bias"], model.tensors[prefix + ".batch_norm.running_mean"], model.tensors[prefix + ".batch_norm.running_var"], 1e-5);
  412. // conv: SiLU actvation
  413. seqs = ggml_silu(ctx, seqs);
  414. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  415. // conv: Use matmul for pointwise conv 2 - kernel_size=1, no padding case
  416. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv2.weight"], seqs);
  417. // conv: + residual
  418. seqs = ggml_add(ctx, seqs, residual);
  419. return seqs;
  420. }
  421. extern "C" ggml_tensor* StandardConformerEncoderLayer_forward(
  422. fairseq2_model& model,
  423. const std::string& prefix,
  424. ggml_tensor* seqs,
  425. ggml_tensor* padding_mask
  426. ) {
  427. ggml_context* ctx = model.ctx;
  428. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  429. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  430. ggml_set_f32(ffn_scale, 0.5f);
  431. struct ggml_tensor * residual = seqs;
  432. seqs = LayerNorm_forward(model, prefix + ".ffn1_layer_norm", seqs);
  433. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn1", seqs);
  434. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  435. seqs = ggml_add(ctx, seqs, residual);
  436. seqs = RelativePositionMHA_forward(model, prefix + ".self_attn", seqs);
  437. seqs = ConvModule_forward(model, prefix + ".conv", seqs);
  438. residual = seqs;
  439. seqs = LayerNorm_forward(model, prefix + ".ffn2_layer_norm", seqs);
  440. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn2", seqs);
  441. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  442. seqs = ggml_add(ctx, seqs, residual);
  443. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  444. return seqs;
  445. }
  446. extern "C" ggml_tensor* StandardConformerEncoder_forward(
  447. fairseq2_model& model,
  448. const std::string& prefix,
  449. ggml_tensor* seqs,
  450. ggml_tensor* padding_mask
  451. ) { // TODO: Implement this!
  452. ggml_context* ctx = model.ctx;
  453. seqs = WaveformToFbank_forward(model, prefix, seqs);
  454. seqs = LayerNorm_forward(model, prefix + "_frontend.post_extract_layer_norm", seqs);
  455. seqs = Linear_forward(model, prefix + "_frontend.model_dim_proj", seqs);
  456. int layer_idx = 0;
  457. std::string layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  458. while (has_layer(model, layer_name)) {
  459. seqs = StandardConformerEncoderLayer_forward(
  460. model, layer_name, seqs, padding_mask
  461. );
  462. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  463. layer_idx += 1;
  464. layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  465. }
  466. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  467. ggml_tensor* residual = seqs;
  468. seqs = Linear_forward(model, prefix + ".proj1", seqs);
  469. seqs = ggml_relu_inplace(ctx, seqs);
  470. seqs = Linear_forward(model, prefix + ".proj2", seqs);
  471. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  472. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  473. ggml_set_f32(ffn_scale, 0.5f);
  474. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  475. seqs = ggml_add(ctx, seqs, residual);
  476. layer_idx = 0;
  477. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  478. while (has_layer(model, layer_name)) {
  479. seqs = StandardConformerEncoderAdaptorLayer_forward(
  480. model, layer_name, seqs, padding_mask
  481. );
  482. ggml_set_name(seqs, ("x_ada_" + std::to_string(layer_idx)).c_str());
  483. layer_idx += 1;
  484. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  485. }
  486. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  487. return seqs;
  488. }
  489. extern "C" ggml_tensor* StandardConformerEncoderAdaptorLayer_forward(
  490. fairseq2_model& model,
  491. const std::string& prefix,
  492. ggml_tensor* seqs,
  493. ggml_tensor* padding_mask
  494. ) {
  495. ggml_context* ctx = model.ctx;
  496. struct ggml_tensor * residual = seqs;
  497. residual = LayerNorm_forward(model, prefix + ".residual_layer_norm", residual);
  498. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  499. residual = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".residual_conv.weight"], residual, 8, 4, 1);
  500. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  501. residual = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".residual_conv.bias"], residual), residual);
  502. residual = ggml_glu(ctx, residual);
  503. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  504. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  505. seqs = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".self_attn_conv.weight"], seqs, 8, 4, 1);
  506. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  507. seqs = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".self_attn_conv.bias"], seqs), seqs);
  508. seqs = ggml_glu(ctx, seqs);
  509. seqs = MultiheadAttention_forward(
  510. model,
  511. prefix + ".self_attn",
  512. seqs,
  513. seqs,
  514. seqs,
  515. /*attention masks=*/nullptr
  516. );
  517. seqs = ggml_add(ctx, seqs, residual);
  518. residual = seqs;
  519. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  520. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  521. seqs = ggml_add(ctx, seqs, residual);
  522. return seqs;
  523. }
  524. /// ggml_slice(X, -1, start, end) is equivalent to X[start:end]
  525. /// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]
  526. struct ggml_tensor * ggml_slice(
  527. struct ggml_context * ctx,
  528. struct ggml_tensor * a,
  529. int axis,
  530. int64_t start,
  531. int64_t end
  532. ) {
  533. int64_t ne[4];
  534. std::copy(a->ne, a->ne + 4, ne);
  535. if (axis < 0) axis = a->n_dims + axis;
  536. if (start < 0) start = ne[axis] + start;
  537. if (end < 0) end = ne[axis] + end;
  538. GGML_ASSERT(0 <= start);
  539. GGML_ASSERT(start <= end);
  540. GGML_ASSERT(end <= ne[axis]);
  541. ne[axis] = end - start;
  542. size_t offset = a->nb[axis] * start;
  543. size_t* nb = a->nb;
  544. ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
  545. result->n_dims = a->n_dims;
  546. return result;
  547. }
  548. extern "C" ggml_tensor* PositionalEmbedding_forward(
  549. fairseq2_model& model,
  550. const std::string& prefix,
  551. ggml_tensor* embeds
  552. ) {
  553. // This only work with the simple pos encoders
  554. int seq_len = embeds->ne[1];
  555. ggml_tensor* full_pos_embeds = model.tensors[prefix];
  556. ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, 0, seq_len);
  557. return ggml_add(model.ctx, embeds, pos_embeds);
  558. }
  559. extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
  560. fairseq2_model& model,
  561. const std::string& prefix,
  562. ggml_tensor* seqs
  563. // TODO: state_bag
  564. ) {
  565. GGML_ASSERT(seqs->n_dims < GGML_MAX_DIMS);
  566. ggml_context* ctx = model.ctx;
  567. ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
  568. GGML_ASSERT(embed_weights != nullptr);
  569. ggml_tensor* embeds;
  570. if (seqs->n_dims == 1) {
  571. embeds = ggml_get_rows(ctx, embed_weights, seqs);
  572. } else {
  573. // ggml_get_rows isn't very flexible, we have to handle the reshape ourselves.
  574. ggml_tensor* flat_seqs = seqs;
  575. if (!ggml_is_contiguous(seqs)) {
  576. flat_seqs->type = GGML_TYPE_F32;
  577. flat_seqs = ggml_cont(ctx, flat_seqs);
  578. }
  579. flat_seqs = ggml_reshape_1d(ctx, flat_seqs, ggml_nelements(seqs));
  580. flat_seqs->type = GGML_TYPE_I32;
  581. embeds = ggml_get_rows(ctx, embed_weights, flat_seqs);
  582. embeds = ggml_reshape_4d(ctx, embeds, embed_weights->ne[0], seqs->ne[0], seqs->ne[1], seqs->ne[2]);
  583. embeds->n_dims = seqs->n_dims + 1;
  584. }
  585. // padding mask ?
  586. // padding_mask = to_padding_mask(embeds, seq_lens)
  587. if (has_layer(model, prefix + ".pos_encoder")) {
  588. embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);
  589. }
  590. if (has_layer(model, prefix + ".layer_norm")) {
  591. embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
  592. }
  593. return embeds;
  594. }
  595. extern "C" ggml_tensor* StandardTransformerEncoder_forward(
  596. fairseq2_model& model,
  597. const std::string& prefix,
  598. ggml_tensor* seqs,
  599. ggml_tensor* padding_mask
  600. ) {
  601. int layer_idx = 0;
  602. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  603. while (has_layer(model, layer_name)) {
  604. seqs = StandardTransformerEncoderLayer_forward(
  605. model, layer_name, seqs, padding_mask
  606. );
  607. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  608. layer_idx += 1;
  609. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  610. }
  611. if (has_layer(model, prefix + ".layer_norm"))
  612. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  613. return seqs;
  614. }
  615. extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
  616. fairseq2_model& model,
  617. const std::string& prefix,
  618. ggml_tensor* seqs,
  619. ggml_tensor* self_attn_mask,
  620. ggml_tensor* encoder_output,
  621. ggml_tensor* encoder_padding_mask
  622. ) {
  623. ggml_context* ctx = model.ctx;
  624. // TODO: read norm_order from model
  625. auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
  626. // _forward_self_attn(seqs, padding_mask)
  627. auto residual = seqs;
  628. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  629. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  630. seqs = MultiheadAttention_forward(
  631. model,
  632. prefix + ".self_attn",
  633. seqs,
  634. seqs,
  635. seqs,
  636. /*attn_mask=*/self_attn_mask
  637. );
  638. if (has_layer(model, prefix + ".self_attn_norm"))
  639. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  640. seqs = ggml_add(ctx, seqs, residual);
  641. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  642. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  643. // _forward_encoder_decoder_attn
  644. if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
  645. // `encoder_output` must be `None` for decoder-only attention.
  646. GGML_ASSERT(encoder_output == nullptr);
  647. return seqs;
  648. }
  649. // `encoder_output` must not be `None` for encoder-decoder attention.
  650. GGML_ASSERT(encoder_output != nullptr);
  651. residual = seqs;
  652. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  653. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  654. seqs = MultiheadAttention_forward(
  655. model,
  656. prefix + ".encoder_decoder_attn",
  657. seqs,
  658. encoder_output,
  659. encoder_output,
  660. /*attention masks=*/encoder_padding_mask
  661. );
  662. seqs = ggml_add(ctx, seqs, residual);
  663. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  664. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  665. // _forward_ffn(seqs)
  666. residual = seqs;
  667. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  668. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  669. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  670. // TODO:
  671. // if self.residual_scale is not None:
  672. // residual = self.residual_scale * residual
  673. seqs = ggml_add(ctx, seqs, residual);
  674. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  675. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  676. return seqs;
  677. }
  678. extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
  679. auto seq_len = seqs->ne[1];
  680. // TODO: allow other ggml_type
  681. ggml_tensor* mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
  682. return ggml_diag_mask_inf(ctx, mask, 0);
  683. }
  684. extern "C" ggml_tensor* StandardTransformerDecoder_forward(
  685. fairseq2_model& model,
  686. const std::string& prefix,
  687. ggml_tensor* seqs,
  688. ggml_tensor* padding_mask,
  689. ggml_tensor* encoder_output,
  690. ggml_tensor* encoder_padding_mask
  691. ) {
  692. int layer_idx = 0;
  693. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  694. ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
  695. while (has_layer(model, layer_name)) {
  696. seqs = StandardTransformerDecoderLayer_forward(
  697. model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
  698. );
  699. ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
  700. layer_idx += 1;
  701. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  702. }
  703. if (has_layer(model, prefix + ".layer_norm"))
  704. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  705. return seqs;
  706. }
  707. using IncrementalStateBag = std::unordered_map<ggml_tensor*, ggml_tensor*>*;
  708. int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
  709. auto opts = job.opts;
  710. int max_seq_len = -1;
  711. if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
  712. max_seq_len = opts.hard_max_seq_len;
  713. } else {
  714. max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len) + opts.soft_max_seq_len_b);
  715. }
  716. if (opts.min_seq_len > max_seq_len) {
  717. printf(
  718. "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
  719. opts.min_seq_len,
  720. max_seq_len
  721. );
  722. GGML_ASSERT(opts.min_seq_len <= max_seq_len);
  723. }
  724. int prefix_seq_len = job.prefix_seq->ne[0];
  725. if (prefix_seq_len >= max_seq_len) {
  726. printf(
  727. "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
  728. prefix_seq_len,
  729. max_seq_len
  730. );
  731. GGML_ASSERT(prefix_seq_len < max_seq_len);
  732. }
  733. return max_seq_len;
  734. }
  735. void _fan_out_encoder_output(
  736. ggml_context* ctx,
  737. ggml_tensor** encoder_output_out,
  738. ggml_tensor** encoder_padding_mask_out,
  739. int beam_size
  740. ) {
  741. // (S_enc, M)
  742. ggml_tensor* encoder_output = *encoder_output_out;
  743. ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
  744. // (B, S_enc, M)
  745. ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
  746. // (S_enc, M) -> (B, S_enc, M)
  747. *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
  748. // (S_enc) -> (B, S_enc)
  749. if (encoder_padding_mask != nullptr) {
  750. ggml_tensor* shape_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], 1, beam_size);
  751. *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
  752. }
  753. }
  754. ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
  755. // TODO: this isn't the most precise way of doing this
  756. return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));
  757. }
  758. ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {
  759. ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);
  760. ggml_type true_type = x->type;
  761. x->type = GGML_TYPE_F32;
  762. ggml_tensor* y = ggml_repeat(ctx, x, shape);
  763. y->type = true_type;
  764. return y;
  765. }
  766. void _bootstrap_seqs_and_scores(
  767. fairseq2_model& model,
  768. const SequenceGeneratorJob& job,
  769. ggml_tensor* full_seqs,
  770. ggml_tensor* scores,
  771. ggml_tensor* encoder_output,
  772. ggml_tensor* encoder_padding_mask,
  773. IncrementalStateBag state_bag
  774. ) {
  775. int prefix_seq_len = job.prefix_seq->ne[0];
  776. int max_seq_len = scores->ne[0];
  777. int beam_size = scores->ne[1];
  778. GGML_ASSERT(prefix_seq_len > 0);
  779. if (prefix_seq_len == 1)
  780. return;
  781. ggml_context* ctx = model.ctx;
  782. // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
  783. full_seqs->type = GGML_TYPE_F32;
  784. job.prefix_seq->type = GGML_TYPE_F32;
  785. ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
  786. seqs = ggml_cpy(ctx, ggml_repeat(ctx, job.prefix_seq, seqs), seqs);
  787. // We have to bootstrap the model with the already fanned-out encoder
  788. // output to correctly initialize its incremental state.
  789. // Note: we don't start decoding the last prefix token just yet.
  790. seqs = ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1);
  791. seqs->type = GGML_TYPE_I32;
  792. // Bootstrap the model state with prefix sequence.
  793. seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
  794. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  795. model,
  796. "text_decoder",
  797. seqs,
  798. /*padding_mask*/ nullptr,
  799. encoder_output,
  800. encoder_padding_mask
  801. // TODO: state_bag
  802. );
  803. // TODO state_bag.increment_step(prefix_seq_len - 1)
  804. // logits, lprobs: (N, S_pfx - 1, V)
  805. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
  806. int vocab_size = logits->ne[0];
  807. ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
  808. ggml_cgraph gf = ggml_build_forward(lprobs);
  809. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  810. full_seqs->type = GGML_TYPE_I32;
  811. job.prefix_seq->type = GGML_TYPE_I32;
  812. // Fetch scores of next steps from "lprobs"
  813. float p_score = 0;
  814. for (int i = 1; i < prefix_seq_len; ++i) {
  815. int p = ggml_get_i32_1d(job.prefix_seq, i);
  816. p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
  817. for (int b = 0; b < beam_size; ++b) {
  818. // scores: (N, S)
  819. // Note: First step (e.g. BOS)'s score is always 0.
  820. ggml_set_f32_1d(scores, b * max_seq_len + i, p_score);
  821. }
  822. }
  823. }
  824. /// Finds the topk indices, and write the winning indices in "candidate_indices" array.
  825. int topk(
  826. ggml_tensor* lprobs, // (B, V)
  827. std::int64_t k,
  828. ggml_tensor* candidate_indices
  829. ) {
  830. // Take the best 2 x `beam_size` predictions. We'll choose the first
  831. // `beam_size` of these which don't predict EOS to continue with.
  832. // (N, 2 x B)
  833. // `vocab_size` - 1 to never select PAD.
  834. std::int64_t K = std::min(k, ggml_nelements(lprobs));
  835. auto comp = [lprobs](std::int32_t a, std::int32_t b) {
  836. return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);
  837. };
  838. GGML_ASSERT(ggml_nelements(candidate_indices) >= k);
  839. auto cand = (std::int32_t*)candidate_indices->data;
  840. std::partial_sort(cand, cand + K, cand + ggml_nelements(lprobs), comp);
  841. return K;
  842. }
  843. void ggml_detach(ggml_tensor* a) {
  844. a->op = GGML_OP_NONE;
  845. a->src[0] = nullptr;
  846. }
  847. /// Copies the sequence and scores of a given candidate beam.
  848. void _finalize_hypothesis(
  849. const SequenceGeneratorJob& job,
  850. ggml_context* ctx,
  851. int step_nr,
  852. std::int32_t beam,
  853. std::int32_t token,
  854. float eos_score,
  855. ggml_tensor* seqs, // (beam_size, seq_len)
  856. ggml_tensor* scores, // (beam_size, seq_len)
  857. Hypothesis* hypothesis
  858. ) {
  859. ggml_tensor* seq = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
  860. hypothesis->seq = seq;
  861. ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
  862. hypothesis->step_scores = step_scores;
  863. auto tok = (std::int32_t*)seq->data;
  864. for (int i = 0; i < step_nr + 1; ++i) {
  865. tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
  866. }
  867. tok[step_nr + 1] = token;
  868. // Convert from cumulative to per-step scores.
  869. auto sc = (float*)step_scores->data;
  870. float last_score = eos_score;
  871. for (int i = step_nr; i >= 0; --i) {
  872. float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);
  873. sc[i + 1] = last_score - sc0;
  874. last_score = sc0;
  875. }
  876. sc[0] = 0;
  877. if (job.opts.normalize_scores)
  878. // Skip first EOS since it is always 0 and skews normalization.
  879. eos_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
  880. hypothesis->score = eos_score;
  881. }
  882. // Uses ggml_context to store any object.
  883. #define GGML_CTX_ALLOC(ctx, Type, n) \
  884. (Type*)(ggml_new_tensor_1d(ctx, GGML_TYPE_I8, sizeof(Type) * n)->data);
  885. /// Generates a translation for a single sequence
  886. // TODO: add IncrementalStateBag support to avoid a O(N^3) generation.
  887. // TODO: clean ups
  888. // * replace manual tensor tweaking with ggml_set_*d (a ggml_set_slice could be useful)
  889. extern "C" Hypothesis* generate_sequence(
  890. fairseq2_model& model,
  891. const SequenceGeneratorJob& job,
  892. ggml_tensor* encoder_output,
  893. ggml_tensor* encoder_padding_mask,
  894. ggml_context* result_ctx
  895. ) {
  896. ggml_context* ctx = model.ctx;
  897. size_t eos_idx = job.eos_idx;
  898. auto pad_idx = job.pad_idx;
  899. ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
  900. size_t vocab_size = embed->ne[1];
  901. std::size_t beam_size = job.opts.beam_size;
  902. int source_seq_len = encoder_output->ne[1];
  903. int max_seq_len = _determine_max_seq_len(job, source_seq_len);
  904. // (S_enc, M) -> (B, S_enc, M)
  905. _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);
  906. // Allocate results in the context provided by the caller.
  907. Hypothesis* finished_searches_begin = GGML_CTX_ALLOC(result_ctx, Hypothesis, beam_size);
  908. Hypothesis* finished_searches = finished_searches_begin;
  909. for (std::size_t i = 0; i < beam_size; ++i) finished_searches[i] = {nullptr, -INFINITY, nullptr};
  910. Hypothesis* finished_searches_end = finished_searches + beam_size;
  911. // Initialize buffers. (B, S)
  912. ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);
  913. ggml_set_i32(seqs, 0);
  914. ggml_set_name(seqs, "seqs_0");
  915. ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);
  916. ggml_set_name(scores, "scores_0");
  917. ggml_set_f32(scores, 0.0);
  918. IncrementalStateBag state_bag = {};
  919. _bootstrap_seqs_and_scores(
  920. model, job, seqs, scores, encoder_output, encoder_padding_mask, state_bag
  921. );
  922. int prefix_seq_len = job.prefix_seq->ne[0];
  923. int start_step = prefix_seq_len - 1;
  924. // Holds the indices of beams (a beam can occur more than once) that we
  925. // should continue with in the next step.
  926. ggml_tensor* beam_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  927. ggml_tensor* next_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  928. ggml_tensor* next_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, beam_size);
  929. // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore
  930. ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);
  931. for (std::size_t i = 0; i < vocab_size * beam_size; ++i)
  932. ((int32_t *)(candidate_indices->data))[i] = i;
  933. // TODO: memory management, there should be a per-step ggml_context for intermediary results
  934. for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
  935. // because of no IncrementalStateBag we pass input from the start
  936. // decoder_input = seqs[:, 0 : step_nr + 1]
  937. ggml_tensor* decoder_input = ggml_slice(ctx, seqs, 0, 0, step_nr + 1);
  938. decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", decoder_input);
  939. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  940. model,
  941. "text_decoder",
  942. decoder_input,
  943. nullptr, // We never generate PAD.
  944. encoder_output,
  945. encoder_padding_mask
  946. // state_bag=state_bag,
  947. ); // (B, S, D)
  948. // state_bag.increment_step()
  949. // Because of no IncrementalStateBag decoder_output here is of shape (B, S, D)
  950. // Just look at the last token.
  951. decoder_output = ggml_slice(ctx, decoder_output, 1, step_nr, step_nr+1);
  952. decoder_output = ggml_cont(ctx, decoder_output);
  953. decoder_output = ggml_flatten_1d(ctx, decoder_output, 0); // (B, model_dim)
  954. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output); // (B, vocab_size)
  955. ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);
  956. // Compute lprobs here so we can modify it in place in the lprob tweaking phase
  957. // TODO: use ggml properly compute the tweaks
  958. ggml_cgraph gf = ggml_build_forward(lprobs);
  959. printf("beam search step %d. Graph.n_nodes: %d\n", step_nr, gf.n_nodes);
  960. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  961. ggml_detach(lprobs);
  962. // // Do not allow EOS before reaching the minimum sequence length.
  963. if (step_nr < job.opts.min_seq_len) {
  964. // lprobs[:, :, self.eos_idx] = -INFINITY;
  965. for (size_t i = 0; i < beam_size; ++i)
  966. ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);
  967. }
  968. // If we have reached the maximum length, force the last step to be EOS.
  969. if (step_nr == max_seq_len - 2) {
  970. // lprobs[:, :, : self.eos_idx] = -torch.inf
  971. // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
  972. for (size_t b = 0; b < beam_size; ++b) {
  973. size_t t = 0;
  974. for (t = 0; t < eos_idx; ++t)
  975. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  976. for (t = eos_idx + 1; t < vocab_size; ++t)
  977. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  978. }
  979. }
  980. // Never allow PAD.
  981. for (size_t i = 0; i < beam_size; ++i)
  982. ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);
  983. // Apply UNK penalty.
  984. if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {
  985. // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
  986. auto lprobs_raw = ggml_get_data_f32(lprobs);
  987. for (size_t i = 0; i < beam_size; ++i)
  988. lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;
  989. }
  990. ggml_tensor* last_scores = ggml_slice(ctx, scores, 0, step_nr, step_nr+1);
  991. if (step_nr == start_step) {
  992. // At the initial step, all hypotheses are equally likely, so we use
  993. // only the first beam.
  994. lprobs = ggml_slice(ctx, lprobs, 1, 0, 1);
  995. lprobs = ggml_cont(ctx, lprobs);
  996. // The first step always indicates the beginning of the sequence and has no score.
  997. if (step_nr > 0) {
  998. last_scores = ggml_slice(ctx, last_scores, 1, 0, 1);
  999. lprobs = ggml_add_inplace(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1000. }
  1001. } else {
  1002. // Make probabilities contain cumulative scores for each hypothesis.
  1003. lprobs = ggml_add(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1004. }
  1005. gf = ggml_build_forward(lprobs);
  1006. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1007. // Determine (beam, token) candidates for the next step.
  1008. // (N, 2 x B)
  1009. std::int64_t K = topk(
  1010. lprobs, std::min(2 * beam_size, vocab_size - 1), candidate_indices
  1011. );
  1012. std::size_t ongoing_beams = 0;
  1013. for (std::int32_t i = 0; i < K; ++i) {
  1014. int c = ggml_get_f32_1d(candidate_indices, i);
  1015. std::int32_t beam = c / vocab_size;
  1016. std::int32_t token = c % vocab_size;
  1017. float tok_score = ggml_get_f32_1d(lprobs, c);
  1018. // Detect beams that reached the minimum length and that end with an EOS.
  1019. bool eos = token == job.eos_idx;
  1020. eos &= tok_score != -INFINITY;
  1021. if (eos) {
  1022. _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, finished_searches++);
  1023. if (finished_searches == finished_searches_end)
  1024. goto end_of_beam_search;
  1025. continue;
  1026. }
  1027. ggml_set_f32_1d(beam_indices, ongoing_beams, beam);
  1028. ggml_set_f32_1d(next_tokens, ongoing_beams, token);
  1029. ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);
  1030. ongoing_beams += 1;
  1031. if (ongoing_beams >= beam_size) break;
  1032. }
  1033. // Reorder beams in the `seq` and `score` buffers. The same beam can
  1034. // be selected more than once.
  1035. ggml_tensor* new_seqs = seqs;
  1036. ggml_tensor* new_scores = scores;
  1037. if (step_nr > start_step) {
  1038. // (B, S), (B) -> (B, S)
  1039. // ggml_get_rows and ggml_set only work with floats ...
  1040. new_seqs->type = GGML_TYPE_F32;
  1041. new_seqs = ggml_get_rows(ctx, seqs, beam_indices);
  1042. new_scores = ggml_get_rows(ctx, scores, beam_indices);
  1043. gf = ggml_build_forward(new_seqs);
  1044. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1045. ggml_detach(new_seqs);
  1046. new_seqs->type = GGML_TYPE_I32;
  1047. gf = ggml_build_forward(new_scores);
  1048. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1049. ggml_detach(new_scores);
  1050. }
  1051. // new_seqs[:, step_nr + 1] = next_tokens
  1052. // new_scores[:, step_nr + 1] = next_scores
  1053. for (std::size_t i = 0; i < beam_size; ++i) {
  1054. ((std::int32_t*)new_seqs->data)[step_nr + 1 + i * max_seq_len] = ggml_get_i32_1d(next_tokens, i);
  1055. ((float*)new_scores->data)[step_nr + 1 + i * max_seq_len] = ggml_get_f32_1d(next_scores, i);
  1056. }
  1057. // TODO the old seqs and score buffers could be reused for next step
  1058. seqs = new_seqs;
  1059. scores = new_scores;
  1060. }
  1061. end_of_beam_search:
  1062. // Ensure that hypotheses are sorted by decreasing scores before returning.
  1063. std::sort(
  1064. finished_searches_begin,
  1065. finished_searches_end,
  1066. [](Hypothesis a, Hypothesis b) { return a.score > b.score; }
  1067. );
  1068. return finished_searches_begin;
  1069. }
  1070. extern "C" Hypothesis* _testing_return_hypothesis_ptr(ggml_context* ctx) {
  1071. Hypothesis* result = GGML_CTX_ALLOC(ctx, struct Hypothesis, 2);
  1072. result[0] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 3.14f, (ggml_tensor*)result};
  1073. ggml_set_i32_1d(result[0].seq, 0, 314);
  1074. result[1] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 4.21f, nullptr};
  1075. ggml_set_i32_1d(result[1].seq, 0, 421);
  1076. return result;
  1077. }