1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431 |
- # auto-generated file
- import ggml.ffi as ffi
- import numpy as np
- class lib:
- @property
- def GGML_BACKEND_CPU(self) -> int: ...
- @property
- def GGML_BACKEND_GPU(self) -> int: ...
- @property
- def GGML_BACKEND_GPU_SPLIT(self) -> int: ...
- @property
- def GGML_FTYPE_ALL_F32(self) -> int: ...
- @property
- def GGML_FTYPE_MOSTLY_F16(self) -> int: ...
- @property
- def GGML_FTYPE_MOSTLY_Q2_K(self) -> int: ...
- @property
- def GGML_FTYPE_MOSTLY_Q3_K(self) -> int: ...
- @property
- def GGML_FTYPE_MOSTLY_Q4_0(self) -> int: ...
- @property
- def GGML_FTYPE_MOSTLY_Q4_1(self) -> int: ...
- @property
- def GGML_FTYPE_MOSTLY_Q4_1_SOME_F16(self) -> int: ...
- @property
- def GGML_FTYPE_MOSTLY_Q4_K(self) -> int: ...
- @property
- def GGML_FTYPE_MOSTLY_Q5_0(self) -> int: ...
- @property
- def GGML_FTYPE_MOSTLY_Q5_1(self) -> int: ...
- @property
- def GGML_FTYPE_MOSTLY_Q5_K(self) -> int: ...
- @property
- def GGML_FTYPE_MOSTLY_Q6_K(self) -> int: ...
- @property
- def GGML_FTYPE_MOSTLY_Q8_0(self) -> int: ...
- @property
- def GGML_FTYPE_UNKNOWN(self) -> int: ...
- @property
- def GGML_LINESEARCH_BACKTRACKING_ARMIJO(self) -> int: ...
- @property
- def GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE(self) -> int: ...
- @property
- def GGML_LINESEARCH_BACKTRACKING_WOLFE(self) -> int: ...
- @property
- def GGML_LINESEARCH_DEFAULT(self) -> int: ...
- @property
- def GGML_LINESEARCH_FAIL(self) -> int: ...
- @property
- def GGML_LINESEARCH_INVALID_PARAMETERS(self) -> int: ...
- @property
- def GGML_LINESEARCH_MAXIMUM_ITERATIONS(self) -> int: ...
- @property
- def GGML_LINESEARCH_MAXIMUM_STEP(self) -> int: ...
- @property
- def GGML_LINESEARCH_MINIMUM_STEP(self) -> int: ...
- @property
- def GGML_OBJECT_GRAPH(self) -> int: ...
- @property
- def GGML_OBJECT_TENSOR(self) -> int: ...
- @property
- def GGML_OBJECT_WORK_BUFFER(self) -> int: ...
- @property
- def GGML_OPT_ADAM(self) -> int: ...
- @property
- def GGML_OPT_DID_NOT_CONVERGE(self) -> int: ...
- @property
- def GGML_OPT_FAIL(self) -> int: ...
- @property
- def GGML_OPT_INVALID_WOLFE(self) -> int: ...
- @property
- def GGML_OPT_LBFGS(self) -> int: ...
- @property
- def GGML_OPT_NO_CONTEXT(self) -> int: ...
- @property
- def GGML_OPT_OK(self) -> int: ...
- @property
- def GGML_OP_ACC(self) -> int: ...
- @property
- def GGML_OP_ADD(self) -> int: ...
- @property
- def GGML_OP_ADD1(self) -> int: ...
- @property
- def GGML_OP_ALIBI(self) -> int: ...
- @property
- def GGML_OP_ARGMAX(self) -> int: ...
- @property
- def GGML_OP_CLAMP(self) -> int: ...
- @property
- def GGML_OP_CONT(self) -> int: ...
- @property
- def GGML_OP_CONV_1D(self) -> int: ...
- @property
- def GGML_OP_CONV_2D(self) -> int: ...
- @property
- def GGML_OP_COUNT(self) -> int: ...
- @property
- def GGML_OP_CPY(self) -> int: ...
- @property
- def GGML_OP_CROSS_ENTROPY_LOSS(self) -> int: ...
- @property
- def GGML_OP_CROSS_ENTROPY_LOSS_BACK(self) -> int: ...
- @property
- def GGML_OP_DIAG(self) -> int: ...
- @property
- def GGML_OP_DIAG_MASK_INF(self) -> int: ...
- @property
- def GGML_OP_DIAG_MASK_ZERO(self) -> int: ...
- @property
- def GGML_OP_DIV(self) -> int: ...
- @property
- def GGML_OP_DUP(self) -> int: ...
- @property
- def GGML_OP_FLASH_ATTN(self) -> int: ...
- @property
- def GGML_OP_FLASH_ATTN_BACK(self) -> int: ...
- @property
- def GGML_OP_FLASH_FF(self) -> int: ...
- @property
- def GGML_OP_GET_ROWS(self) -> int: ...
- @property
- def GGML_OP_GET_ROWS_BACK(self) -> int: ...
- @property
- def GGML_OP_LOG(self) -> int: ...
- @property
- def GGML_OP_MAP_BINARY(self) -> int: ...
- @property
- def GGML_OP_MAP_CUSTOM1(self) -> int: ...
- @property
- def GGML_OP_MAP_CUSTOM1_F32(self) -> int: ...
- @property
- def GGML_OP_MAP_CUSTOM2(self) -> int: ...
- @property
- def GGML_OP_MAP_CUSTOM2_F32(self) -> int: ...
- @property
- def GGML_OP_MAP_CUSTOM3(self) -> int: ...
- @property
- def GGML_OP_MAP_CUSTOM3_F32(self) -> int: ...
- @property
- def GGML_OP_MAP_UNARY(self) -> int: ...
- @property
- def GGML_OP_MEAN(self) -> int: ...
- @property
- def GGML_OP_MUL(self) -> int: ...
- @property
- def GGML_OP_MUL_MAT(self) -> int: ...
- @property
- def GGML_OP_NONE(self) -> int: ...
- @property
- def GGML_OP_NORM(self) -> int: ...
- @property
- def GGML_OP_OUT_PROD(self) -> int: ...
- @property
- def GGML_OP_PERMUTE(self) -> int: ...
- @property
- def GGML_OP_POOL_1D(self) -> int: ...
- @property
- def GGML_OP_POOL_2D(self) -> int: ...
- @property
- def GGML_OP_POOL_AVG(self) -> int: ...
- @property
- def GGML_OP_POOL_COUNT(self) -> int: ...
- @property
- def GGML_OP_POOL_MAX(self) -> int: ...
- @property
- def GGML_OP_REPEAT(self) -> int: ...
- @property
- def GGML_OP_REPEAT_BACK(self) -> int: ...
- @property
- def GGML_OP_RESHAPE(self) -> int: ...
- @property
- def GGML_OP_RMS_NORM(self) -> int: ...
- @property
- def GGML_OP_RMS_NORM_BACK(self) -> int: ...
- @property
- def GGML_OP_ROPE(self) -> int: ...
- @property
- def GGML_OP_ROPE_BACK(self) -> int: ...
- @property
- def GGML_OP_SCALE(self) -> int: ...
- @property
- def GGML_OP_SET(self) -> int: ...
- @property
- def GGML_OP_SILU_BACK(self) -> int: ...
- @property
- def GGML_OP_SOFT_MAX(self) -> int: ...
- @property
- def GGML_OP_SOFT_MAX_BACK(self) -> int: ...
- @property
- def GGML_OP_SQR(self) -> int: ...
- @property
- def GGML_OP_SQRT(self) -> int: ...
- @property
- def GGML_OP_SUB(self) -> int: ...
- @property
- def GGML_OP_SUM(self) -> int: ...
- @property
- def GGML_OP_SUM_ROWS(self) -> int: ...
- @property
- def GGML_OP_TRANSPOSE(self) -> int: ...
- @property
- def GGML_OP_UNARY(self) -> int: ...
- @property
- def GGML_OP_VIEW(self) -> int: ...
- @property
- def GGML_OP_WIN_PART(self) -> int: ...
- @property
- def GGML_OP_WIN_UNPART(self) -> int: ...
- @property
- def GGML_TASK_COMPUTE(self) -> int: ...
- @property
- def GGML_TASK_FINALIZE(self) -> int: ...
- @property
- def GGML_TASK_INIT(self) -> int: ...
- @property
- def GGML_TYPE_COUNT(self) -> int: ...
- @property
- def GGML_TYPE_F16(self) -> int: ...
- @property
- def GGML_TYPE_F32(self) -> int: ...
- @property
- def GGML_TYPE_I16(self) -> int: ...
- @property
- def GGML_TYPE_I32(self) -> int: ...
- @property
- def GGML_TYPE_I8(self) -> int: ...
- @property
- def GGML_TYPE_Q2_K(self) -> int: ...
- @property
- def GGML_TYPE_Q3_K(self) -> int: ...
- @property
- def GGML_TYPE_Q4_0(self) -> int: ...
- @property
- def GGML_TYPE_Q4_1(self) -> int: ...
- @property
- def GGML_TYPE_Q4_K(self) -> int: ...
- @property
- def GGML_TYPE_Q5_0(self) -> int: ...
- @property
- def GGML_TYPE_Q5_1(self) -> int: ...
- @property
- def GGML_TYPE_Q5_K(self) -> int: ...
- @property
- def GGML_TYPE_Q6_K(self) -> int: ...
- @property
- def GGML_TYPE_Q8_0(self) -> int: ...
- @property
- def GGML_TYPE_Q8_1(self) -> int: ...
- @property
- def GGML_TYPE_Q8_K(self) -> int: ...
- @property
- def GGML_UNARY_OP_ABS(self) -> int: ...
- @property
- def GGML_UNARY_OP_ELU(self) -> int: ...
- @property
- def GGML_UNARY_OP_GELU(self) -> int: ...
- @property
- def GGML_UNARY_OP_GELU_QUICK(self) -> int: ...
- @property
- def GGML_UNARY_OP_NEG(self) -> int: ...
- @property
- def GGML_UNARY_OP_RELU(self) -> int: ...
- @property
- def GGML_UNARY_OP_SGN(self) -> int: ...
- @property
- def GGML_UNARY_OP_SILU(self) -> int: ...
- @property
- def GGML_UNARY_OP_STEP(self) -> int: ...
- @property
- def GGML_UNARY_OP_TANH(self) -> int: ...
- @property
- def GGUF_TYPE_ARRAY(self) -> int: ...
- @property
- def GGUF_TYPE_BOOL(self) -> int: ...
- @property
- def GGUF_TYPE_COUNT(self) -> int: ...
- @property
- def GGUF_TYPE_FLOAT32(self) -> int: ...
- @property
- def GGUF_TYPE_INT16(self) -> int: ...
- @property
- def GGUF_TYPE_INT32(self) -> int: ...
- @property
- def GGUF_TYPE_INT8(self) -> int: ...
- @property
- def GGUF_TYPE_STRING(self) -> int: ...
- @property
- def GGUF_TYPE_UINT16(self) -> int: ...
- @property
- def GGUF_TYPE_UINT32(self) -> int: ...
- @property
- def GGUF_TYPE_UINT8(self) -> int: ...
- def abort_callback(data: ffi.CData) -> bool:
- """
- abort ggml_graph_compute when true
- bool (*abort_callback)(void * data);
- """
- ...
- def dequantize_row_q2_K(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """
- Dequantization
- void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
- """
- ...
- def dequantize_row_q3_K(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);"""
- ...
- def dequantize_row_q4_K(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);"""
- ...
- def dequantize_row_q5_K(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k);"""
- ...
- def dequantize_row_q6_K(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k);"""
- ...
- def dequantize_row_q8_K(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);"""
- ...
- def ggml_abs(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_abs(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_abs_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_abs_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_acc(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, nb1: int, nb2: int, nb3: int, offset: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_acc(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset);
- """
- ...
- def ggml_acc_inplace(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, nb1: int, nb2: int, nb3: int, offset: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_acc_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset);
- """
- ...
- def ggml_add(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_add(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_add1(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_add1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_add1_inplace(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_add1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_add_inplace(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_add_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_alibi(ctx: ffi.CData, a: ffi.CData, n_past: int, n_head: int, bias_max: float) -> ffi.CData:
- """
- alibi position embedding
- in-place, returns view(a)
- struct ggml_tensor * ggml_alibi(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_head,
- float bias_max);
- """
- ...
- def ggml_allocr_alloc(alloc: ffi.CData, tensor: ffi.CData) -> None:
- """GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor);"""
- ...
- def ggml_allocr_alloc_graph(alloc: ffi.CData, graph: ffi.CData) -> int:
- """GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);"""
- ...
- def ggml_allocr_free(alloc: ffi.CData) -> None:
- """GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);"""
- ...
- def ggml_allocr_is_measure(alloc: ffi.CData) -> bool:
- """GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);"""
- ...
- def ggml_allocr_new(data: ffi.CData, size: int, alignment: int) -> ffi.CData:
- """GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);"""
- ...
- def ggml_allocr_new_measure(alignment: int) -> ffi.CData:
- """GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);"""
- ...
- def ggml_allocr_reset(alloc: ffi.CData) -> None:
- """GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);"""
- ...
- def ggml_allocr_set_parse_seq(alloc: ffi.CData, list: ffi.CData, n: int) -> None:
- """
- tell the allocator to parse nodes following the order described in the list
- you should call this if your graph are optimized to execute out-of-order
- GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, int * list, int n);
- """
- ...
- def ggml_are_same_shape(t0: ffi.CData, t1: ffi.CData) -> bool:
- """ GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);"""
- ...
- def ggml_argmax(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- argmax along rows
- GGML_API struct ggml_tensor * ggml_argmax(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_blck_size(type: int) -> int:
- """ GGML_API int ggml_blck_size (enum ggml_type type);"""
- ...
- def ggml_build_backward(ctx: ffi.CData, gf: ffi.CData, keep: bool) -> ffi.CData:
- """ GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);"""
- ...
- def ggml_build_forward(tensor: ffi.CData) -> ffi.CData:
- """ GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);"""
- ...
- def ggml_build_forward_ctx(ctx: ffi.CData, tensor: ffi.CData) -> ffi.CData:
- """ GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);"""
- ...
- def ggml_build_forward_expand(cgraph: ffi.CData, tensor: ffi.CData) -> None:
- """ GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);"""
- ...
- def ggml_cl_can_mul_mat(src0: ffi.CData, src1: ffi.CData, dst: ffi.CData) -> bool:
- """bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);"""
- ...
- def ggml_cl_free_data(tensor: ffi.CData) -> None:
- """void ggml_cl_free_data(const struct ggml_tensor* tensor);"""
- ...
- def ggml_cl_host_free(ptr: ffi.CData) -> None:
- """void ggml_cl_host_free(void * ptr);"""
- ...
- def ggml_cl_host_malloc(size: int) -> ffi.CData:
- """void * ggml_cl_host_malloc(size_t size);"""
- ...
- def ggml_cl_init() -> None:
- """void ggml_cl_init(void);"""
- ...
- def ggml_cl_mul(src0: ffi.CData, src1: ffi.CData, dst: ffi.CData) -> None:
- """void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);"""
- ...
- def ggml_cl_mul_mat(src0: ffi.CData, src1: ffi.CData, dst: ffi.CData, wdata: ffi.CData, wsize: int) -> None:
- """void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);"""
- ...
- def ggml_cl_mul_mat_get_wsize(src0: ffi.CData, src1: ffi.CData, dst: ffi.CData) -> int:
- """size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);"""
- ...
- def ggml_cl_transform_tensor(data: ffi.CData, tensor: ffi.CData) -> None:
- """void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);"""
- ...
- def ggml_clamp(ctx: ffi.CData, a: ffi.CData, min: float, max: float) -> ffi.CData:
- """
- clamp
- in-place, returns view(a)
- struct ggml_tensor * ggml_clamp(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float min,
- float max);
- """
- ...
- def ggml_cont(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- make contiguous
- GGML_API struct ggml_tensor * ggml_cont(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_cont_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- make contiguous, in-place
- GGML_API struct ggml_tensor * ggml_cont_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_conv_1d(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, s0: int, p0: int, d0: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_conv_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0, // stride
- int p0, // padding
- int d0); // dilation
- """
- ...
- def ggml_conv_1d_ph(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, s: int, d: int) -> ffi.CData:
- """
- conv_1d with padding = half
- alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
- GGML_API struct ggml_tensor * ggml_conv_1d_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s,
- int d);
- """
- ...
- def ggml_conv_2d(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, s0: int, s1: int, p0: int, p1: int, d0: int, d1: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_conv_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int s1,
- int p0,
- int p1,
- int d0,
- int d1);
- """
- ...
- def ggml_cpu_has_arm_fma() -> int:
- """ GGML_API int ggml_cpu_has_arm_fma (void);"""
- ...
- def ggml_cpu_has_avx() -> int:
- """ GGML_API int ggml_cpu_has_avx (void);"""
- ...
- def ggml_cpu_has_avx2() -> int:
- """ GGML_API int ggml_cpu_has_avx2 (void);"""
- ...
- def ggml_cpu_has_avx512() -> int:
- """ GGML_API int ggml_cpu_has_avx512 (void);"""
- ...
- def ggml_cpu_has_avx512_vbmi() -> int:
- """ GGML_API int ggml_cpu_has_avx512_vbmi(void);"""
- ...
- def ggml_cpu_has_avx512_vnni() -> int:
- """ GGML_API int ggml_cpu_has_avx512_vnni(void);"""
- ...
- def ggml_cpu_has_blas() -> int:
- """ GGML_API int ggml_cpu_has_blas (void);"""
- ...
- def ggml_cpu_has_clblast() -> int:
- """ GGML_API int ggml_cpu_has_clblast (void);"""
- ...
- def ggml_cpu_has_cublas() -> int:
- """ GGML_API int ggml_cpu_has_cublas (void);"""
- ...
- def ggml_cpu_has_f16c() -> int:
- """ GGML_API int ggml_cpu_has_f16c (void);"""
- ...
- def ggml_cpu_has_fma() -> int:
- """ GGML_API int ggml_cpu_has_fma (void);"""
- ...
- def ggml_cpu_has_fp16_va() -> int:
- """ GGML_API int ggml_cpu_has_fp16_va (void);"""
- ...
- def ggml_cpu_has_gpublas() -> int:
- """ GGML_API int ggml_cpu_has_gpublas (void);"""
- ...
- def ggml_cpu_has_neon() -> int:
- """ GGML_API int ggml_cpu_has_neon (void);"""
- ...
- def ggml_cpu_has_sse3() -> int:
- """ GGML_API int ggml_cpu_has_sse3 (void);"""
- ...
- def ggml_cpu_has_vsx() -> int:
- """ GGML_API int ggml_cpu_has_vsx (void);"""
- ...
- def ggml_cpu_has_wasm_simd() -> int:
- """ GGML_API int ggml_cpu_has_wasm_simd (void);"""
- ...
- def ggml_cpy(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- a -> b, return view(b)
- GGML_API struct ggml_tensor * ggml_cpy(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_cpy_inplace(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- a -> b, in-place, return view(b)
- GGML_API struct ggml_tensor * ggml_cpy_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_cross_entropy_loss(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_cross_entropy_loss_back(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, c: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c);
- """
- ...
- def ggml_cuda_assign_buffers(tensor: ffi.CData) -> None:
- """GGML_API void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);"""
- ...
- def ggml_cuda_assign_buffers_force_inplace(tensor: ffi.CData) -> None:
- """GGML_API void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);"""
- ...
- def ggml_cuda_assign_buffers_no_scratch(tensor: ffi.CData) -> None:
- """GGML_API void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);"""
- ...
- def ggml_cuda_can_mul_mat(src0: ffi.CData, src1: ffi.CData, dst: ffi.CData) -> bool:
- """GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);"""
- ...
- def ggml_cuda_compute_forward(params: ffi.CData, tensor: ffi.CData) -> bool:
- """GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);"""
- ...
- def ggml_cuda_free_data(tensor: ffi.CData) -> None:
- """GGML_API void ggml_cuda_free_data(struct ggml_tensor * tensor);"""
- ...
- def ggml_cuda_free_scratch() -> None:
- """GGML_API void ggml_cuda_free_scratch(void);"""
- ...
- def ggml_cuda_get_device_count() -> int:
- """GGML_API int ggml_cuda_get_device_count(void);"""
- ...
- def ggml_cuda_get_device_description(device: int, description: ffi.CData, description_size: int) -> None:
- """GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size);"""
- ...
- def ggml_cuda_host_free(ptr: ffi.CData) -> None:
- """GGML_API void ggml_cuda_host_free(void * ptr);"""
- ...
- def ggml_cuda_host_malloc(size: int) -> ffi.CData:
- """GGML_API void * ggml_cuda_host_malloc(size_t size);"""
- ...
- def ggml_cuda_set_main_device(main_device: int) -> None:
- """GGML_API void ggml_cuda_set_main_device(int main_device);"""
- ...
- def ggml_cuda_set_mul_mat_q(mul_mat_q: bool) -> None:
- """GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q);"""
- ...
- def ggml_cuda_set_scratch_size(scratch_size: int) -> None:
- """GGML_API void ggml_cuda_set_scratch_size(size_t scratch_size);"""
- ...
- def ggml_cuda_set_tensor_split(tensor_split: ffi.CData) -> None:
- """GGML_API void ggml_cuda_set_tensor_split(const float * tensor_split);"""
- ...
- def ggml_cuda_transform_tensor(data: ffi.CData, tensor: ffi.CData) -> None:
- """GGML_API void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);"""
- ...
- def ggml_cycles() -> int:
- """ GGML_API int64_t ggml_cycles(void);"""
- ...
- def ggml_cycles_per_ms() -> int:
- """ GGML_API int64_t ggml_cycles_per_ms(void);"""
- ...
- def ggml_diag(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_diag(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_diag_mask_inf(ctx: ffi.CData, a: ffi.CData, n_past: int) -> ffi.CData:
- """
- set elements above the diagonal to -INF
- GGML_API struct ggml_tensor * ggml_diag_mask_inf(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- """
- ...
- def ggml_diag_mask_inf_inplace(ctx: ffi.CData, a: ffi.CData, n_past: int) -> ffi.CData:
- """
- in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- """
- ...
- def ggml_diag_mask_zero(ctx: ffi.CData, a: ffi.CData, n_past: int) -> ffi.CData:
- """
- set elements above the diagonal to 0
- GGML_API struct ggml_tensor * ggml_diag_mask_zero(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- """
- ...
- def ggml_diag_mask_zero_inplace(ctx: ffi.CData, a: ffi.CData, n_past: int) -> ffi.CData:
- """
- in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- """
- ...
- def ggml_div(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_div(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_div_inplace(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_div_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_dup(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_dup(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_dup_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_dup_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_dup_tensor(ctx: ffi.CData, src: ffi.CData) -> ffi.CData:
- """ GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);"""
- ...
- def ggml_element_size(tensor: ffi.CData) -> int:
- """ GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);"""
- ...
- def ggml_elu(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_elu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_elu_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_elu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_flash_attn(ctx: ffi.CData, q: ffi.CData, k: ffi.CData, v: ffi.CData, masked: bool) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_flash_attn(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- bool masked);
- """
- ...
- def ggml_flash_attn_back(ctx: ffi.CData, q: ffi.CData, k: ffi.CData, v: ffi.CData, d: ffi.CData, masked: bool) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_flash_attn_back(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * d,
- bool masked);
- """
- ...
- def ggml_flash_ff(ctx: ffi.CData, a: ffi.CData, b0: ffi.CData, b1: ffi.CData, c0: ffi.CData, c1: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_flash_ff(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b0,
- struct ggml_tensor * b1,
- struct ggml_tensor * c0,
- struct ggml_tensor * c1);
- """
- ...
- def ggml_format_name(tensor: ffi.CData, fmt: ffi.CData, *args2) -> ffi.CData:
- """ GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);"""
- ...
- def ggml_fp16_to_fp32(x: np.float16) -> float:
- """
- convert FP16 <-> FP32
- GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
- """
- ...
- def ggml_fp16_to_fp32_row(x: ffi.CData, y: ffi.CData, n: int) -> None:
- """ GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);"""
- ...
- def ggml_fp32_to_fp16(x: float) -> np.float16:
- """ GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);"""
- ...
- def ggml_fp32_to_fp16_row(x: ffi.CData, y: ffi.CData, n: int) -> None:
- """ GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);"""
- ...
- def ggml_free(ctx: ffi.CData) -> None:
- """ GGML_API void ggml_free(struct ggml_context * ctx);"""
- ...
- def ggml_ftype_to_ggml_type(ftype: int) -> int:
- """
- TODO: temporary until model loading of ggml examples is refactored
- GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
- """
- ...
- def ggml_gelu(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- TODO: double-check this computation is correct
- GGML_API struct ggml_tensor * ggml_gelu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_gelu_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_gelu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_gelu_quick(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_gelu_quick(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_gelu_quick_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_get_data(tensor: ffi.CData) -> ffi.CData:
- """ GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);"""
- ...
- def ggml_get_data_f32(tensor: ffi.CData) -> ffi.CData:
- """ GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);"""
- ...
- def ggml_get_f32_1d(tensor: ffi.CData, i: int) -> float:
- """ GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);"""
- ...
- def ggml_get_i32_1d(tensor: ffi.CData, i: int) -> int:
- """ GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);"""
- ...
- def ggml_get_max_tensor_size(ctx: ffi.CData) -> int:
- """ GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);"""
- ...
- def ggml_get_mem_buffer(ctx: ffi.CData) -> ffi.CData:
- """ GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);"""
- ...
- def ggml_get_mem_size(ctx: ffi.CData) -> int:
- """ GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);"""
- ...
- def ggml_get_name(tensor: ffi.CData) -> ffi.CData:
- """ GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);"""
- ...
- def ggml_get_no_alloc(ctx: ffi.CData) -> bool:
- """ GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);"""
- ...
- def ggml_get_rows(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_get_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_get_rows_back(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, c: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_get_rows_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c);
- """
- ...
- def ggml_get_tensor(ctx: ffi.CData, name: ffi.CData) -> ffi.CData:
- """ GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);"""
- ...
- def ggml_get_unary_op(tensor: ffi.CData) -> int:
- """ GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);"""
- ...
- def ggml_graph_compute(cgraph: ffi.CData, cplan: ffi.CData) -> int:
- """ GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);"""
- ...
- def ggml_graph_compute_with_ctx(ctx: ffi.CData, cgraph: ffi.CData, n_threads: int) -> None:
- """
- same as ggml_graph_compute() but the work data is allocated as a part of the context
- note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
- GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
- """
- ...
- def ggml_graph_dump_dot(gb: ffi.CData, gf: ffi.CData, filename: ffi.CData) -> None:
- """
- dump the graph into a file using the dot format
- GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
- """
- ...
- def ggml_graph_export(cgraph: ffi.CData, fname: ffi.CData) -> None:
- """ GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);"""
- ...
- def ggml_graph_get_tensor(cgraph: ffi.CData, name: ffi.CData) -> ffi.CData:
- """ GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);"""
- ...
- def ggml_graph_import(fname: ffi.CData, ctx_data: ffi.CData, ctx_eval: ffi.CData) -> ffi.CData:
- """ GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);"""
- ...
- def ggml_graph_overhead() -> int:
- """ GGML_API size_t ggml_graph_overhead(void);"""
- ...
- def ggml_graph_plan(cgraph: ffi.CData, n_threads: int) -> ffi.CData:
- """
- ggml_graph_plan() has to be called before ggml_graph_compute()
- when plan.work_size > 0, caller must allocate memory for plan.work_data
- GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
- """
- ...
- def ggml_graph_print(cgraph: ffi.CData) -> None:
- """
- print info and performance information for the graph
- GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
- """
- ...
- def ggml_graph_reset(cgraph: ffi.CData) -> None:
- """ GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);"""
- ...
- def ggml_init(params: ffi.CData) -> ffi.CData:
- """ GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);"""
- ...
- def ggml_init_cublas() -> None:
- """GGML_API void ggml_init_cublas(void);"""
- ...
- def ggml_internal_get_type_traits(type: int) -> ffi.CData:
- """ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);"""
- ...
- def ggml_is_contiguous(tensor: ffi.CData) -> bool:
- """ GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);"""
- ...
- def ggml_is_numa() -> bool:
- """ GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node"""
- ...
- def ggml_is_permuted(tensor: ffi.CData) -> bool:
- """ GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);"""
- ...
- def ggml_is_quantized(type: int) -> bool:
- """ GGML_API bool ggml_is_quantized(enum ggml_type type);"""
- ...
- def ggml_is_transposed(tensor: ffi.CData) -> bool:
- """ GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);"""
- ...
- def ggml_log(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_log(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_log_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_log_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_map_binary_f32(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, fun: ffi.CData) -> ffi.CData:
- """
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_binary_op_f32_t fun),
- "use ggml_map_custom2 instead");
- """
- ...
- def ggml_map_binary_inplace_f32(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, fun: ffi.CData) -> ffi.CData:
- """
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_binary_op_f32_t fun),
- "use ggml_map_custom2_inplace instead");
- """
- ...
- def ggml_map_custom1(ctx: ffi.CData, a: ffi.CData, fun: ffi.CData, n_tasks: int, userdata: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_map_custom1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata);
- """
- ...
- def ggml_map_custom1_f32(ctx: ffi.CData, a: ffi.CData, fun: ffi.CData) -> ffi.CData:
- """
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_custom1_op_f32_t fun),
- "use ggml_map_custom1 instead");
- """
- ...
- def ggml_map_custom1_inplace(ctx: ffi.CData, a: ffi.CData, fun: ffi.CData, n_tasks: int, userdata: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata);
- """
- ...
- def ggml_map_custom1_inplace_f32(ctx: ffi.CData, a: ffi.CData, fun: ffi.CData) -> ffi.CData:
- """
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_custom1_op_f32_t fun),
- "use ggml_map_custom1_inplace instead");
- """
- ...
- def ggml_map_custom2(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, fun: ffi.CData, n_tasks: int, userdata: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_map_custom2(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata);
- """
- ...
- def ggml_map_custom2_f32(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, fun: ffi.CData) -> ffi.CData:
- """
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_custom2_op_f32_t fun),
- "use ggml_map_custom2 instead");
- """
- ...
- def ggml_map_custom2_inplace(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, fun: ffi.CData, n_tasks: int, userdata: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata);
- """
- ...
- def ggml_map_custom2_inplace_f32(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, fun: ffi.CData) -> ffi.CData:
- """
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_custom2_op_f32_t fun),
- "use ggml_map_custom2_inplace instead");
- """
- ...
- def ggml_map_custom3(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, c: ffi.CData, fun: ffi.CData, n_tasks: int, userdata: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_map_custom3(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata);
- """
- ...
- def ggml_map_custom3_f32(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, c: ffi.CData, fun: ffi.CData) -> ffi.CData:
- """
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- ggml_custom3_op_f32_t fun),
- "use ggml_map_custom3 instead");
- """
- ...
- def ggml_map_custom3_inplace(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, c: ffi.CData, fun: ffi.CData, n_tasks: int, userdata: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata);
- """
- ...
- def ggml_map_custom3_inplace_f32(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, c: ffi.CData, fun: ffi.CData) -> ffi.CData:
- """
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- ggml_custom3_op_f32_t fun),
- "use ggml_map_custom3_inplace instead");
- """
- ...
- def ggml_map_unary_f32(ctx: ffi.CData, a: ffi.CData, fun: ffi.CData) -> ffi.CData:
- """
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_unary_op_f32_t fun),
- "use ggml_map_custom1 instead");
- """
- ...
- def ggml_map_unary_inplace_f32(ctx: ffi.CData, a: ffi.CData, fun: ffi.CData) -> ffi.CData:
- """
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_unary_op_f32_t fun),
- "use ggml_map_custom1_inplace instead");
- """
- ...
- def ggml_mean(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- mean along rows
- GGML_API struct ggml_tensor * ggml_mean(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_metal_add_buffer(ctx: ffi.CData, name: ffi.CData, data: ffi.CData, size: int, max_size: int) -> bool:
- """
- creates a mapping between a host memory buffer and a device memory buffer
- - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
- - the mapping is used during computation to determine the arguments of the compute kernels
- - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
- - max_size specifies the maximum size of a tensor and is used to create shared views such
- that it is guaranteed that the tensor will fit in at least one of the views
-
- bool ggml_metal_add_buffer(
- struct ggml_metal_context * ctx,
- const char * name,
- void * data,
- size_t size,
- size_t max_size);
- """
- ...
- def ggml_metal_free(ctx: ffi.CData) -> None:
- """void ggml_metal_free(struct ggml_metal_context * ctx);"""
- ...
- def ggml_metal_get_concur_list(ctx: ffi.CData) -> ffi.CData:
- """
- output the concur_list for ggml_alloc
- int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
- """
- ...
- def ggml_metal_get_tensor(ctx: ffi.CData, t: ffi.CData) -> None:
- """
- get data from the device into host memory
- void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
- """
- ...
- def ggml_metal_graph_compute(ctx: ffi.CData, gf: ffi.CData) -> None:
- """
- same as ggml_graph_compute but uses Metal
- creates gf->n_threads command buffers in parallel
- void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
- """
- ...
- def ggml_metal_graph_find_concurrency(ctx: ffi.CData, gf: ffi.CData, check_mem: bool) -> None:
- """
- try to find operations that can be run concurrently in the graph
- you should run it again if the topology of your graph changes
- void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem);
- """
- ...
- def ggml_metal_host_free(data: ffi.CData) -> None:
- """void ggml_metal_host_free (void * data);"""
- ...
- def ggml_metal_host_malloc(n: int) -> ffi.CData:
- """void * ggml_metal_host_malloc(size_t n);"""
- ...
- def ggml_metal_if_optimized(ctx: ffi.CData) -> int:
- """
- if the graph has been optimized for concurrently dispatch, return length of the concur_list if optimized
- int ggml_metal_if_optimized(struct ggml_metal_context * ctx);
- """
- ...
- def ggml_metal_init(n_cb: int) -> ffi.CData:
- """
- number of command buffers to use
- struct ggml_metal_context * ggml_metal_init(int n_cb);
- """
- ...
- def ggml_metal_set_n_cb(ctx: ffi.CData, n_cb: int) -> None:
- """
- set the number of command buffers to use
- void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
- """
- ...
- def ggml_metal_set_tensor(ctx: ffi.CData, t: ffi.CData) -> None:
- """
- set data from host memory into the device
- void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
- """
- ...
- def ggml_mpi_backend_free() -> None:
- """void ggml_mpi_backend_free(void);"""
- ...
- def ggml_mpi_backend_init() -> None:
- """void ggml_mpi_backend_init(void);"""
- ...
- def ggml_mpi_eval_init(ctx_mpi: ffi.CData, n_tokens: ffi.CData, n_past: ffi.CData, n_threads: ffi.CData) -> None:
- """
- void ggml_mpi_eval_init(
- struct ggml_mpi_context * ctx_mpi,
- int * n_tokens,
- int * n_past,
- int * n_threads);
- """
- ...
- def ggml_mpi_free(ctx: ffi.CData) -> None:
- """void ggml_mpi_free(struct ggml_mpi_context * ctx);"""
- ...
- def ggml_mpi_graph_compute_post(ctx_mpi: ffi.CData, gf: ffi.CData, n_layers: int) -> None:
- """
- void ggml_mpi_graph_compute_post(
- struct ggml_mpi_context * ctx_mpi,
- struct ggml_cgraph * gf,
- int n_layers);
- """
- ...
- def ggml_mpi_graph_compute_pre(ctx_mpi: ffi.CData, gf: ffi.CData, n_layers: int) -> None:
- """
- void ggml_mpi_graph_compute_pre(
- struct ggml_mpi_context * ctx_mpi,
- struct ggml_cgraph * gf,
- int n_layers);
- """
- ...
- def ggml_mpi_init() -> ffi.CData:
- """struct ggml_mpi_context * ggml_mpi_init(void);"""
- ...
- def ggml_mpi_rank(ctx: ffi.CData) -> int:
- """int ggml_mpi_rank(struct ggml_mpi_context * ctx);"""
- ...
- def ggml_mul(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_mul(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_mul_inplace(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_mul_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_mul_mat(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- A: n columns, m rows
- B: n columns, p rows (i.e. we transpose it internally)
- result is m columns, p rows
- GGML_API struct ggml_tensor * ggml_mul_mat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_nbytes(tensor: ffi.CData) -> int:
- """ GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);"""
- ...
- def ggml_nbytes_pad(tensor: ffi.CData) -> int:
- """ GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN"""
- ...
- def ggml_nbytes_split(tensor: ffi.CData, nrows_split: int) -> int:
- """ GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);"""
- ...
- def ggml_neg(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_neg(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_neg_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_neg_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_nelements(tensor: ffi.CData) -> int:
- """ GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);"""
- ...
- def ggml_new_f32(ctx: ffi.CData, value: float) -> ffi.CData:
- """ GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);"""
- ...
- def ggml_new_graph(ctx: ffi.CData) -> ffi.CData:
- """
- graph allocation in a context
- GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx);
- """
- ...
- def ggml_new_i32(ctx: ffi.CData, value: int) -> ffi.CData:
- """ GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);"""
- ...
- def ggml_new_tensor(ctx: ffi.CData, type: int, n_dims: int, ne: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_new_tensor(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t *ne);
- """
- ...
- def ggml_new_tensor_1d(ctx: ffi.CData, type: int, ne0: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_new_tensor_1d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0);
- """
- ...
- def ggml_new_tensor_2d(ctx: ffi.CData, type: int, ne0: int, ne1: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_new_tensor_2d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1);
- """
- ...
- def ggml_new_tensor_3d(ctx: ffi.CData, type: int, ne0: int, ne1: int, ne2: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_new_tensor_3d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2);
- """
- ...
- def ggml_new_tensor_4d(ctx: ffi.CData, type: int, ne0: int, ne1: int, ne2: int, ne3: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_new_tensor_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- """
- ...
- def ggml_norm(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- normalize along rows
- TODO: eps is hardcoded to 1e-5 for now
- GGML_API struct ggml_tensor * ggml_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_norm_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_nrows(tensor: ffi.CData) -> int:
- """ GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);"""
- ...
- def ggml_numa_init() -> None:
- """ GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems"""
- ...
- def ggml_op_name(op: int) -> ffi.CData:
- """ GGML_API const char * ggml_op_name (enum ggml_op op);"""
- ...
- def ggml_op_symbol(op: int) -> ffi.CData:
- """ GGML_API const char * ggml_op_symbol(enum ggml_op op);"""
- ...
- def ggml_opt(ctx: ffi.CData, params: ffi.CData, f: ffi.CData) -> int:
- """
- optimize the function defined by the tensor f
- GGML_API enum ggml_opt_result ggml_opt(
- struct ggml_context * ctx,
- struct ggml_opt_params params,
- struct ggml_tensor * f);
- """
- ...
- def ggml_opt_default_params(type: int) -> ffi.CData:
- """ GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);"""
- ...
- def ggml_opt_init(ctx: ffi.CData, opt: ffi.CData, params: ffi.CData, nx: int) -> None:
- """
- initialize optimizer context
- GGML_API void ggml_opt_init(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_opt_params params,
- int64_t nx);
- """
- ...
- def ggml_opt_resume(ctx: ffi.CData, opt: ffi.CData, f: ffi.CData) -> int:
- """
- continue optimizing the function defined by the tensor f
- GGML_API enum ggml_opt_result ggml_opt_resume(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_tensor * f);
- """
- ...
- def ggml_opt_resume_g(ctx: ffi.CData, opt: ffi.CData, f: ffi.CData, gf: ffi.CData, gb: ffi.CData) -> int:
- """
- continue optimizing the function defined by the tensor f
- GGML_API enum ggml_opt_result ggml_opt_resume_g(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb);
- """
- ...
- def ggml_out_prod(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- A: m columns, n rows,
- B: p columns, n rows,
- result is m columns, p rows
- GGML_API struct ggml_tensor * ggml_out_prod(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_permute(ctx: ffi.CData, a: ffi.CData, axis0: int, axis1: int, axis2: int, axis3: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_permute(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis0,
- int axis1,
- int axis2,
- int axis3);
- """
- ...
- def ggml_pool_1d(ctx: ffi.CData, a: ffi.CData, op: int, k0: int, s0: int, p0: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_pool_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0, // kernel size
- int s0, // stride
- int p0); // padding
- """
- ...
- def ggml_pool_2d(ctx: ffi.CData, a: ffi.CData, op: int, k0: int, k1: int, s0: int, s1: int, p0: int, p1: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_pool_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0,
- int k1,
- int s0,
- int s1,
- int p0,
- int p1);
- """
- ...
- def ggml_print_object(obj: ffi.CData) -> None:
- """ GGML_API void ggml_print_object (const struct ggml_object * obj);"""
- ...
- def ggml_print_objects(ctx: ffi.CData) -> None:
- """ GGML_API void ggml_print_objects(const struct ggml_context * ctx);"""
- ...
- def ggml_quantize_chunk(type: int, src: ffi.CData, dst: ffi.CData, start: int, n: int, hist: ffi.CData) -> int:
- """ GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);"""
- ...
- def ggml_quantize_q2_K(src: ffi.CData, dst: ffi.CData, n: int, k: int, hist: ffi.CData) -> int:
- """
- Quantization with histogram collection
- size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
- """
- ...
- def ggml_quantize_q3_K(src: ffi.CData, dst: ffi.CData, n: int, k: int, hist: ffi.CData) -> int:
- """size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);"""
- ...
- def ggml_quantize_q4_0(src: ffi.CData, dst: ffi.CData, n: int, k: int, hist: ffi.CData) -> int:
- """ GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);"""
- ...
- def ggml_quantize_q4_1(src: ffi.CData, dst: ffi.CData, n: int, k: int, hist: ffi.CData) -> int:
- """ GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);"""
- ...
- def ggml_quantize_q4_K(src: ffi.CData, dst: ffi.CData, n: int, k: int, hist: ffi.CData) -> int:
- """size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);"""
- ...
- def ggml_quantize_q5_0(src: ffi.CData, dst: ffi.CData, n: int, k: int, hist: ffi.CData) -> int:
- """ GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);"""
- ...
- def ggml_quantize_q5_1(src: ffi.CData, dst: ffi.CData, n: int, k: int, hist: ffi.CData) -> int:
- """ GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);"""
- ...
- def ggml_quantize_q5_K(src: ffi.CData, dst: ffi.CData, n: int, k: int, hist: ffi.CData) -> int:
- """size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);"""
- ...
- def ggml_quantize_q6_K(src: ffi.CData, dst: ffi.CData, n: int, k: int, hist: ffi.CData) -> int:
- """size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);"""
- ...
- def ggml_quantize_q8_0(src: ffi.CData, dst: ffi.CData, n: int, k: int, hist: ffi.CData) -> int:
- """ GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);"""
- ...
- def ggml_relu(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_relu_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_relu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_repeat(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- if a is the same shape as b, and a is not parameter, return a
- otherwise, return a new tensor: repeat(a) to fit in b
- GGML_API struct ggml_tensor * ggml_repeat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_repeat_back(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_repeat_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_reshape(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- return view(a), b specifies the new shape
- TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_reshape_1d(ctx: ffi.CData, a: ffi.CData, ne0: int) -> ffi.CData:
- """
- return view(a)
- TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0);
- """
- ...
- def ggml_reshape_2d(ctx: ffi.CData, a: ffi.CData, ne0: int, ne1: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_reshape_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1);
- """
- ...
- def ggml_reshape_3d(ctx: ffi.CData, a: ffi.CData, ne0: int, ne1: int, ne2: int) -> ffi.CData:
- """
- return view(a)
- TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2);
- """
- ...
- def ggml_reshape_4d(ctx: ffi.CData, a: ffi.CData, ne0: int, ne1: int, ne2: int, ne3: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_reshape_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- """
- ...
- def ggml_rms_norm(ctx: ffi.CData, a: ffi.CData, eps: float) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_rms_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- """
- ...
- def ggml_rms_norm_back(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- a - x
- b - dy
- TODO: update with configurable eps
- GGML_API struct ggml_tensor * ggml_rms_norm_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_rms_norm_inplace(ctx: ffi.CData, a: ffi.CData, eps: float) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- """
- ...
- def ggml_rope(ctx: ffi.CData, a: ffi.CData, n_past: int, n_dims: int, mode: int, n_ctx: int) -> ffi.CData:
- """
- rotary position embedding
- if mode & 1 == 1, skip n_past elements
- if mode & 2 == 1, GPT-NeoX style
- if mode & 4 == 1, ChatGLM style
- TODO: avoid creating a new tensor every time
- GGML_API struct ggml_tensor * ggml_rope(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- int n_ctx);
- """
- ...
- def ggml_rope_back(ctx: ffi.CData, a: ffi.CData, n_past: int, n_dims: int, mode: int, n_ctx: int) -> ffi.CData:
- """
- rotary position embedding backward, i.e compute dx from dy
- a - dy
- GGML_API struct ggml_tensor * ggml_rope_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- int n_ctx);
- """
- ...
- def ggml_rope_custom(ctx: ffi.CData, a: ffi.CData, n_past: int, n_dims: int, mode: int, n_ctx: int, freq_base: float, freq_scale: float) -> ffi.CData:
- """
- custom RoPE
- GGML_API struct ggml_tensor * ggml_rope_custom(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- int n_ctx,
- float freq_base,
- float freq_scale);
- """
- ...
- def ggml_rope_custom_inplace(ctx: ffi.CData, a: ffi.CData, n_past: int, n_dims: int, mode: int, n_ctx: int, freq_base: float, freq_scale: float) -> ffi.CData:
- """
- in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- int n_ctx,
- float freq_base,
- float freq_scale);
- """
- ...
- def ggml_rope_inplace(ctx: ffi.CData, a: ffi.CData, n_past: int, n_dims: int, mode: int, n_ctx: int) -> ffi.CData:
- """
- in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_rope_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- int n_ctx);
- """
- ...
- def ggml_scale(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_scale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_scale_inplace(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_scale_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_set(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, nb1: int, nb2: int, nb3: int, offset: int) -> ffi.CData:
- """
- b -> view(a,offset,nb1,nb2,3), return modified a
- GGML_API struct ggml_tensor * ggml_set(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset);
- """
- ...
- def ggml_set_1d(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, offset: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_set_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset);
- """
- ...
- def ggml_set_1d_inplace(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, offset: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_set_1d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset);
- """
- ...
- def ggml_set_2d(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, nb1: int, offset: int) -> ffi.CData:
- """
- b -> view(a,offset,nb1,nb2,3), return modified a
- GGML_API struct ggml_tensor * ggml_set_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset);
- """
- ...
- def ggml_set_2d_inplace(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, nb1: int, offset: int) -> ffi.CData:
- """
- b -> view(a,offset,nb1,nb2,3), return view(a)
- GGML_API struct ggml_tensor * ggml_set_2d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset);
- """
- ...
- def ggml_set_f32(tensor: ffi.CData, value: float) -> ffi.CData:
- """ GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);"""
- ...
- def ggml_set_f32_1d(tensor: ffi.CData, i: int, value: float) -> None:
- """ GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);"""
- ...
- def ggml_set_i32(tensor: ffi.CData, value: int) -> ffi.CData:
- """ GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);"""
- ...
- def ggml_set_i32_1d(tensor: ffi.CData, i: int, value: int) -> None:
- """ GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);"""
- ...
- def ggml_set_inplace(ctx: ffi.CData, a: ffi.CData, b: ffi.CData, nb1: int, nb2: int, nb3: int, offset: int) -> ffi.CData:
- """
- b -> view(a,offset,nb1,nb2,3), return view(a)
- GGML_API struct ggml_tensor * ggml_set_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset);
- """
- ...
- def ggml_set_name(tensor: ffi.CData, name: ffi.CData) -> ffi.CData:
- """ GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);"""
- ...
- def ggml_set_no_alloc(ctx: ffi.CData, no_alloc: bool) -> None:
- """ GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);"""
- ...
- def ggml_set_param(ctx: ffi.CData, tensor: ffi.CData) -> None:
- """
- GGML_API void ggml_set_param(
- struct ggml_context * ctx,
- struct ggml_tensor * tensor);
- """
- ...
- def ggml_set_scratch(ctx: ffi.CData, scratch: ffi.CData) -> int:
- """ GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);"""
- ...
- def ggml_set_zero(tensor: ffi.CData) -> ffi.CData:
- """ GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);"""
- ...
- def ggml_sgn(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_sgn(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_sgn_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_sgn_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_silu(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_silu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_silu_back(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- a - x
- b - dy
- GGML_API struct ggml_tensor * ggml_silu_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_silu_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_silu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_soft_max(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_soft_max(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_soft_max_back(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_soft_max_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_soft_max_back_inplace(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_soft_max_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_soft_max_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_sqr(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_sqr(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_sqr_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_sqr_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_sqrt(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_sqrt(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_sqrt_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_sqrt_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_step(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_step(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_step_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_step_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_sub(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_sub(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_sub_inplace(ctx: ffi.CData, a: ffi.CData, b: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_sub_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- """
- ...
- def ggml_sum(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- return scalar
- GGML_API struct ggml_tensor * ggml_sum(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_sum_rows(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
- GGML_API struct ggml_tensor * ggml_sum_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_tanh(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_tanh(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_tanh_inplace(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_tanh_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_tensor_overhead() -> int:
- """
- use this to compute the memory overhead of a tensor
- GGML_API size_t ggml_tensor_overhead(void);
- """
- ...
- def ggml_time_init() -> None:
- """ GGML_API void ggml_time_init(void); // call this once at the beginning of the program"""
- ...
- def ggml_time_ms() -> int:
- """ GGML_API int64_t ggml_time_ms(void);"""
- ...
- def ggml_time_us() -> int:
- """ GGML_API int64_t ggml_time_us(void);"""
- ...
- def ggml_transpose(ctx: ffi.CData, a: ffi.CData) -> ffi.CData:
- """
- alias for ggml_permute(ctx, a, 1, 0, 2, 3)
- GGML_API struct ggml_tensor * ggml_transpose(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- """
- ...
- def ggml_type_name(type: int) -> ffi.CData:
- """ GGML_API const char * ggml_type_name(enum ggml_type type);"""
- ...
- def ggml_type_size(type: int) -> int:
- """ GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block"""
- ...
- def ggml_type_sizef(type: int) -> float:
- """ GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float"""
- ...
- def ggml_unary(ctx: ffi.CData, a: ffi.CData, op: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_unary(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op);
- """
- ...
- def ggml_unary_inplace(ctx: ffi.CData, a: ffi.CData, op: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_unary_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op);
- """
- ...
- def ggml_used_mem(ctx: ffi.CData) -> int:
- """ GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);"""
- ...
- def ggml_vec_dot_q2_K_q8_K(n: int, s: ffi.CData, vx: ffi.CData, vy: ffi.CData) -> None:
- """
- Dot product
- void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
- """
- ...
- def ggml_vec_dot_q3_K_q8_K(n: int, s: ffi.CData, vx: ffi.CData, vy: ffi.CData) -> None:
- """void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);"""
- ...
- def ggml_vec_dot_q4_K_q8_K(n: int, s: ffi.CData, vx: ffi.CData, vy: ffi.CData) -> None:
- """void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);"""
- ...
- def ggml_vec_dot_q5_K_q8_K(n: int, s: ffi.CData, vx: ffi.CData, vy: ffi.CData) -> None:
- """void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);"""
- ...
- def ggml_vec_dot_q6_K_q8_K(n: int, s: ffi.CData, vx: ffi.CData, vy: ffi.CData) -> None:
- """void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);"""
- ...
- def ggml_view_1d(ctx: ffi.CData, a: ffi.CData, ne0: int, offset: int) -> ffi.CData:
- """
- offset in bytes
- GGML_API struct ggml_tensor * ggml_view_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- size_t offset);
- """
- ...
- def ggml_view_2d(ctx: ffi.CData, a: ffi.CData, ne0: int, ne1: int, nb1: int, offset: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_view_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- size_t nb1, // row stride in bytes
- size_t offset);
- """
- ...
- def ggml_view_3d(ctx: ffi.CData, a: ffi.CData, ne0: int, ne1: int, ne2: int, nb1: int, nb2: int, offset: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_view_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- size_t nb1, // row stride in bytes
- size_t nb2, // slice stride in bytes
- size_t offset);
- """
- ...
- def ggml_view_4d(ctx: ffi.CData, a: ffi.CData, ne0: int, ne1: int, ne2: int, ne3: int, nb1: int, nb2: int, nb3: int, offset: int) -> ffi.CData:
- """
- GGML_API struct ggml_tensor * ggml_view_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- size_t nb1, // row stride in bytes
- size_t nb2, // slice stride in bytes
- size_t nb3,
- size_t offset);
- """
- ...
- def ggml_view_tensor(ctx: ffi.CData, src: ffi.CData) -> ffi.CData:
- """ GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);"""
- ...
- def ggml_win_part(ctx: ffi.CData, a: ffi.CData, w: int) -> ffi.CData:
- """
- partition into non-overlapping windows with padding if needed
- example:
- a: 768 64 64 1
- w: 14
- res: 768 14 14 25
- used in sam
- GGML_API struct ggml_tensor * ggml_win_part(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w);
- """
- ...
- def ggml_win_unpart(ctx: ffi.CData, a: ffi.CData, w0: int, h0: int, w: int) -> ffi.CData:
- """
- reverse of ggml_win_part
- used in sam
- GGML_API struct ggml_tensor * ggml_win_unpart(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w0,
- int h0,
- int w);
- """
- ...
- def gguf_add_tensor(ctx: ffi.CData, tensor: ffi.CData) -> None:
- """
- manage tensor info
- GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
- """
- ...
- def gguf_find_key(ctx: ffi.CData, key: ffi.CData) -> int:
- """ GGML_API int gguf_find_key(struct gguf_context * ctx, const char * key);"""
- ...
- def gguf_find_tensor(ctx: ffi.CData, name: ffi.CData) -> int:
- """ GGML_API int gguf_find_tensor (struct gguf_context * ctx, const char * name);"""
- ...
- def gguf_free(ctx: ffi.CData) -> None:
- """ GGML_API void gguf_free(struct gguf_context * ctx);"""
- ...
- def gguf_get_alignment(ctx: ffi.CData) -> int:
- """ GGML_API size_t gguf_get_alignment (struct gguf_context * ctx);"""
- ...
- def gguf_get_arr_data(ctx: ffi.CData, i: int) -> ffi.CData:
- """ GGML_API const void * gguf_get_arr_data(struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_arr_n(ctx: ffi.CData, i: int) -> int:
- """ GGML_API int gguf_get_arr_n (struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_arr_str(ctx: ffi.CData, key_id: int, i: int) -> ffi.CData:
- """ GGML_API const char * gguf_get_arr_str (struct gguf_context * ctx, int key_id, int i);"""
- ...
- def gguf_get_arr_type(ctx: ffi.CData, i: int) -> int:
- """ GGML_API enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_data(ctx: ffi.CData) -> ffi.CData:
- """ GGML_API void * gguf_get_data (struct gguf_context * ctx);"""
- ...
- def gguf_get_data_offset(ctx: ffi.CData) -> int:
- """ GGML_API size_t gguf_get_data_offset(struct gguf_context * ctx);"""
- ...
- def gguf_get_key(ctx: ffi.CData, i: int) -> ffi.CData:
- """ GGML_API const char * gguf_get_key (struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_kv_type(ctx: ffi.CData, i: int) -> int:
- """ GGML_API enum gguf_type gguf_get_kv_type (struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_meta_data(ctx: ffi.CData, data: ffi.CData) -> None:
- """ GGML_API void gguf_get_meta_data(struct gguf_context * ctx, void * data);"""
- ...
- def gguf_get_meta_size(ctx: ffi.CData) -> int:
- """
- get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
- GGML_API size_t gguf_get_meta_size(struct gguf_context * ctx);
- """
- ...
- def gguf_get_n_kv(ctx: ffi.CData) -> int:
- """ GGML_API int gguf_get_n_kv(struct gguf_context * ctx);"""
- ...
- def gguf_get_n_tensors(ctx: ffi.CData) -> int:
- """ GGML_API int gguf_get_n_tensors (struct gguf_context * ctx);"""
- ...
- def gguf_get_tensor_name(ctx: ffi.CData, i: int) -> ffi.CData:
- """ GGML_API char * gguf_get_tensor_name (struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_tensor_offset(ctx: ffi.CData, i: int) -> int:
- """ GGML_API size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_val_bool(ctx: ffi.CData, i: int) -> bool:
- """ GGML_API bool gguf_get_val_bool(struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_val_f32(ctx: ffi.CData, i: int) -> float:
- """ GGML_API float gguf_get_val_f32 (struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_val_i16(ctx: ffi.CData, i: int) -> int:
- """ GGML_API int16_t gguf_get_val_i16 (struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_val_i32(ctx: ffi.CData, i: int) -> int:
- """ GGML_API int32_t gguf_get_val_i32 (struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_val_i8(ctx: ffi.CData, i: int) -> int:
- """ GGML_API int8_t gguf_get_val_i8 (struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_val_str(ctx: ffi.CData, i: int) -> ffi.CData:
- """ GGML_API const char * gguf_get_val_str (struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_val_u16(ctx: ffi.CData, i: int) -> int:
- """ GGML_API uint16_t gguf_get_val_u16 (struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_val_u32(ctx: ffi.CData, i: int) -> int:
- """ GGML_API uint32_t gguf_get_val_u32 (struct gguf_context * ctx, int i);"""
- ...
- def gguf_get_val_u8(ctx: ffi.CData, i: int) -> int:
- """
- results are undefined if the wrong type is used for the key
- GGML_API uint8_t gguf_get_val_u8 (struct gguf_context * ctx, int i);
- """
- ...
- def gguf_get_version(ctx: ffi.CData) -> int:
- """ GGML_API int gguf_get_version (struct gguf_context * ctx);"""
- ...
- def gguf_init_empty() -> ffi.CData:
- """ GGML_API struct gguf_context * gguf_init_empty(void);"""
- ...
- def gguf_init_from_file(fname: ffi.CData, params: ffi.CData) -> ffi.CData:
- """ GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);"""
- ...
- def gguf_set_arr_data(ctx: ffi.CData, key: ffi.CData, type: int, data: ffi.CData, n: int) -> None:
- """ GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);"""
- ...
- def gguf_set_arr_str(ctx: ffi.CData, key: ffi.CData, data: ffi.CData, n: int) -> None:
- """ GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);"""
- ...
- def gguf_set_kv(ctx: ffi.CData, src: ffi.CData) -> None:
- """
- set or add KV pairs from another context
- GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
- """
- ...
- def gguf_set_tensor_data(ctx: ffi.CData, name: ffi.CData, data: ffi.CData, size: int) -> None:
- """ GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);"""
- ...
- def gguf_set_tensor_type(ctx: ffi.CData, name: ffi.CData, type: int) -> None:
- """ GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);"""
- ...
- def gguf_set_val_bool(ctx: ffi.CData, key: ffi.CData, val: bool) -> None:
- """ GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);"""
- ...
- def gguf_set_val_f32(ctx: ffi.CData, key: ffi.CData, val: float) -> None:
- """ GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);"""
- ...
- def gguf_set_val_i16(ctx: ffi.CData, key: ffi.CData, val: int) -> None:
- """ GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);"""
- ...
- def gguf_set_val_i32(ctx: ffi.CData, key: ffi.CData, val: int) -> None:
- """ GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);"""
- ...
- def gguf_set_val_i8(ctx: ffi.CData, key: ffi.CData, val: int) -> None:
- """ GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);"""
- ...
- def gguf_set_val_str(ctx: ffi.CData, key: ffi.CData, val: ffi.CData) -> None:
- """ GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);"""
- ...
- def gguf_set_val_u16(ctx: ffi.CData, key: ffi.CData, val: int) -> None:
- """ GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);"""
- ...
- def gguf_set_val_u32(ctx: ffi.CData, key: ffi.CData, val: int) -> None:
- """ GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);"""
- ...
- def gguf_set_val_u8(ctx: ffi.CData, key: ffi.CData, val: int) -> None:
- """
- overrides existing values or adds a new one
- GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
- """
- ...
- def gguf_type_name(type: int) -> ffi.CData:
- """ GGML_API const char * gguf_type_name(enum gguf_type type);"""
- ...
- def gguf_write_to_file(ctx: ffi.CData, fname: ffi.CData, only_meta: bool) -> None:
- """
- write the entire context to a binary file
- GGML_API void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta);
- """
- ...
- def quantize_row_q2_K(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);"""
- ...
- def quantize_row_q2_K_reference(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """
- Quantization
- void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
- """
- ...
- def quantize_row_q3_K(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);"""
- ...
- def quantize_row_q3_K_reference(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);"""
- ...
- def quantize_row_q4_K(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);"""
- ...
- def quantize_row_q4_K_reference(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);"""
- ...
- def quantize_row_q5_K(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);"""
- ...
- def quantize_row_q5_K_reference(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);"""
- ...
- def quantize_row_q6_K(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);"""
- ...
- def quantize_row_q6_K_reference(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);"""
- ...
- def quantize_row_q8_K(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);"""
- ...
- def quantize_row_q8_K_reference(x: ffi.CData, y: ffi.CData, k: int) -> None:
- """void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);"""
- ...
|