| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 | 
							- # Copyright (c) Meta Platforms, Inc. and affiliates
 
- # All rights reserved.
 
- #
 
- # This source code is licensed under the license found in the
 
- # LICENSE file in the root directory of this source tree.
 
- from typing import Final
 
- from seamless_communication.inference import Translator
 
- from tests.common import device, get_default_dtype
 
- # fmt: off
 
- ENG_SENTENCE:     Final = "On Monday, scientists from the Stanford University School of Medicine announced the invention of a new diagnostic tool that can sort cells by type: a tiny printable chip that can be manufactured using standard inkjet printers for possibly about one U.S. cent each."
 
- DEU_SENTENCE:     Final = "Am Montag kündigten Wissenschaftler der Stanford University School of Medicine die Erfindung eines neuen Diagnosewerkzeugs an, das Zellen nach Typ sortieren kann: ein winziger druckbarer Chip, der mit Standard-Tintenstrahldruckern für etwa einen US-Cent hergestellt werden kann."
 
- DEU_SENTENCE_V2:  Final = "Am Montag kündigten Wissenschaftler der Stanford University School of Medicine die Erfindung eines neuen diagnostischen Werkzeugs an, das Zellen nach Typ sortieren kann: ein winziger druckbarer Chip, der mit Standard-Tintenstrahldrucker für möglicherweise etwa einen US-Cent pro Stück hergestellt werden kann."
 
- # fmt: on
 
- def test_seamless_m4t_large_t2tt() -> None:
 
-     model_name = "seamlessM4T_large"
 
-     src_lang = "eng"
 
-     tgt_lang = "deu"
 
-     dtype = get_default_dtype()
 
-     translator = Translator(model_name, "vocoder_36langs", device, dtype=dtype)
 
-     text_output, _ = translator.predict(
 
-         ENG_SENTENCE,
 
-         "t2tt",
 
-         tgt_lang,
 
-         src_lang=src_lang,
 
-     )
 
-     assert text_output[0] == DEU_SENTENCE, f"'{text_output[0]}' is not '{DEU_SENTENCE}'"
 
- def test_seamless_m4t_v2_large_t2tt() -> None:
 
-     model_name = "seamlessM4T_v2_large"
 
-     src_lang = "eng"
 
-     tgt_lang = "deu"
 
-     dtype = get_default_dtype()
 
-     translator = Translator(model_name, "vocoder_v2", device, dtype=dtype)
 
-     text_output, _ = translator.predict(
 
-         ENG_SENTENCE,
 
-         "t2tt",
 
-         tgt_lang,
 
-         src_lang=src_lang,
 
-     )
 
-     assert (
 
-         text_output[0] == DEU_SENTENCE_V2
 
-     ), f"'{text_output[0]}' is not '{DEU_SENTENCE_V2}'"
 
- def test_seamless_m4t_v2_large_multiple_tasks() -> None:
 
-     model_name = "seamlessM4T_v2_large"
 
-     english_text = "Hello! I hope you're all doing well."
 
-     ref_spanish_text = "Hola, espero que todos estéis haciendo bien."
 
-     ref_spanish_asr_text = "Hola, espero que todos estéis haciendo bien."
 
-     dtype = get_default_dtype()
 
-     translator = Translator(model_name, "vocoder_v2", device, dtype=dtype)
 
-     # Generate english speech for the english text.
 
-     _, english_speech_output = translator.predict(
 
-         english_text,
 
-         "t2st",
 
-         "eng",
 
-         src_lang="eng",
 
-     )
 
-     assert english_speech_output is not None
 
-     # Translate english speech to spanish speech.
 
-     spanish_text_output, spanish_speech_output = translator.predict(
 
-         english_speech_output.audio_wavs[0][0],
 
-         "s2st",
 
-         "spa",
 
-     )
 
-     assert spanish_speech_output is not None
 
-     assert (
 
-         spanish_text_output[0] == ref_spanish_text
 
-     ), f"'{spanish_text_output[0]}' is not '{ref_spanish_text}'"
 
-     # Run ASR on the spanish speech.
 
-     spanish_asr_text_output, _ = translator.predict(
 
-         spanish_speech_output.audio_wavs[0][0],
 
-         "asr",
 
-         "spa",
 
-     )
 
-     assert (
 
-         spanish_asr_text_output[0] == ref_spanish_asr_text
 
-     ), f"{spanish_asr_text_output[0]} is not {ref_spanish_asr_text}'"
 
 
  |