| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- // An interface allowing to compute ggml_cgraph with Metal
- //
- // This is a fully functional interface that extends ggml with GPU support for Apple devices.
- // A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
- //
- // How it works?
- //
- // As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
- // interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
- // use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
- //
- // You only need to make sure that all memory buffers that you used during the graph creation
- // are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
- // used during the graph evaluation to determine the arguments of the compute kernels.
- //
- // Synchronization between device and host memory (for example for input and output tensors)
- // is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
- //
- #pragma once
- #include <stddef.h>
- #include <stdbool.h>
- // max memory buffers that can be mapped to the device
- #define GGML_METAL_MAX_BUFFERS 16
- #define GGML_METAL_MAX_COMMAND_BUFFERS 32
- struct ggml_tensor;
- struct ggml_cgraph;
- #ifdef __cplusplus
- extern "C" {
- #endif
- struct ggml_metal_context;
- // number of command buffers to use
- struct ggml_metal_context * ggml_metal_init(int n_cb);
- void ggml_metal_free(struct ggml_metal_context * ctx);
- void * ggml_metal_host_malloc(size_t n);
- void ggml_metal_host_free (void * data);
- // set the number of command buffers to use
- void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
- // creates a mapping between a host memory buffer and a device memory buffer
- // - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
- // - the mapping is used during computation to determine the arguments of the compute kernels
- // - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
- // - max_size specifies the maximum size of a tensor and is used to create shared views such
- // that it is guaranteed that the tensor will fit in at least one of the views
- //
- bool ggml_metal_add_buffer(
- struct ggml_metal_context * ctx,
- const char * name,
- void * data,
- size_t size,
- size_t max_size);
- // set data from host memory into the device
- void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
- // get data from the device into host memory
- void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
- // try to find operations that can be run concurrently in the graph
- // you should run it again if the topology of your graph changes
- void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem);
- // if the graph has been optimized for concurrently dispatch, return length of the concur_list if optimized
- int ggml_metal_if_optimized(struct ggml_metal_context * ctx);
- // output the concur_list for ggml_alloc
- int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
- // same as ggml_graph_compute but uses Metal
- // creates gf->n_threads command buffers in parallel
- void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
- #ifdef __cplusplus
- }
- #endif
|