ggml-metal.h 3.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. // An interface allowing to compute ggml_cgraph with Metal
  2. //
  3. // This is a fully functional interface that extends ggml with GPU support for Apple devices.
  4. // A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
  5. //
  6. // How it works?
  7. //
  8. // As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
  9. // interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
  10. // use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
  11. //
  12. // You only need to make sure that all memory buffers that you used during the graph creation
  13. // are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
  14. // used during the graph evaluation to determine the arguments of the compute kernels.
  15. //
  16. // Synchronization between device and host memory (for example for input and output tensors)
  17. // is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
  18. //
  19. #pragma once
  20. #include <stddef.h>
  21. #include <stdbool.h>
  22. // max memory buffers that can be mapped to the device
  23. #define GGML_METAL_MAX_BUFFERS 16
  24. #define GGML_METAL_MAX_COMMAND_BUFFERS 32
  25. struct ggml_tensor;
  26. struct ggml_cgraph;
  27. #ifdef __cplusplus
  28. extern "C" {
  29. #endif
  30. struct ggml_metal_context;
  31. // number of command buffers to use
  32. struct ggml_metal_context * ggml_metal_init(int n_cb);
  33. void ggml_metal_free(struct ggml_metal_context * ctx);
  34. void * ggml_metal_host_malloc(size_t n);
  35. void ggml_metal_host_free (void * data);
  36. // set the number of command buffers to use
  37. void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
  38. // creates a mapping between a host memory buffer and a device memory buffer
  39. // - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
  40. // - the mapping is used during computation to determine the arguments of the compute kernels
  41. // - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
  42. // - max_size specifies the maximum size of a tensor and is used to create shared views such
  43. // that it is guaranteed that the tensor will fit in at least one of the views
  44. //
  45. bool ggml_metal_add_buffer(
  46. struct ggml_metal_context * ctx,
  47. const char * name,
  48. void * data,
  49. size_t size,
  50. size_t max_size);
  51. // set data from host memory into the device
  52. void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
  53. // get data from the device into host memory
  54. void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
  55. // try to find operations that can be run concurrently in the graph
  56. // you should run it again if the topology of your graph changes
  57. void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem);
  58. // if the graph has been optimized for concurrently dispatch, return length of the concur_list if optimized
  59. int ggml_metal_if_optimized(struct ggml_metal_context * ctx);
  60. // output the concur_list for ggml_alloc
  61. int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
  62. // same as ggml_graph_compute but uses Metal
  63. // creates gf->n_threads command buffers in parallel
  64. void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
  65. #ifdef __cplusplus
  66. }
  67. #endif