ggml-backend.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357
  1. #include "ggml-backend-impl.h"
  2. #include "ggml-alloc.h"
  3. #include "ggml-impl.h"
  4. #include <assert.h>
  5. #include <limits.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  11. // backend buffer type
  12. ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  13. return buft->iface.alloc_buffer(buft, size);
  14. }
  15. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  16. return buft->iface.get_alignment(buft);
  17. }
  18. size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  19. // get_alloc_size is optional, defaults to ggml_nbytes
  20. if (buft->iface.get_alloc_size) {
  21. return buft->iface.get_alloc_size(buft, tensor);
  22. }
  23. return ggml_nbytes(tensor);
  24. }
  25. bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  26. return buft->iface.supports_backend(buft, backend);
  27. }
  28. // backend buffer
  29. ggml_backend_buffer_t ggml_backend_buffer_init(
  30. ggml_backend_buffer_type_t buft,
  31. struct ggml_backend_buffer_i iface,
  32. ggml_backend_buffer_context_t context,
  33. size_t size) {
  34. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  35. GGML_ASSERT(iface.get_base != NULL);
  36. (*buffer) = (struct ggml_backend_buffer) {
  37. /* .interface = */ iface,
  38. /* .buft = */ buft,
  39. /* .context = */ context,
  40. /* .size = */ size,
  41. };
  42. return buffer;
  43. }
  44. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  45. if (buffer == NULL) {
  46. return;
  47. }
  48. if (buffer->iface.free_buffer != NULL) {
  49. buffer->iface.free_buffer(buffer);
  50. }
  51. free(buffer);
  52. }
  53. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  54. return buffer->size;
  55. }
  56. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  57. void * base = buffer->iface.get_base(buffer);
  58. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  59. return base;
  60. }
  61. void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  62. // init_tensor is optional
  63. if (buffer->iface.init_tensor) {
  64. buffer->iface.init_tensor(buffer, tensor);
  65. }
  66. }
  67. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  68. return ggml_backend_buft_get_alignment(ggml_backend_buffer_type(buffer));
  69. }
  70. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  71. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type(buffer), tensor);
  72. }
  73. ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer) {
  74. return buffer->buft;
  75. }
  76. // backend
  77. const char * ggml_backend_name(ggml_backend_t backend) {
  78. if (backend == NULL) {
  79. return "NULL";
  80. }
  81. return backend->iface.get_name(backend);
  82. }
  83. void ggml_backend_free(ggml_backend_t backend) {
  84. if (backend == NULL) {
  85. return;
  86. }
  87. backend->iface.free(backend);
  88. }
  89. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  90. return backend->iface.get_default_buffer_type(backend);
  91. }
  92. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  93. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  94. }
  95. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  96. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  97. }
  98. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  99. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  100. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  101. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  102. }
  103. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  104. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  105. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  106. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  107. }
  108. void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  109. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  110. GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
  111. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  112. tensor->buffer->iface.set_tensor(tensor->buffer, tensor, data, offset, size);
  113. }
  114. void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  115. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  116. GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
  117. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  118. tensor->buffer->iface.get_tensor(tensor->buffer, tensor, data, offset, size);
  119. }
  120. void ggml_backend_synchronize(ggml_backend_t backend) {
  121. if (backend->iface.synchronize == NULL) {
  122. return;
  123. }
  124. backend->iface.synchronize(backend);
  125. }
  126. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  127. return backend->iface.graph_plan_create(backend, cgraph);
  128. }
  129. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  130. backend->iface.graph_plan_free(backend, plan);
  131. }
  132. void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  133. backend->iface.graph_plan_compute(backend, plan);
  134. // TODO: optional sync
  135. ggml_backend_synchronize(backend);
  136. }
  137. void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  138. backend->iface.graph_compute(backend, cgraph);
  139. // TODO: optional sync
  140. ggml_backend_synchronize(backend);
  141. }
  142. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  143. return backend->iface.supports_op(backend, op);
  144. }
  145. // backend copy
  146. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  147. if (a->type != b->type) {
  148. return false;
  149. }
  150. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  151. if (a->ne[i] != b->ne[i]) {
  152. return false;
  153. }
  154. if (a->nb[i] != b->nb[i]) {
  155. return false;
  156. }
  157. }
  158. return true;
  159. }
  160. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  161. //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
  162. //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
  163. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  164. // fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
  165. if (src == dst) {
  166. return;
  167. }
  168. // TODO: allow backends to support copy to/from same backend
  169. if (dst->buffer->iface.cpy_tensor_from != NULL) {
  170. dst->buffer->iface.cpy_tensor_from(dst->buffer, src, dst);
  171. } else if (src->buffer->iface.cpy_tensor_to != NULL) {
  172. src->buffer->iface.cpy_tensor_to(src->buffer, src, dst);
  173. } else {
  174. // shouldn't be hit when copying from/to CPU
  175. #ifndef NDEBUG
  176. fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to "
  177. "are implemented for %s and %s, falling back to get/set\n", src->name, dst->name);
  178. #endif
  179. size_t nbytes = ggml_nbytes(src);
  180. void * data = malloc(nbytes);
  181. ggml_backend_tensor_get(src, data, 0, nbytes);
  182. ggml_backend_tensor_set(dst, data, 0, nbytes);
  183. free(data);
  184. }
  185. }
  186. // backend registry
  187. #define GGML_MAX_BACKENDS_REG 16
  188. struct ggml_backend_reg {
  189. char name[128];
  190. ggml_backend_init_fn init_fn;
  191. ggml_backend_buffer_type_t default_buffer_type;
  192. void * user_data;
  193. };
  194. static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG];
  195. static size_t ggml_backend_registry_count = 0;
  196. static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  197. static void ggml_backend_registry_init(void) {
  198. static bool initialized = false;
  199. if (initialized) {
  200. return;
  201. }
  202. initialized = true;
  203. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  204. // add forward decls here to avoid including the backend headers
  205. #ifdef GGML_USE_CUBLAS
  206. extern void ggml_backend_cuda_reg_devices(void);
  207. ggml_backend_cuda_reg_devices();
  208. #endif
  209. #ifdef GGML_USE_METAL
  210. extern ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  211. extern ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  212. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  213. #endif
  214. }
  215. void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  216. GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG);
  217. int id = ggml_backend_registry_count;
  218. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  219. /* .name = */ {0},
  220. /* .fn = */ init_fn,
  221. /* .default_buffer_type = */ default_buffer_type,
  222. /* .user_data = */ user_data,
  223. };
  224. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  225. #ifndef NDEBUG
  226. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  227. #endif
  228. ggml_backend_registry_count++;
  229. }
  230. size_t ggml_backend_reg_get_count(void) {
  231. ggml_backend_registry_init();
  232. return ggml_backend_registry_count;
  233. }
  234. size_t ggml_backend_reg_find_by_name(const char * name) {
  235. ggml_backend_registry_init();
  236. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  237. // TODO: case insensitive in a portable way
  238. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  239. return i;
  240. }
  241. }
  242. return SIZE_MAX;
  243. }
  244. // init from backend:params string
  245. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  246. ggml_backend_registry_init();
  247. const char * params = strchr(backend_str, ':');
  248. char backend_name[128];
  249. if (params == NULL) {
  250. strcpy(backend_name, backend_str);
  251. params = "";
  252. } else {
  253. strncpy(backend_name, backend_str, params - backend_str);
  254. backend_name[params - backend_str] = '\0';
  255. params++;
  256. }
  257. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  258. if (backend_i == SIZE_MAX) {
  259. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  260. return NULL;
  261. }
  262. return ggml_backend_reg_init_backend(backend_i, params);
  263. }
  264. const char * ggml_backend_reg_get_name(size_t i) {
  265. ggml_backend_registry_init();
  266. GGML_ASSERT(i < ggml_backend_registry_count);
  267. return ggml_backend_registry[i].name;
  268. }
  269. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  270. ggml_backend_registry_init();
  271. GGML_ASSERT(i < ggml_backend_registry_count);
  272. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  273. }
  274. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  275. ggml_backend_registry_init();
  276. GGML_ASSERT(i < ggml_backend_registry_count);
  277. return ggml_backend_registry[i].default_buffer_type;
  278. }
  279. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  280. ggml_backend_registry_init();
  281. GGML_ASSERT(i < ggml_backend_registry_count);
  282. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  283. }
  284. // backend CPU
  285. static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  286. return (void *)buffer->context;
  287. }
  288. static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  289. free(buffer->context);
  290. GGML_UNUSED(buffer);
  291. }
  292. static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  293. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  294. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  295. memcpy((char *)tensor->data + offset, data, size);
  296. GGML_UNUSED(buffer);
  297. }
  298. static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  299. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  300. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  301. memcpy(data, (const char *)tensor->data + offset, size);
  302. GGML_UNUSED(buffer);
  303. }
  304. static void ggml_backend_cpu_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
  305. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  306. GGML_UNUSED(buffer);
  307. }
  308. static void ggml_backend_cpu_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
  309. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  310. GGML_UNUSED(buffer);
  311. }
  312. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  313. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  314. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  315. /* .init_tensor = */ NULL, // no initialization required
  316. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  317. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  318. /* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
  319. /* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
  320. };
  321. // for buffers from ptr, free is not called
  322. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  323. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  324. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  325. /* .init_tensor = */ NULL, // no initialization required
  326. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  327. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  328. /* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
  329. /* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
  330. };
  331. static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
  332. static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  333. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  334. void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
  335. GGML_ASSERT(data != NULL && "failed to allocate buffer");
  336. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  337. }
  338. static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  339. return TENSOR_ALIGNMENT;
  340. GGML_UNUSED(buft);
  341. }
  342. static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  343. return ggml_backend_is_cpu(backend);
  344. GGML_UNUSED(buft);
  345. }
  346. ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  347. static struct ggml_backend_buffer_type ggml_backend_buffer_type_cpu = {
  348. /* .iface = */ {
  349. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  350. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  351. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  352. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  353. },
  354. /* .context = */ NULL,
  355. };
  356. return &ggml_backend_buffer_type_cpu;
  357. }
  358. struct ggml_backend_cpu_context {
  359. int n_threads;
  360. void * work_data;
  361. size_t work_size;
  362. };
  363. static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  364. return "CPU";
  365. GGML_UNUSED(backend);
  366. }
  367. static void ggml_backend_cpu_free(ggml_backend_t backend) {
  368. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  369. free(cpu_ctx->work_data);
  370. free(cpu_ctx);
  371. free(backend);
  372. }
  373. static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  374. return ggml_backend_cpu_buffer_type();
  375. GGML_UNUSED(backend);
  376. }
  377. struct ggml_backend_plan_cpu {
  378. struct ggml_cplan cplan;
  379. struct ggml_cgraph cgraph;
  380. };
  381. static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  382. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  383. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  384. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  385. cpu_plan->cgraph = *cgraph;
  386. if (cpu_plan->cplan.work_size > 0) {
  387. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  388. }
  389. return cpu_plan;
  390. }
  391. static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  392. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  393. free(cpu_plan->cplan.work_data);
  394. free(cpu_plan);
  395. GGML_UNUSED(backend);
  396. }
  397. static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  398. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  399. ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  400. GGML_UNUSED(backend);
  401. }
  402. static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  403. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  404. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  405. if (cpu_ctx->work_size < cplan.work_size) {
  406. // TODO: may be faster to free and use malloc to avoid the copy
  407. cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
  408. cpu_ctx->work_size = cplan.work_size;
  409. }
  410. cplan.work_data = cpu_ctx->work_data;
  411. ggml_graph_compute(cgraph, &cplan);
  412. }
  413. static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  414. return true;
  415. GGML_UNUSED(backend);
  416. GGML_UNUSED(op);
  417. }
  418. static struct ggml_backend_i cpu_backend_i = {
  419. /* .get_name = */ ggml_backend_cpu_name,
  420. /* .free = */ ggml_backend_cpu_free,
  421. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  422. /* .set_tensor_async = */ NULL,
  423. /* .get_tensor_async = */ NULL,
  424. /* .cpy_tensor_from_async = */ NULL,
  425. /* .cpy_tensor_to_async = */ NULL,
  426. /* .synchronize = */ NULL,
  427. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  428. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  429. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  430. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  431. /* .supports_op = */ ggml_backend_cpu_supports_op,
  432. };
  433. ggml_backend_t ggml_backend_cpu_init(void) {
  434. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  435. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  436. ctx->work_data = NULL;
  437. ctx->work_size = 0;
  438. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  439. *cpu_backend = (struct ggml_backend) {
  440. /* .interface = */ cpu_backend_i,
  441. /* .context = */ ctx
  442. };
  443. return cpu_backend;
  444. }
  445. bool ggml_backend_is_cpu(ggml_backend_t backend) {
  446. return backend->iface.get_name == ggml_backend_cpu_name;
  447. }
  448. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  449. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  450. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  451. ctx->n_threads = n_threads;
  452. }
  453. ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  454. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  455. }
  456. static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  457. return ggml_backend_cpu_init();
  458. GGML_UNUSED(params);
  459. GGML_UNUSED(user_data);
  460. }
  461. // scheduler
  462. #define GGML_MAX_BACKENDS 4
  463. #define GGML_MAX_SPLITS 256
  464. #define GGML_MAX_SPLIT_INPUTS 16
  465. struct ggml_backend_sched_split {
  466. ggml_tallocr_t tallocr;
  467. int i_start;
  468. int i_end;
  469. struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
  470. int n_inputs;
  471. struct ggml_cgraph graph;
  472. };
  473. struct ggml_backend_sched {
  474. int n_backends;
  475. ggml_backend_t backends[GGML_MAX_BACKENDS];
  476. ggml_tallocr_t tallocs[GGML_MAX_BACKENDS];
  477. ggml_gallocr_t galloc;
  478. struct ggml_hash_set hash_set;
  479. ggml_tallocr_t * node_talloc; // [hash_set.size]
  480. struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS]
  481. struct ggml_cgraph * graph;
  482. struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
  483. int n_splits;
  484. struct ggml_context * ctx;
  485. // align context_buffer to GGML_MEM_ALIGN
  486. #ifdef _MSC_VER
  487. __declspec(align(GGML_MEM_ALIGN))
  488. #else
  489. __attribute__((aligned(GGML_MEM_ALIGN)))
  490. #endif
  491. char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
  492. };
  493. #define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
  494. #define node_allocr(node) sched->node_talloc[hash_id(node)]
  495. static bool ggml_is_view_op(enum ggml_op op) {
  496. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  497. }
  498. // returns the priority of the backend, lower is better
  499. static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) {
  500. for (int i = 0; i < sched->n_backends; i++) {
  501. if (sched->backends[i] == backend) {
  502. return i;
  503. }
  504. }
  505. return INT_MAX;
  506. }
  507. static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
  508. for (int i = 0; i < sched->n_backends; i++) {
  509. if (sched->tallocs[i] == allocr) {
  510. return i;
  511. }
  512. }
  513. return INT_MAX;
  514. }
  515. static ggml_backend_t get_buffer_backend(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
  516. if (buffer == NULL) {
  517. return NULL;
  518. }
  519. // find highest prio backend that supports the buffer type
  520. for (int i = 0; i < sched->n_backends; i++) {
  521. if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
  522. return sched->backends[i];
  523. }
  524. }
  525. GGML_ASSERT(false && "tensor buffer type not supported by any backend");
  526. }
  527. static ggml_backend_t get_allocr_backend(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
  528. if (allocr == NULL) {
  529. return NULL;
  530. }
  531. // find highest prio backend that supports the buffer type
  532. for (int i = 0; i < sched->n_backends; i++) {
  533. if (sched->tallocs[i] == allocr) {
  534. return sched->backends[i];
  535. }
  536. }
  537. GGML_UNREACHABLE();
  538. }
  539. #if 0
  540. static char causes[GGML_DEFAULT_GRAPH_SIZE*8 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
  541. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  542. #define GET_CAUSE(node) causes[hash_id(node)]
  543. #else
  544. #define SET_CAUSE(node, ...)
  545. #define GET_CAUSE(node) ""
  546. #endif
  547. // returns the backend that should be used for the node based on the current locations
  548. static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  549. // if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
  550. // ie. kv cache updates
  551. // note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
  552. // dst
  553. ggml_backend_t cur_backend = get_buffer_backend(sched, node->buffer);
  554. if (cur_backend != NULL) {
  555. SET_CAUSE(node, "1.dst");
  556. return cur_backend;
  557. }
  558. // view_src
  559. if (node->view_src != NULL && get_buffer_backend(sched, node->view_src->buffer) != NULL) {
  560. SET_CAUSE(node, "1.vsrc");
  561. return get_buffer_backend(sched, node->view_src->buffer);
  562. }
  563. // src
  564. int cur_prio = INT_MAX;
  565. size_t cur_size = 0;
  566. for (int i = 0; i < GGML_MAX_SRC; i++) {
  567. const struct ggml_tensor * src = node->src[i];
  568. if (src == NULL) {
  569. break;
  570. }
  571. ggml_backend_t src_backend = get_buffer_backend(sched, src->buffer);
  572. if (src_backend != NULL) {
  573. int src_prio = sched_backend_prio(sched, src_backend);
  574. size_t src_size = ggml_nbytes(src);
  575. if (src_prio < cur_prio && src_size >= cur_size) {
  576. cur_prio = src_prio;
  577. cur_size = src_size;
  578. cur_backend = src_backend;
  579. SET_CAUSE(node, "1.src%d", i);
  580. }
  581. }
  582. }
  583. return cur_backend;
  584. }
  585. static char * fmt_size(size_t size) {
  586. static char buffer[128];
  587. if (size >= 1024*1024) {
  588. sprintf(buffer, "%zuM", size/1024/1024);
  589. } else {
  590. sprintf(buffer, "%zuK", size/1024);
  591. }
  592. return buffer;
  593. }
  594. static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  595. int cur_split = 0;
  596. for (int i = 0; i < graph->n_nodes; i++) {
  597. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  598. ggml_backend_t split_backend = get_allocr_backend(sched, sched->splits[cur_split].tallocr);
  599. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  600. sched->splits[cur_split].n_inputs);
  601. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  602. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  603. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  604. }
  605. fprintf(stderr, "\n");
  606. cur_split++;
  607. }
  608. struct ggml_tensor * node = graph->nodes[i];
  609. if (ggml_is_view_op(node->op)) {
  610. continue;
  611. }
  612. ggml_tallocr_t node_allocr = node_allocr(node);
  613. ggml_backend_t node_backend = node_allocr ? get_allocr_backend(sched, node_allocr) : NULL; // FIXME:
  614. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name,
  615. fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", GET_CAUSE(node));
  616. for (int j = 0; j < GGML_MAX_SRC; j++) {
  617. struct ggml_tensor * src = node->src[j];
  618. if (src == NULL) {
  619. break;
  620. }
  621. ggml_tallocr_t src_allocr = node_allocr(src);
  622. ggml_backend_t src_backend = src_allocr ? get_allocr_backend(sched, src_allocr) : NULL;
  623. fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name,
  624. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  625. }
  626. fprintf(stderr, "\n");
  627. }
  628. }
  629. // creates a copy of the tensor with the same memory layout
  630. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  631. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  632. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  633. dup->nb[i] = tensor->nb[i];
  634. }
  635. return dup;
  636. }
  637. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  638. // TODO: merge passes
  639. static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  640. // reset state
  641. size_t hash_size = sched->hash_set.size;
  642. memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
  643. memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
  644. memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
  645. sched->n_splits = 0;
  646. struct ggml_init_params params = {
  647. /* .mem_size = */ sizeof(sched->context_buffer),
  648. /* .mem_buffer = */ sched->context_buffer,
  649. /* .no_alloc = */ true
  650. };
  651. if (sched->ctx != NULL) {
  652. ggml_free(sched->ctx);
  653. }
  654. sched->ctx = ggml_init(params);
  655. // pass 1: assign backends to ops with allocated inputs
  656. for (int i = 0; i < graph->n_leafs; i++) {
  657. struct ggml_tensor * leaf = graph->leafs[i];
  658. if (node_allocr(leaf) != NULL) {
  659. // do not overwrite user assignments
  660. continue;
  661. }
  662. ggml_backend_t leaf_backend = get_buffer_backend(sched, leaf->buffer);
  663. if (leaf_backend == NULL && leaf->view_src != NULL) {
  664. leaf_backend = get_buffer_backend(sched, leaf->view_src->buffer);
  665. }
  666. if (leaf_backend != NULL) {
  667. node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
  668. }
  669. }
  670. for (int i = 0; i < graph->n_nodes; i++) {
  671. struct ggml_tensor * node = graph->nodes[i];
  672. if (node_allocr(node) != NULL) {
  673. // do not overwrite user assignments
  674. continue;
  675. }
  676. ggml_backend_t node_backend = sched_backend_from_cur(sched, node);
  677. if (node_backend != NULL) {
  678. node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
  679. }
  680. }
  681. //printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  682. // pass 2: assign backends to ops from current assignments
  683. // TODO:
  684. // - reuse sched_backend_from_cur
  685. for (int i = 0; i < graph->n_nodes; i++) {
  686. struct ggml_tensor * node = graph->nodes[i];
  687. ggml_tallocr_t node_allocr = node_allocr(node);
  688. if (node_allocr == NULL) {
  689. int cur_prio = INT_MAX;
  690. size_t cur_size = 0;
  691. for (int j = 0; j < GGML_MAX_SRC; j++) {
  692. struct ggml_tensor * src = node->src[j];
  693. if (src == NULL) {
  694. break;
  695. }
  696. ggml_tallocr_t src_allocr = node_allocr(src);
  697. if (src_allocr != NULL) {
  698. int src_prio = sched_allocr_prio(sched, src_allocr);
  699. size_t src_size = ggml_nbytes(src);
  700. if (src_prio < cur_prio && src_size >= cur_size) {
  701. cur_prio = src_prio;
  702. cur_size = src_size;
  703. node_allocr = src_allocr;
  704. SET_CAUSE(node, "2.src%d", j);
  705. }
  706. }
  707. }
  708. if (node_allocr != NULL) {
  709. node_allocr(node) = node_allocr;
  710. }
  711. }
  712. }
  713. //printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  714. // pass 3: assign backends to remaining src from dst (should only be leafs)
  715. for (int i = 0; i < graph->n_nodes; i++) {
  716. struct ggml_tensor * node = graph->nodes[i];
  717. ggml_tallocr_t node_allocr = node_allocr(node);
  718. for (int j = 0; j < GGML_MAX_SRC; j++) {
  719. struct ggml_tensor * src = node->src[j];
  720. if (src == NULL) {
  721. break;
  722. }
  723. ggml_tallocr_t src_allocr = node_allocr(src);
  724. if (src_allocr == NULL) {
  725. node_allocr(src) = node_allocr;
  726. }
  727. }
  728. }
  729. //printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  730. // pass 4: split graph, find tensors that need to be copied
  731. // TODO:
  732. // - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
  733. // find first backend
  734. int cur_split = 0;
  735. for (int i = 0; i < graph->n_nodes; i++) {
  736. struct ggml_tensor * node = graph->nodes[i];
  737. if (node->view_src == NULL) {
  738. sched->splits[0].tallocr = node_allocr(node);
  739. break;
  740. }
  741. }
  742. sched->splits[0].i_start = 0;
  743. sched->splits[0].n_inputs = 0;
  744. memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
  745. ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
  746. size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
  747. for (int i = 0; i < graph->n_nodes; i++) {
  748. struct ggml_tensor * node = graph->nodes[i];
  749. if (ggml_is_view_op(node->op)) {
  750. continue;
  751. }
  752. ggml_tallocr_t node_allocr = node_allocr(node);
  753. if (node_allocr != cur_allocr) {
  754. sched->splits[cur_split].i_end = i;
  755. cur_split++;
  756. GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
  757. sched->splits[cur_split].tallocr = node_allocr;
  758. sched->splits[cur_split].i_start = i;
  759. sched->splits[cur_split].n_inputs = 0;
  760. memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
  761. cur_allocr = node_allocr;
  762. cur_backend_id = sched_allocr_prio(sched, cur_allocr);
  763. }
  764. // find inputs that are not on the same backend
  765. for (int j = 0; j < GGML_MAX_SRC; j++) {
  766. struct ggml_tensor * src = node->src[j];
  767. if (src == NULL) {
  768. break;
  769. }
  770. ggml_tallocr_t src_allocr = node_allocr(src);
  771. if (src_allocr != node_allocr) {
  772. int n_inputs = sched->splits[cur_split].n_inputs++;
  773. GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
  774. sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
  775. // create copies
  776. size_t id = hash_id(src);
  777. if (sched->node_copies[id][cur_backend_id] == NULL) {
  778. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  779. sched->node_copies[id][cur_backend_id] = tensor_copy;
  780. node_allocr(tensor_copy) = cur_allocr;
  781. ggml_backend_t backend = get_allocr_backend(sched, cur_allocr);
  782. ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
  783. }
  784. node->src[j] = sched->node_copies[id][cur_backend_id];
  785. }
  786. }
  787. }
  788. sched->splits[cur_split].i_end = graph->n_nodes;
  789. sched->n_splits = cur_split + 1;
  790. //fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout);
  791. #if 1
  792. // sanity check: all sources should have the same backend as the node
  793. for (int i = 0; i < graph->n_nodes; i++) {
  794. struct ggml_tensor * node = graph->nodes[i];
  795. ggml_tallocr_t node_allocr = node_allocr(node);
  796. if (node_allocr == NULL) {
  797. fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
  798. }
  799. for (int j = 0; j < GGML_MAX_SRC; j++) {
  800. struct ggml_tensor * src = node->src[j];
  801. if (src == NULL) {
  802. break;
  803. }
  804. ggml_tallocr_t src_allocr = node_allocr(src);
  805. if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
  806. fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
  807. node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL",
  808. j, src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL");
  809. }
  810. }
  811. }
  812. #endif
  813. // create copies of the graph for each split
  814. // FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
  815. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
  816. for (int i = 0; i < sched->n_splits; i++) {
  817. struct ggml_backend_sched_split * split = &sched->splits[i];
  818. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  819. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  820. for (int j = 0; j < split->n_inputs; j++) {
  821. struct ggml_tensor * input = split->inputs[j];
  822. struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
  823. input_cpy->src[0] = input;
  824. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  825. }
  826. for (int j = split->i_start; j < split->i_end; j++) {
  827. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  828. }
  829. }
  830. sched->graph = graph_copy;
  831. }
  832. static void sched_alloc_splits(ggml_backend_sched_t sched) {
  833. ggml_gallocr_alloc_graph_n(
  834. sched->galloc,
  835. sched->graph,
  836. sched->hash_set,
  837. sched->node_talloc);
  838. }
  839. static void sched_compute_splits(ggml_backend_sched_t sched) {
  840. uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
  841. uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
  842. struct ggml_backend_sched_split * splits = sched->splits;
  843. for (int i = 0; i < sched->n_splits; i++) {
  844. struct ggml_backend_sched_split * split = &splits[i];
  845. ggml_backend_t split_backend = get_allocr_backend(sched, split->tallocr);
  846. int split_backend_id = sched_backend_prio(sched, split_backend);
  847. // copy the input tensors to the split backend
  848. uint64_t copy_start_us = ggml_time_us();
  849. for (int j = 0; j < split->n_inputs; j++) {
  850. struct ggml_tensor * input = split->inputs[j];
  851. struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_backend_prio(sched, split_backend)];
  852. if (input->buffer == NULL) {
  853. if (input->view_src == NULL) {
  854. fprintf(stderr, "input %s has no buffer and no view_src\n", input->name);
  855. exit(1);
  856. }
  857. // FIXME: may need to use the sched buffer instead
  858. ggml_backend_view_init(input->view_src->buffer, input);
  859. }
  860. if (input_cpy->buffer == NULL) {
  861. fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
  862. exit(1);
  863. }
  864. //GGML_ASSERT(input->buffer->backend != input_cpy->buffer->backend);
  865. //GGML_ASSERT(input_cpy->buffer->backend == split_backend);
  866. ggml_backend_tensor_copy(input, input_cpy);
  867. }
  868. // ggml_backend_synchronize(split_backend);
  869. int64_t copy_end_us = ggml_time_us();
  870. copy_us[split_backend_id] += copy_end_us - copy_start_us;
  871. #if 0
  872. char split_filename[GGML_MAX_NAME];
  873. snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
  874. ggml_graph_dump_dot(split->graph, NULL, split_filename);
  875. #endif
  876. uint64_t compute_start_us = ggml_time_us();
  877. ggml_backend_graph_compute(split_backend, &split->graph);
  878. // ggml_backend_synchronize(split_backend);
  879. uint64_t compute_end_us = ggml_time_us();
  880. compute_us[split_backend_id] += compute_end_us - compute_start_us;
  881. }
  882. #if 0
  883. // per-backend timings
  884. fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
  885. for (int i = 0; i < sched->n_backends; i++) {
  886. if (copy_us[i] > 0 || compute_us[i] > 0) {
  887. fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
  888. }
  889. }
  890. #endif
  891. }
  892. static void sched_reset(ggml_backend_sched_t sched) {
  893. for (int i = 0; i < sched->n_backends; i++) {
  894. ggml_tallocr_reset(sched->tallocs[i]);
  895. }
  896. }
  897. ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) {
  898. GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
  899. struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
  900. memset(sched, 0, sizeof(struct ggml_backend_sched));
  901. sched->n_backends = n_backends;
  902. for (int i = 0; i < n_backends; i++) {
  903. sched->backends[i] = backends[i];
  904. }
  905. sched->galloc = ggml_gallocr_new();
  906. // init measure allocs for each backend
  907. for (int i = 0; i < n_backends; i++) {
  908. sched->tallocs[i] = ggml_tallocr_new_measure_from_backend(backends[i]);
  909. }
  910. return sched;
  911. }
  912. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  913. if (sched == NULL) {
  914. return;
  915. }
  916. for (int i = 0; i < sched->n_backends; i++) {
  917. ggml_tallocr_free(sched->tallocs[i]);
  918. }
  919. ggml_gallocr_free(sched->galloc);
  920. free(sched->hash_set.keys);
  921. free(sched->node_talloc);
  922. free(sched->node_copies);
  923. free(sched);
  924. }
  925. void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  926. // initialize hash tables
  927. size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS;
  928. sched->hash_set.size = hash_size;
  929. sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size);
  930. sched->node_talloc = malloc(sizeof(sched->node_talloc[0]) * hash_size);
  931. sched->node_copies = malloc(sizeof(sched->node_copies[0]) * hash_size);
  932. sched_split_graph(sched, measure_graph);
  933. sched_alloc_splits(sched);
  934. // allocate buffers and reset allocators
  935. for (int i = 0; i < sched->n_backends; i++) {
  936. size_t size = ggml_tallocr_max_size(sched->tallocs[i]);
  937. ggml_tallocr_free(sched->tallocs[i]);
  938. sched->tallocs[i] = ggml_tallocr_new_from_backend(sched->backends[i], size);
  939. }
  940. sched_reset(sched);
  941. }
  942. void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  943. GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
  944. sched_split_graph(sched, graph);
  945. sched_alloc_splits(sched);
  946. sched_compute_splits(sched);
  947. sched_reset(sched);
  948. }
  949. ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
  950. int backend_index = sched_backend_prio(sched, backend);
  951. return sched->tallocs[backend_index];
  952. }
  953. ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
  954. int backend_index = sched_backend_prio(sched, backend);
  955. return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
  956. }
  957. void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  958. int backend_index = sched_backend_prio(sched, backend);
  959. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  960. node_allocr(node) = sched->tallocs[backend_index];
  961. }
  962. // utils
  963. void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  964. GGML_ASSERT(tensor->buffer == NULL);
  965. GGML_ASSERT(tensor->data == NULL);
  966. GGML_ASSERT(tensor->view_src != NULL);
  967. GGML_ASSERT(tensor->view_src->buffer != NULL);
  968. GGML_ASSERT(tensor->view_src->data != NULL);
  969. tensor->buffer = buffer;
  970. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  971. tensor->backend = tensor->view_src->backend;
  972. ggml_backend_buffer_init_tensor(buffer, tensor);
  973. }
  974. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  975. GGML_ASSERT(tensor->buffer == NULL);
  976. GGML_ASSERT(tensor->data == NULL);
  977. GGML_ASSERT(tensor->view_src == NULL);
  978. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  979. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  980. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  981. tensor->buffer = buffer;
  982. tensor->data = addr;
  983. ggml_backend_buffer_init_tensor(buffer, tensor);
  984. }
  985. static struct ggml_tensor * graph_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  986. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  987. GGML_ASSERT(src != NULL);
  988. GGML_ASSERT(src->data && "graph must be allocated");
  989. size_t id = ggml_hash_insert(hash_set, src);
  990. if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
  991. return node_copies[ggml_hash_find(hash_set, src)];
  992. }
  993. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  994. if (src->view_src != NULL) {
  995. dst->view_src = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  996. dst->view_offs = src->view_offs;
  997. }
  998. dst->op = src->op;
  999. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1000. ggml_set_name(dst, src->name);
  1001. // copy src
  1002. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1003. struct ggml_tensor * s = src->src[i];
  1004. if (s == NULL) {
  1005. break;
  1006. }
  1007. dst->src[i] = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1008. }
  1009. node_copies[id] = dst;
  1010. return dst;
  1011. }
  1012. static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1013. size_t id = ggml_hash_find(hash_set, src);
  1014. if (node_init[id]) {
  1015. return;
  1016. }
  1017. node_init[id] = true;
  1018. struct ggml_tensor * dst = node_copies[id];
  1019. if (dst->view_src != NULL) {
  1020. ggml_backend_view_init(dst->view_src->buffer, dst);
  1021. }
  1022. else {
  1023. ggml_backend_tensor_copy(src, dst);
  1024. }
  1025. // init src
  1026. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1027. struct ggml_tensor * s = src->src[i];
  1028. if (s == NULL) {
  1029. break;
  1030. }
  1031. graph_init_tensor(hash_set, node_copies, node_init, s);
  1032. }
  1033. }
  1034. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1035. struct ggml_hash_set hash_set = {
  1036. /* .size = */ graph->visited_hash_table.size,
  1037. /* .keys = */ calloc(sizeof(hash_set.keys[0]) * graph->visited_hash_table.size, 1)
  1038. };
  1039. struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]) * hash_set.size, 1);
  1040. bool * node_init = calloc(sizeof(node_init[0]) * hash_set.size, 1);
  1041. struct ggml_init_params params = {
  1042. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1043. /* .mem_buffer = */ NULL,
  1044. /* .no_alloc = */ true
  1045. };
  1046. struct ggml_context * ctx_allocated = ggml_init(params);
  1047. struct ggml_context * ctx_unallocated = ggml_init(params);
  1048. // dup nodes
  1049. for (int i = 0; i < graph->n_nodes; i++) {
  1050. struct ggml_tensor * node = graph->nodes[i];
  1051. graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1052. }
  1053. // allocate nodes
  1054. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1055. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1056. // copy data and init views
  1057. for (int i = 0; i < graph->n_nodes; i++) {
  1058. struct ggml_tensor * node = graph->nodes[i];
  1059. graph_init_tensor(hash_set, node_copies, node_init, node);
  1060. }
  1061. // build graph copy
  1062. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1063. for (int i = 0; i < graph->n_nodes; i++) {
  1064. struct ggml_tensor * node = graph->nodes[i];
  1065. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
  1066. graph_copy->nodes[i] = node_copy;
  1067. }
  1068. graph_copy->n_nodes = graph->n_nodes;
  1069. free(hash_set.keys);
  1070. free(node_copies);
  1071. free(node_init);
  1072. return (struct ggml_backend_graph_copy) {
  1073. /* .buffer = */ buffer,
  1074. /* .ctx_allocated = */ ctx_allocated,
  1075. /* .ctx_unallocated = */ ctx_unallocated,
  1076. /* .graph = */ graph_copy,
  1077. };
  1078. }
  1079. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1080. ggml_backend_buffer_free(copy.buffer);
  1081. ggml_free(copy.ctx_allocated);
  1082. ggml_free(copy.ctx_unallocated);
  1083. }
  1084. void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1085. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1086. struct ggml_cgraph * g1 = graph;
  1087. struct ggml_cgraph * g2 = copy.graph;
  1088. assert(g1->n_nodes == g2->n_nodes);
  1089. for (int i = 0; i < g1->n_nodes; i++) {
  1090. //printf("eval %d/%d\n", i, g1->n_nodes);
  1091. struct ggml_tensor * t1 = g1->nodes[i];
  1092. struct ggml_tensor * t2 = g2->nodes[i];
  1093. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1094. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1095. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1096. ggml_backend_graph_compute(backend1, &g1v);
  1097. ggml_backend_graph_compute(backend2, &g2v);
  1098. if (ggml_is_view_op(t1->op)) {
  1099. continue;
  1100. }
  1101. // compare results, calculate rms etc
  1102. if (!callback(i, t1, t2, user_data)) {
  1103. break;
  1104. }
  1105. }
  1106. ggml_backend_graph_copy_free(copy);
  1107. }