test_unity_cpp.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808
  1. import ggml
  2. import ctypes
  3. import torch
  4. import pytest
  5. import numpy as np
  6. import torch
  7. import fairseq2.nn
  8. import fairseq2.nn.transformer
  9. import logging
  10. import sys
  11. import functools
  12. from typing import Tuple
  13. from pathlib import Path
  14. from ctypes_utils import Ptr
  15. from ctypes import c_void_p
  16. from typing import Any
  17. from pathlib import Path
  18. from typing import Iterator
  19. from ggml import NativeObj
  20. from ggml_convert import convert_model, read_layer_config
  21. from seamless_communication.models.inference.translator import Translator, Modality
  22. from fairseq2.data.audio import WaveformToFbankConverter
  23. import torchaudio
  24. from typing import List
  25. from ctypes_utils import NULLPTR
  26. from fairseq2.models.wav2vec2.feature_extractor import Wav2Vec2FbankFeatureExtractor
  27. Ctx = ggml.ggml_context_p
  28. UNITY_MODELS = Path(__file__).parent / "examples/unity/models"
  29. CTX_PARAMS = ggml.ggml_init_params(mem_size=1024 * 1024 * 1024 * 5, mem_buffer=None)
  30. FAIRSEQ2_CPP = Path(__file__).parent / "examples/unity/fairseq2.cpp"
  31. UNITY_FLASH_ATTN = "\n# define UNITY_FLASH_ATTN 0\n" not in FAIRSEQ2_CPP.read_text()
  32. DATA = Path(__file__).parent
  33. DATA_DEV = DATA / "dev"
  34. if not DATA_DEV.exists():
  35. DATA_DEV = Path(
  36. "/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/dev"
  37. )
  38. @pytest.fixture(name="ctx")
  39. def _ctx() -> Iterator[Ctx]:
  40. """Allocate a new context with 1024 MB of memory"""
  41. try:
  42. ctx = ggml.ggml_init(params=CTX_PARAMS)
  43. with torch.inference_mode():
  44. yield ctx
  45. finally:
  46. ggml.ggml_free(ctx)
  47. @functools.lru_cache()
  48. def _load_g_model_once() -> NativeObj:
  49. model_file = Path(__file__).parent / "seamlessM4T_medium.ggml"
  50. if not model_file.exists():
  51. convert_model("seamlessM4T_medium", model_file)
  52. return ggml.load_fairseq2_ggml_file(model_file)
  53. @pytest.fixture()
  54. def g_model(ctx: Ctx) -> c_void_p:
  55. model = _load_g_model_once()
  56. ggml.lib.fairseq2_model_set_inference_ctx(model.ptr, ctx)
  57. return model.ptr
  58. @functools.lru_cache(maxsize=1)
  59. def load_translator() -> Translator:
  60. return Translator(
  61. "seamlessM4T_medium", "vocoder_36langs", torch.device("cpu"), torch.float32
  62. )
  63. def load_pt_model() -> Any:
  64. return load_translator().model
  65. def test_convert_linear(tmp_path: Path) -> None:
  66. module = fairseq2.nn.Linear(16, 24, True)
  67. layer_config = read_layer_config(module)
  68. assert layer_config == {"input_dim": 16, "output_dim": 24}
  69. module_file = Path("module.ggml")
  70. convert_model(module, module_file)
  71. g_module = ggml.load_fairseq2_ggml_file(module_file)
  72. for k, v in layer_config.items():
  73. assert (
  74. ggml.fairseq2_model_layer_config_int(g_module.ptr, bytes(k, "ascii")) == v
  75. )
  76. def test_causal_attention_mask(ctx: Ctx):
  77. x = torch.zeros((1, 10, 32))
  78. generator = fairseq2.nn.transformer.CausalAttentionMaskFactory()
  79. mask_exp = generator(x, x).materialize().numpy()
  80. gx = ggml.from_numpy(ctx, x)
  81. gmask = ggml.causal_attention_mask(ctx, gx)
  82. mask = ggml.to_numpy(gmask)
  83. gf = ggml.ggml_build_forward(gmask)
  84. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  85. assert mask_exp.shape == (10, 10)
  86. assert mask.shape == (10, 10)
  87. assert np.all(mask == mask_exp)
  88. x = x[:, :8, :]
  89. mask_exp = generator(x, x).materialize().numpy()
  90. gx = ggml.from_numpy(ctx, x)
  91. gmask = ggml.causal_attention_mask(ctx, gx)
  92. mask = ggml.to_numpy(gmask)
  93. gf = ggml.ggml_build_forward(gmask)
  94. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  95. assert mask_exp.shape == (8, 8)
  96. assert mask.shape == (8, 8)
  97. assert np.all(mask == mask_exp)
  98. def test_LayerNorm_forward(ctx: Ctx, g_model: c_void_p) -> None:
  99. x = torch.empty((2, 21, 1024))
  100. torch.nn.init.uniform_(x, -1, 1)
  101. pt_model = load_pt_model()
  102. y_exp = pt_model.text_encoder.layers[0].ffn_layer_norm(x).numpy()
  103. gx = ggml.from_numpy(ctx, x)
  104. gy = ggml.forward("LayerNorm", g_model, "text_encoder.layers.0.ffn_layer_norm", gx)
  105. ggml.build_and_compute(ctx, gy)
  106. y = ggml.to_numpy(gy)
  107. assert np.allclose(y_exp, y, atol=1e-5)
  108. def test_Linear_forward(ctx: Ctx, g_model: c_void_p) -> None:
  109. x = torch.empty((2, 21, 1024))
  110. torch.nn.init.uniform_(x, -1, 1)
  111. pt_model = load_pt_model()
  112. y_exp = pt_model.text_encoder.layers[0].ffn.inner_proj(x).numpy()
  113. gx = ggml.from_numpy(ctx, x)
  114. gy = ggml.forward("Linear", g_model, "text_encoder.layers.0.ffn.inner_proj", gx)
  115. ggml.build_and_compute(ctx, gy)
  116. y = ggml.to_numpy(gy)
  117. assert np.allclose(y_exp, y, atol=1e-5)
  118. def test_FeedForwardNetwork_forward(ctx: Ctx, g_model: c_void_p) -> None:
  119. x = torch.empty((2, 21, 1024)) # (bs, seq_len, model_dim)
  120. torch.nn.init.uniform_(x, -1 / 32, 1 / 32)
  121. # Test FFN without LayerNorm
  122. pt_model = load_pt_model()
  123. y_exp = pt_model.text_encoder.layers[0].ffn(x).numpy()
  124. gx = ggml.from_numpy(ctx, x)
  125. gy = ggml.forward(
  126. "StandardFeedForwardNetwork", g_model, "text_encoder.layers.0.ffn", gx
  127. )
  128. ggml.build_and_compute(ctx, gy)
  129. y = ggml.to_numpy(gy)
  130. assert np.allclose(y_exp, y, atol=1e-5)
  131. @pytest.mark.parametrize("lengths", [(11, 21), (21, 13)])
  132. def test_MultiheadAttention_forward(
  133. ctx: Ctx, g_model: c_void_p, lengths: Tuple[int, int]
  134. ) -> None:
  135. x = torch.empty((2, 21, 1024))
  136. torch.random.manual_seed(0)
  137. torch.nn.init.uniform_(x, -1, 1)
  138. # Note: we use different lengths for queries and keys,
  139. # this tests the implementation in decoding context too.
  140. # Note2: ggml_flash_attn requires that we have more keys than queries
  141. # qlen, klen = (11, 21) if flash_attn else (21, 13)
  142. qlen, klen = lengths
  143. xq = x[:, :qlen]
  144. xk = x[:, :klen]
  145. if qlen > klen and UNITY_FLASH_ATTN:
  146. pytest.skip(reason="flash_attn requires qlen > klen")
  147. gxq = ggml.from_numpy(ctx, xq.contiguous())
  148. gxk = ggml.from_numpy(ctx, xk.contiguous())
  149. ggml.ggml_set_name(gxk, b"xk")
  150. gy = ggml.forward(
  151. "MultiheadAttention",
  152. g_model,
  153. "text_encoder.layers.0.self_attn",
  154. gxq,
  155. gxk,
  156. gxk,
  157. NULLPTR, # TODO: tests with causal attention masks
  158. )
  159. gf = ggml.ggml_build_forward(gy)
  160. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  161. pt_model = load_pt_model()
  162. self_attn = pt_model.text_encoder.layers[0].self_attn
  163. q_exp = self_attn.q_proj(xq).numpy()
  164. y = ggml.to_numpy(gy)
  165. nodes = ggml.nodes(gf)
  166. attn_weights_hook = fairseq2.nn.transformer.AttentionWeightStoreHook([])
  167. self_attn.register_attn_weight_hook(attn_weights_hook)
  168. y_exp = self_attn(xq, None, xk, None, xk).numpy()
  169. q = ggml.to_numpy(nodes[b"q"])
  170. assert q.shape == q_exp.shape
  171. assert np.allclose(q_exp, q, atol=1e-5)
  172. # with flash_attn we don't have attn_weights
  173. naive_attn = b"attn_weights" in nodes
  174. if naive_attn:
  175. attn_weights = ggml.to_numpy(nodes[b"attn_weights"]).reshape(-1, 16, qlen, klen)
  176. [(_, attn_weights_exp)] = attn_weights_hook._storage
  177. attn_weights_exp = attn_weights_exp.numpy()
  178. assert attn_weights_exp.shape == attn_weights.shape
  179. # GGML is very agressively reducing small softmax weights to 0,
  180. # so the error isn't that small
  181. assert np.allclose(attn_weights_exp, attn_weights, atol=1e-3)
  182. # But the sums should be close to 1
  183. assert np.allclose(np.sum(attn_weights, axis=-1), np.ones((2, 16, qlen)))
  184. # And the maximum index should match the original ones.
  185. assert np.allclose(
  186. np.argmax(attn_weights_exp, axis=-1), np.argmax(attn_weights, axis=-1)
  187. )
  188. assert y.shape == y_exp.shape
  189. assert np.allclose(y_exp, y, atol=1e-2 if naive_attn else 1e-4)
  190. def test_MultiheadAttention_forward_self_attn_with_cache(
  191. ctx: Ctx, g_model: c_void_p
  192. ) -> None:
  193. pt_model = load_pt_model()
  194. attn = pt_model.text_decoder.layers[0].self_attn
  195. x = torch.empty((2, 21, 1024))
  196. torch.random.manual_seed(0)
  197. torch.nn.init.uniform_(x, -1, 1)
  198. state_bag = fairseq2.nn.IncrementalStateBag(100)
  199. with ggml.fairseq2_kv_cache_alloc(g_model, 2, 21):
  200. # Incremental decoding
  201. for t in range(3):
  202. xq = x[:, t : t + 1]
  203. y_exp = attn(xq, None, xq, None, xq, state_bag=state_bag).numpy()
  204. assert y_exp.shape == (2, 1, 1024)
  205. gxq = ggml.from_numpy(ctx, xq.contiguous())
  206. ggml.ggml_set_name(gxq, b"xq")
  207. gy = ggml.forward(
  208. "MultiheadAttention",
  209. g_model,
  210. "text_decoder.layers.0.self_attn",
  211. gxq,
  212. gxq,
  213. gxq,
  214. None, # type: ignore
  215. )
  216. gf = ggml.ggml_build_forward(gy)
  217. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  218. nodes = ggml.nodes(gf)
  219. state = state_bag.get_state(attn, fairseq2.nn.transformer.AttentionState)
  220. state_bag.increment_step()
  221. assert state is not None
  222. assert np.allclose(
  223. state.get()[0].transpose(1, 2).reshape(2, t + 1, -1).numpy(),
  224. ggml.to_numpy(
  225. nodes[b"text_decoder.layers.0.self_attn.k_cache (step=%d)" % t]
  226. ),
  227. atol=1e-3,
  228. )
  229. y = ggml.to_numpy(gy)
  230. assert np.allclose(y, y_exp, atol=1e-2)
  231. def test_MultiheadAttention_forward_cross_attn_with_cache(
  232. ctx: Ctx, g_model: c_void_p
  233. ) -> None:
  234. pt_model = load_pt_model()
  235. attn = pt_model.text_decoder.layers[0].encoder_decoder_attn
  236. x = torch.empty((2, 21, 1024))
  237. torch.random.manual_seed(0)
  238. torch.nn.init.uniform_(x, -1, 1)
  239. state_bag = fairseq2.nn.IncrementalStateBag(100)
  240. with ggml.fairseq2_kv_cache_alloc(g_model, 2, 21):
  241. # Incremental decoding, the keys come from the encoder, and don't change during decoding
  242. xk = x[:, :11]
  243. gxk = ggml.from_numpy(ctx, xk.contiguous(), name=b"xk")
  244. for t in range(3):
  245. xq = x[:, t : t + 1]
  246. gxq = ggml.from_numpy(ctx, xq.contiguous())
  247. ggml.ggml_set_name(gxq, b"xq")
  248. gy = ggml.forward(
  249. "MultiheadAttention",
  250. g_model,
  251. "text_decoder.layers.0.encoder_decoder_attn",
  252. gxq,
  253. gxk,
  254. gxk,
  255. None, # type: ignore
  256. )
  257. gf = ggml.ggml_build_forward(gy)
  258. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  259. y = ggml.to_numpy(gy)
  260. nodes = ggml.nodes(gf)
  261. leaves = ggml.leafs(gf)
  262. if t > 0:
  263. # the cache only appear in the graph during the second call
  264. state = state_bag.get_state(
  265. attn, fairseq2.nn.transformer.AttentionState
  266. )
  267. assert state is not None
  268. assert np.allclose(
  269. state.get()[0].transpose(1, 2).reshape(2, 11, -1).numpy(),
  270. ggml.to_numpy(
  271. nodes[b"text_decoder.layers.0.encoder_decoder_attn.k_cache"]
  272. ),
  273. atol=1e-3,
  274. )
  275. state_bag.increment_step()
  276. y_exp = attn(xq, None, xk, None, xk, state_bag=state_bag).numpy()
  277. assert y_exp.shape == (2, 1, 1024)
  278. assert np.allclose(y, y_exp, atol=1e-2)
  279. def test_StandardTransformerEncoderLayer_forward(ctx: Ctx, g_model: c_void_p) -> None:
  280. x = torch.empty((2, 21, 1024))
  281. torch.random.manual_seed(0)
  282. torch.nn.init.uniform_(x, -1, 1)
  283. pt_model = load_pt_model()
  284. layer = pt_model.text_encoder.layers[0]
  285. gx = ggml.from_numpy(ctx, x)
  286. ggml.ggml_set_name(gx, b"x")
  287. padding_mask = fairseq2.nn.padding.PaddingMask(torch.tensor([21, 21]), 21)
  288. gpad = ggml.from_numpy(ctx, padding_mask.materialize())
  289. ggml.ggml_set_name(gpad, b"padding_mask")
  290. gy = ggml.forward(
  291. "StandardTransformerEncoderLayer",
  292. g_model,
  293. "text_encoder.layers.0",
  294. gx,
  295. None, # TODO support padding mask
  296. )
  297. gf = ggml.ggml_build_forward(gy)
  298. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  299. y = ggml.to_numpy(gy)
  300. y_exp, _ = layer(x, padding_mask=None)
  301. y_exp = y_exp.numpy()
  302. assert y.shape == y_exp.shape
  303. assert np.allclose(y_exp, y, atol=1e-4 if UNITY_FLASH_ATTN else 1e-2)
  304. def test_StandardConformerEncoderLayer_forward(ctx: Ctx, g_model: c_void_p) -> None:
  305. pt_model = load_pt_model()
  306. if not DATA_DEV.exists():
  307. pytest.skip(reason=f"Folder {DATA_DEV} not found !")
  308. x = torch.load(DATA_DEV / "seqs_before_conformer_block.pt")
  309. padding_mask = torch.ones((1, x.shape[1]))
  310. layer = pt_model.speech_encoder.inner.layers[0]
  311. gx = ggml.from_numpy(ctx, x[0])
  312. ggml.ggml_set_name(gx, b"x")
  313. gpad = ggml.from_numpy(ctx, padding_mask[0])
  314. ggml.ggml_set_name(gpad, b"padding_mask")
  315. gy = ggml.forward(
  316. "StandardConformerEncoderLayer",
  317. g_model,
  318. "speech_encoder.inner.layers.0",
  319. gx,
  320. None, # TODO support padding mask
  321. )
  322. gf = ggml.ggml_build_forward(gy)
  323. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  324. y = ggml.to_numpy(gy)
  325. y_exp, _ = layer(x, padding_mask)
  326. y_exp = y_exp.numpy()
  327. assert y.shape == y_exp.shape
  328. assert np.allclose(y_exp, y, atol=2e-3)
  329. def test_StandardConformerEncoderAdaptorLayer_forward(
  330. ctx: Ctx, g_model: c_void_p
  331. ) -> None:
  332. pt_model = load_pt_model()
  333. if not DATA_DEV.exists():
  334. pytest.skip(reason=f"Folder {DATA_DEV} not found !")
  335. x = torch.load(DATA_DEV / "seqs_before_adaptor.pt")
  336. layer = pt_model.speech_encoder.adaptor_layers[0]
  337. gx = ggml.from_numpy(ctx, x[0])
  338. ggml.ggml_set_name(gx, b"x")
  339. gy = ggml.forward(
  340. "StandardConformerEncoderAdaptorLayer",
  341. g_model,
  342. "speech_encoder.adaptor_layers.0",
  343. gx,
  344. None, # TODO support padding mask
  345. )
  346. gf = ggml.ggml_build_forward(gy)
  347. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  348. y = ggml.to_numpy(gy)
  349. y_exp, _ = layer(x, None)
  350. y_exp = y_exp.numpy()
  351. assert y.shape == y_exp.shape
  352. assert np.allclose(y_exp, y, atol=2e-3)
  353. def test_StandardTransformerEncoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
  354. x = torch.empty((2, 21, 1024))
  355. padding_mask = fairseq2.nn.padding.PaddingMask(torch.tensor([21, 21]), 21)
  356. torch.random.manual_seed(0)
  357. torch.nn.init.uniform_(x, -1, 1)
  358. gx = ggml.from_numpy(ctx, x)
  359. ggml.ggml_set_name(gx, b"x")
  360. gpad = ggml.from_numpy(ctx, padding_mask.materialize())
  361. ggml.ggml_set_name(gpad, b"padding_mask")
  362. gy = ggml.forward(
  363. "StandardTransformerEncoder",
  364. g_model,
  365. "text_encoder",
  366. gx,
  367. None, # TODO support padding mask
  368. )
  369. gf = ggml.ggml_build_forward(gy)
  370. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  371. y = ggml.to_numpy(gy)
  372. pt_model = load_pt_model()
  373. y_exp, _ = pt_model.text_encoder(x, padding_mask)
  374. y_exp = y_exp.numpy()
  375. assert y.shape == y_exp.shape
  376. assert np.allclose(y_exp, y, atol=5e-3)
  377. def test_StandardConformerEncoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
  378. pt_model = load_pt_model()
  379. wav, _ = torchaudio.load(DATA / "test.wav")
  380. gx = ggml.from_numpy(ctx, wav * 2**15) # Apply scale before sending into ggml!
  381. ggml.ggml_set_name(gx, b"x")
  382. gy = ggml.forward(
  383. "StandardConformerEncoder",
  384. g_model,
  385. "speech_encoder",
  386. gx,
  387. None, # TODO support padding mask
  388. )
  389. gf = ggml.ggml_build_forward(gy)
  390. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  391. converter = WaveformToFbankConverter(
  392. num_mel_bins=80,
  393. waveform_scale=2**15,
  394. channel_last=True,
  395. standardize=True,
  396. )
  397. converter_input = {
  398. "waveform": wav.transpose(0, 1),
  399. "sample_rate": 16000.0,
  400. "format": -1,
  401. }
  402. y = ggml.to_numpy(gy)
  403. speech_encoder_input = pt_model.speech_encoder_frontend(
  404. converter(converter_input)["fbank"].unsqueeze(0), None
  405. )[0]
  406. y_exp, _ = pt_model.speech_encoder(speech_encoder_input, None)
  407. y_exp = y_exp.numpy() # remove batch dimension
  408. assert y.shape == y_exp.shape
  409. assert np.allclose(
  410. y_exp, y, atol=1e-2
  411. ) # There are 10 elements in a 137*1024 tensor with error >1e-2
  412. def test_WaveformToFbank_forward(ctx: Ctx, g_model: c_void_p) -> None:
  413. pt_model = load_pt_model()
  414. converter = WaveformToFbankConverter(
  415. num_mel_bins=80,
  416. waveform_scale=2**15,
  417. channel_last=True,
  418. standardize=True,
  419. )
  420. extractor = Wav2Vec2FbankFeatureExtractor(80, stride=2, sample_every_k=1)
  421. wav, _ = torchaudio.load(DATA / "test.wav")
  422. gx = ggml.from_numpy(ctx, wav * 2**15) # Apply scale before sending into ggml!
  423. ggml.ggml_set_name(gx, b"x")
  424. gy = ggml.forward("WaveformToFbank", g_model, "", gx)
  425. gf = ggml.ggml_build_forward(gy)
  426. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  427. y = ggml.to_numpy(gy)
  428. converter_input = {
  429. "waveform": wav.transpose(0, 1),
  430. "sample_rate": 16000.0,
  431. "format": -1,
  432. }
  433. y_exp, _ = extractor(converter(converter_input)["fbank"].unsqueeze(0), None)
  434. y_exp = y_exp.squeeze(0).numpy()
  435. assert y.shape == y_exp.shape
  436. assert np.allclose(y_exp, y, atol=4e-3) # reduce? error is from standardization
  437. def test_PositionalEmbedding_forward(ctx: Ctx, g_model: c_void_p) -> None:
  438. seq = torch.zeros((4, 20, 1024), dtype=torch.float32)
  439. # this _legacy_pad_idx is suspicious. Shouldn't the model use 1 ? But
  440. # this is consistent with pt_model.text_decoder_frontend.pos_encoder._sin_offset
  441. pos_encoder = fairseq2.nn.SinusoidalPositionEncoder(1024, 55, _legacy_pad_idx=0)
  442. y_exp = pos_encoder(seq, None)[0].numpy()
  443. gseq = ggml.from_numpy(ctx, seq[0].numpy())
  444. ggml.ggml_set_name(gseq, b"seq")
  445. gy = ggml.forward(
  446. "PositionalEmbedding", g_model, "text_decoder_frontend.pos_encoder", gseq
  447. )
  448. gf = ggml.ggml_build_forward(gy)
  449. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  450. y = ggml.to_numpy(gy)
  451. assert y.shape == y_exp.shape
  452. assert np.allclose(y_exp, y, atol=1e-6)
  453. def test_PositionalEmbedding_forward_with_cache(ctx: Ctx, g_model: c_void_p) -> None:
  454. seq = torch.zeros((4, 20, 1024), dtype=torch.float32)
  455. pos_encoder = fairseq2.nn.SinusoidalPositionEncoder(1024, 55, _legacy_pad_idx=0)
  456. pos_encoder.eval()
  457. state_bag = fairseq2.nn.IncrementalStateBag(100)
  458. with ggml.fairseq2_kv_cache_alloc(g_model, 2, 21):
  459. # Incremental decoding
  460. for t in range(20):
  461. gseq = ggml.from_numpy(ctx, seq[:, t : t + 1, :].numpy())
  462. ggml.ggml_set_name(gseq, b"seq")
  463. gy = ggml.forward(
  464. "PositionalEmbedding", g_model, "text_decoder_frontend.pos_encoder", gseq
  465. )
  466. gf = ggml.ggml_build_forward(gy)
  467. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  468. y = ggml.to_numpy(gy)
  469. y_exp = pos_encoder(seq[:, t : t + 1, :], None, state_bag=state_bag).numpy()
  470. state_bag.increment_step()
  471. assert y.shape == y_exp.shape
  472. assert np.allclose(y_exp, y, atol=1e-6)
  473. def test_TransformerEmbeddingFrontend_forward(ctx: Ctx, g_model: c_void_p) -> None:
  474. seq = torch.arange(2 * 20).reshape(2, 20)
  475. seq[1, 15:] = 0 # padding for second sentence
  476. seq_len = torch.tensor([20, 15])
  477. gseq = ggml.from_numpy(ctx, seq.numpy().astype(np.int32))
  478. ggml.ggml_set_name(gseq, b"seq")
  479. gy = ggml.forward(
  480. "TransformerEmbeddingFrontend", g_model, "text_decoder_frontend", gseq
  481. )
  482. ggml.build_and_compute(ctx, gy)
  483. y = ggml.to_numpy(gy)
  484. pt_model = load_pt_model()
  485. y_exp, _ = pt_model.text_decoder_frontend(seq, seq_len)
  486. y_exp = y_exp.numpy()
  487. assert y.shape == y_exp.shape
  488. assert np.allclose(y_exp, y, atol=1e-6)
  489. def test_StandardTransformerDecoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
  490. x = torch.empty((2, 13, 1024))
  491. encoder_out = torch.empty((2, 21, 1024))
  492. padding_mask = fairseq2.nn.padding.PaddingMask(torch.tensor([13, 13]), 13)
  493. torch.random.manual_seed(0)
  494. torch.nn.init.uniform_(x, -1, 1)
  495. torch.nn.init.uniform_(encoder_out, -1, 1)
  496. gx = ggml.from_numpy(ctx, x)
  497. ggml.ggml_set_name(gx, b"x")
  498. gpad = ggml.from_numpy(ctx, padding_mask.materialize())
  499. ggml.ggml_set_name(gpad, b"padding_mask")
  500. genc = ggml.from_numpy(ctx, encoder_out)
  501. gy = ggml.forward(
  502. "StandardTransformerDecoder",
  503. g_model,
  504. "text_decoder",
  505. gx,
  506. None, # TODO support padding mask,
  507. genc,
  508. None,
  509. )
  510. ggml.build_and_compute(ctx, gy)
  511. y = ggml.to_numpy(gy)
  512. pt_model = load_pt_model()
  513. y_exp, _ = pt_model.text_decoder(x, padding_mask, encoder_out, None)
  514. y_exp = y_exp.numpy()
  515. assert y.shape == y_exp.shape
  516. assert np.allclose(y_exp, y, atol=1e-4 if UNITY_FLASH_ATTN else 1e-3)
  517. def test_t2tt(ctx: Ctx, g_model: c_void_p) -> None:
  518. src_lang = "eng"
  519. src_text = "We are all in a yellow submarine."
  520. tgt_lang = "fra"
  521. sample_file = DATA / "sample_input.npz"
  522. beam_size = 2
  523. if not sample_file.exists():
  524. translator = load_translator()
  525. device = translator.device
  526. token_encoder = translator.text_tokenizer.create_encoder(
  527. task="translation", lang=src_lang, mode="source", device=device
  528. )
  529. src = translator.collate(token_encoder(src_text))
  530. text_out, _ = translator.get_prediction(
  531. translator.model,
  532. translator.text_tokenizer,
  533. translator.unit_tokenizer,
  534. src["seqs"],
  535. None,
  536. input_modality=Modality.TEXT,
  537. output_modality=Modality.TEXT,
  538. tgt_lang=tgt_lang,
  539. text_generation_opts=SequenceGeneratorOptions(beam_size=beam_size),
  540. unit_generation_opts=None,
  541. )
  542. tgt_text = str(text_out.sentences[0])
  543. assert tgt_text == "Nous sommes tous dans un sous-marin jaune."
  544. hypotheses = [
  545. {
  546. "seq": h.seq.tolist(),
  547. "score": h.score.item(),
  548. "step_scores": h.step_scores.numpy(),
  549. }
  550. for h in text_out.generator_output.results[0]
  551. ]
  552. np.savez(
  553. sample_file,
  554. encoder_output=text_out.encoder_output.numpy(),
  555. hypotheses=hypotheses,
  556. )
  557. # allow_pickle to load the hyp dicts
  558. text_out = np.load(sample_file, allow_pickle=True)
  559. encoder_out = ggml.from_numpy(ctx, text_out["encoder_output"])
  560. prefix_seq = np.array(text_out["hypotheses"][0]["seq"][:2]).astype(np.int32)
  561. max_seq_len = max(len(h["seq"]) for h in text_out["hypotheses"])
  562. opts = ggml.SequenceGeneratorOptions(
  563. beam_size=beam_size,
  564. min_seq_len=1,
  565. soft_max_seq_len_a=1,
  566. soft_max_seq_len_b=200,
  567. hard_max_seq_len=int(max_seq_len * 1.5),
  568. len_penalty=1.0,
  569. unk_penalty=0.0,
  570. normalize_scores=True,
  571. )
  572. job = ggml.SequenceGeneratorJob(
  573. opts=opts,
  574. prefix_seq=ggml.from_numpy(ctx, prefix_seq),
  575. pad_idx=0,
  576. unk_idx=1,
  577. bos_idx=2,
  578. eos_idx=3,
  579. )
  580. result_ptr = ggml.generate_sequence(g_model, job, encoder_out, NULLPTR, ctx)
  581. results = [result_ptr[i] for i in range(beam_size) if result_ptr[i].seq != None]
  582. # The step score error is big, this may negatively impact the beam search.
  583. assert_hypotheses(
  584. text_out["hypotheses"], results, score_rtol=1e-2, step_scores_rtol=0.1
  585. )
  586. def test_s2tt(ctx: Ctx, g_model: c_void_p):
  587. src_audio_wav, _ = torchaudio.load(DATA / "test.wav")
  588. sample_file = DATA / "test.wav.npz"
  589. if not sample_file.exists():
  590. translator = load_translator()
  591. token_encoder = translator.text_tokenizer.create_encoder(task="translation")
  592. decoded_audio = {
  593. "waveform": src_audio_wav.t(),
  594. "sample_rate": 16000.0,
  595. "format": -1,
  596. }
  597. src = translator.collate(translator.convert_to_fbank(decoded_audio))["fbank"]
  598. text_out, _ = translator.get_prediction(
  599. translator.model,
  600. translator.text_tokenizer,
  601. translator.unit_tokenizer,
  602. src,
  603. input_modality=Modality.SPEECH,
  604. output_modality=Modality.TEXT,
  605. tgt_lang="cmn",
  606. )
  607. tgt_text = str(text_out.sentences[0])
  608. assert tgt_text == "大家好 , 世界无主题。"
  609. hypotheses = [
  610. {
  611. "seq": h.seq.tolist(),
  612. "score": h.score.item(),
  613. "step_scores": h.step_scores.numpy(),
  614. }
  615. for h in text_out.generator_output.results[0]
  616. ]
  617. np.savez(
  618. sample_file,
  619. encoder_output=text_out.encoder_output.numpy(),
  620. hypotheses=hypotheses,
  621. )
  622. text_out = np.load(sample_file, allow_pickle=True)
  623. encoder_out = ggml.from_numpy(ctx, text_out["encoder_output"])
  624. tgt_tokens = text_out["hypotheses"][0]["seq"]
  625. max_seq_len = max(len(h["seq"]) for h in text_out["hypotheses"])
  626. max_seq_len = int(max_seq_len * 1.5)
  627. # Apply scale before sending into ggml!
  628. gx = ggml.from_numpy(ctx, src_audio_wav * 2**15)
  629. ggml.ggml_set_name(gx, b"x")
  630. encoder_out = ggml.forward(
  631. "StandardConformerEncoder",
  632. g_model,
  633. "speech_encoder",
  634. gx,
  635. None, # TODO support padding mask
  636. )
  637. gf = ggml.ggml_build_forward(encoder_out)
  638. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  639. beam_size = 5
  640. opts = ggml.SequenceGeneratorOptions(
  641. beam_size=beam_size,
  642. soft_max_seq_len_a=1,
  643. soft_max_seq_len_b=200,
  644. hard_max_seq_len=max_seq_len,
  645. )
  646. job = ggml.SequenceGeneratorJob(
  647. opts=opts,
  648. prefix_seq=ggml.from_numpy(ctx, np.array([3, 256200]).astype(np.int32)),
  649. pad_idx=0,
  650. unk_idx=1,
  651. bos_idx=2,
  652. eos_idx=3,
  653. )
  654. result_ptr = ggml.generate_sequence(g_model, Ptr(job), encoder_out, NULLPTR, ctx)
  655. results = [result_ptr[i] for i in range(beam_size) if result_ptr[i].seq != None]
  656. assert_hypotheses(
  657. text_out["hypotheses"], results, score_rtol=1e-2, step_scores_rtol=0.1
  658. )
  659. def assert_hypotheses(
  660. expected: List[Any],
  661. results: List[Any],
  662. *,
  663. score_rtol: float,
  664. step_scores_rtol: float,
  665. ) -> None:
  666. assert len(results) == len(expected)
  667. for g_hyp, exp in zip(results, expected):
  668. g_tokens = list(ggml.to_numpy(g_hyp.seq))
  669. g_step_scores = ggml.to_numpy(g_hyp.step_scores)
  670. assert g_tokens == exp["seq"]
  671. assert g_hyp.score == pytest.approx(exp["score"], rel=score_rtol)
  672. assert np.allclose(g_step_scores, exp["step_scores"], rtol=step_scores_rtol)