123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942 |
- #include <math.h>
- #include "ggml.h"
- #include "fairseq2.h"
- #include <unordered_map>
- #include <algorithm>
- /// allocate the fairseq2 model and hyperparameters
- extern "C" fairseq2_model* fairseq2_model_alloc() {
- // pre-allocate some memory to write hyperparameters and tensors pointers
- auto* model = new fairseq2_model;
- model->hparams = new std::uint8_t[8 * 1024];
- model->arch = new std::uint64_t[16 * 1024]; // max tensors allowed
- model->tensors_ctx = nullptr;
- return model;
- };
- extern "C" void fairseq2_model_free(fairseq2_model* model) {
- if (model->tensors_ctx) ggml_free(model->tensors_ctx);
- delete (std::uint64_t*)(model->arch);
- delete (std::uint8_t*)model->hparams;
- delete model;
- };
- extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
- model->ctx = ctx;
- }
- extern "C" std::string* std_string_alloc(char* c_str) {
- return new std::string(c_str);
- }
- extern "C" void std_string_free(std::string* str) {
- delete str;
- }
- bool has_layer(fairseq2_model& model, const std::string& name) {
- return model.tensors.find(name) != model.tensors.end();
- }
- extern "C" ggml_tensor* Linear_forward(
- fairseq2_model& model,
- const std::string &prefix,
- ggml_tensor* input // (d_in)
- ) {
- // Note: for now we assumed un-batched input
- ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
- GGML_ASSERT(weight != nullptr);
- ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
- GGML_ASSERT(bias != nullptr);
- return ggml_add(
- model.ctx,
- ggml_mul_mat(model.ctx, weight, input), // (d_out)
- bias
- );
- }
- extern "C" ggml_tensor* LayerNorm_forward(
- fairseq2_model& model,
- const std::string &prefix,
- ggml_tensor* input
- ) {
- ggml_tensor* weight = model.tensors[prefix + ".weight"];
- GGML_ASSERT(weight != nullptr);
- ggml_tensor* bias = model.tensors[prefix + ".bias"];
- GGML_ASSERT(bias != nullptr);
- auto ctx = model.ctx;
- // TODO: should `eps` be part of unity hparams ?
- input = ggml_norm(ctx, input, /*eps*/1e-5);
- return ggml_add(
- ctx,
- ggml_mul(ctx, ggml_repeat(ctx, weight, input), input),
- ggml_repeat(ctx, bias, input)
- );
- }
- extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs
- ) {
- seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
- // inner_activation = ReLu // TODO: allow other activation
- seqs = ggml_relu(model.ctx, seqs);
- if (has_layer(model, prefix + ".inner_layer_norm")) {
- seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
- }
- seqs = Linear_forward(model, prefix + ".output_proj", seqs);
- return seqs;
- }
- ggml_tensor* reshape_num_head(ggml_context* ctx, ggml_tensor* x, int num_heads) {
- int slen = x->ne[1];
- int model_dim = x->ne[0];
- // (S, dim) -> (S, H, H_dim)
- x = ggml_reshape_3d(ctx, x, model_dim / num_heads, num_heads, slen);
- // (S, H, H_dim) -> (H, S, H_dim)
- x = ggml_permute(ctx, x, 0, 2, 1, 3);
- return x;
- }
- # define UNITY_FLASH_ATTN
- extern "C" ggml_tensor* MultiheadAttention_forward(
- fairseq2_model& model,
- const std::string &prefix,
- ggml_tensor* queries, // (slen, d_in)
- ggml_tensor* keys, // (klen, d_in)
- ggml_tensor* values, // (klen, d_out)
- ggml_tensor* mask // (klen, slen)
- ) {
- int slen = queries->ne[1];
- int slenk = keys->ne[1];
- int num_heads = 16;
- int head_dim = queries->ne[0] / num_heads;
- ggml_context* ctx = model.ctx;
- ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries);
- q = reshape_num_head(ctx, q, num_heads); // (H, S, H_dim)
- ggml_set_name(q, "q");
- ggml_tensor* k = Linear_forward(model, prefix + ".k_proj", keys);
- k = reshape_num_head(ctx, k, num_heads); // (H, Sk, H_dim)
- ggml_set_name(k, "k");
- ggml_tensor* v = Linear_forward(model, prefix + ".v_proj", values);
- v = ggml_reshape_3d(ctx, v, head_dim, num_heads, slenk); // (Sk, H, H_dim)
- v = ggml_permute(ctx, v, 1, 2, 0, 3); // (H, H_dim, Sk)
- v = ggml_cont(ctx, v);
- ggml_set_name(v, "v");
- #ifdef UNITY_FLASH_ATTN
- // For flash_attn, we assume either no masks, or triangular masks.
- ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/mask != nullptr); // (H, S, H_dim)
- ggml_set_name(attn, "attn");
- attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (S, H, H_dim)
- attn = ggml_cont(ctx, attn);
- attn = ggml_reshape_2d(ctx, attn, num_heads * head_dim, slen); // (S, H * H_dim)
- #else
- // (H, Sk, H_dim) x (H, S, H_dim) -> (H, S, Sk)
- ggml_tensor* qk = ggml_mul_mat(ctx, k, q);
- ggml_set_name(qk, "qk");
- ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);
- ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
- qk = ggml_scale(ctx, qk, qk_scale);
- ggml_set_name(qk, "qk_scaled");
- if (mask) qk = ggml_add(ctx, qk, mask);
- // TODO: upgrade qk to float32 if needed
- ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (H, Sk, S)
- ggml_set_name(attn_weights, "attn_weights");
- // (H, S, Sk) x (H, H_dim, Sk) -> (H, H_dim, S)
- ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);
- ggml_set_name(attn, "attn");
- attn = ggml_reshape_2d(ctx, attn, slen, num_heads * head_dim); // (H * H_dim, S)
- attn = ggml_transpose(ctx, attn); // (S, H * H_dim)
- // // I'm not sure why this one is needed ...
- attn = ggml_cont(ctx, attn);
- #endif // UNITY_FLASH_ATTN
- // out -> (S, d_out)
- ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
- ggml_set_name(out, "out");
- return out;
- }
- extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask
- ) {
- ggml_context* ctx = model.ctx;
- // TODO: read norm_order from model
- auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
- // _forward_self_attn(seqs, padding_mask)
- auto residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- // TODO: add padding_mask to MultiheadAttention_forward
- GGML_ASSERT(padding_mask == nullptr);
- seqs = MultiheadAttention_forward(
- model,
- prefix + ".self_attn",
- seqs,
- seqs,
- seqs,
- /*attention masks=*/nullptr
- );
- if (has_layer(model, prefix + ".self_attn_norm"))
- seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- // _forward_ffn(seqs)
- residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
- // TODO: if self.residual_scale is not None:
- // residual = self.residual_scale * residual
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- return seqs;
- }
- struct ggml_tensor * ggml_slice(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis,
- int64_t start,
- int64_t end
- ) {
- int64_t ne[4];
- std::copy(a->ne, a->ne + 4, ne);
- if (start < 0) start = ne[axis] + start;
- if (end < 0) end = ne[axis] + end;
- GGML_ASSERT(0 <= start);
- GGML_ASSERT(start <= end);
- GGML_ASSERT(end <= ne[axis]);
- ne[axis] = end - start;
- size_t offset = a->nb[axis] * start;
- size_t* nb = a->nb;
- ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
- result->n_dims = a->n_dims;
- return result;
- }
- extern "C" ggml_tensor* PositionalEmbedding_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* embeds
- ) {
- int encoding_dim = embeds->ne[0];
- int seq_len = embeds->ne[1];
- ggml_tensor* full_pos_embeds = model.tensors[prefix];
- ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, 0, seq_len);
- return ggml_add(model.ctx, embeds, pos_embeds);
- }
- extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs
- // TODO: state_bag
- ) {
- ggml_context* ctx = model.ctx;
- ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
- GGML_ASSERT(embed_weights != nullptr);
- ggml_tensor* embeds = ggml_get_rows(ctx, embed_weights, seqs);
- // padding_mask = to_padding_mask(embeds, seq_lens)
- // TODO: scale when saving the model weights
- // embeds = ggml_scale embeds * self.scale
- if (has_layer(model, prefix + ".pos_encoder")) {
- // This only work with the simple pos encoders
- int encoding_dim = embeds->ne[0];
- int seq_len = embeds->ne[1];
- ggml_tensor* pos_embeds = ggml_view_2d(ctx, model.tensors[prefix + ".pos_encoder"], encoding_dim, seq_len, 0, 0);
- embeds = ggml_add(ctx, embeds, pos_embeds);
- }
- if (has_layer(model, prefix + ".layer_norm")) {
- embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
- }
- // padding mask ?
- return embeds;
- }
- extern "C" ggml_tensor* StandardTransformerEncoder_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask
- ) {
- int layer_idx = 0;
- std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
- while (has_layer(model, layer_name)) {
- seqs = StandardTransformerEncoderLayer_forward(
- model, layer_name, seqs, padding_mask
- );
- ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
- layer_idx += 1;
- layer_name = prefix + ".layers." + std::to_string(layer_idx);
- }
- if (has_layer(model, prefix + ".layer_norm"))
- seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
- return seqs;
- }
- extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* self_attn_mask,
- ggml_tensor* encoder_output,
- ggml_tensor* encoder_padding_mask
- ) {
- ggml_context* ctx = model.ctx;
- // TODO: read norm_order from model
- auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
- // _forward_self_attn(seqs, padding_mask)
- auto residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- seqs = MultiheadAttention_forward(
- model,
- prefix + ".self_attn",
- seqs,
- seqs,
- seqs,
- /*attention masks=*/self_attn_mask
- );
- if (has_layer(model, prefix + ".self_attn_norm"))
- seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- // _forward_encoder_decoder_attn
- if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
- // `encoder_output` must be `None` for decoder-only attention.
- GGML_ASSERT(encoder_output == nullptr);
- return seqs;
- }
- // `encoder_output` must not be `None` for encoder-decoder attention.
- GGML_ASSERT(encoder_output != nullptr);
- residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
- seqs = MultiheadAttention_forward(
- model,
- prefix + ".encoder_decoder_attn",
- seqs,
- encoder_output,
- encoder_output,
- /*attention masks=*/encoder_padding_mask
- );
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
- // _forward_ffn(seqs)
- residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
- // TODO:
- // if self.residual_scale is not None:
- // residual = self.residual_scale * residual
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- return seqs;
- }
- ggml_tensor* causal_mask_cache = nullptr;
- extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
- auto seq_len = seqs->ne[0];
- auto mask = causal_mask_cache;
- // TODO: this cache only works as long as we don't change the size/device too often
- // TODO: allow other ggml_type
- if (mask == nullptr || mask->backend != seqs->backend || mask->ne[0] < seq_len) {
- printf("new causal_mask (%ld, %ld) created\n", seq_len, seq_len);
- mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
- char* data = (char*)mask->data;
- // tensor([[0., -inf, -inf, -inf],
- // [0., 0., -inf, -inf],
- // [0., 0., 0., -inf],
- // [0., 0., 0., 0.]])
- for (int i = 0; i < seq_len; ++i) {
- char* row = data + i * mask->nb[1];
- for (int j = 0; j <= i; ++j) {*(float*)(row + j * mask->nb[0]) = 0;}
- for (int j = i + 1; j < seq_len; ++j) {*(float*)(row + j * mask->nb[0]) = -INFINITY;}
- }
- causal_mask_cache = mask;
- }
- return ggml_view_2d(ctx, mask, seq_len, seq_len, mask->nb[1], 0);
- }
- extern "C" ggml_tensor* StandardTransformerDecoder_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask,
- ggml_tensor* encoder_output,
- ggml_tensor* encoder_padding_mask
- ) {
- int layer_idx = 0;
- std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
- ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
- while (has_layer(model, layer_name)) {
- seqs = StandardTransformerDecoderLayer_forward(
- model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
- );
- ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
- layer_idx += 1;
- layer_name = prefix + ".layers." + std::to_string(layer_idx);
- }
- if (has_layer(model, prefix + ".layer_norm"))
- seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
- return seqs;
- }
- using IncrementalStateBag = std::unordered_map<ggml_tensor*, ggml_tensor*>*;
- int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
- auto opts = job.opts;
- int max_seq_len = -1;
- if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
- max_seq_len = opts.hard_max_seq_len;
- } else {
- max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len + opts.soft_max_seq_len_b));
- }
- if (opts.min_seq_len > max_seq_len) {
- printf(
- "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
- opts.min_seq_len,
- max_seq_len
- );
- GGML_ASSERT(opts.min_seq_len <= max_seq_len);
- }
- int prefix_seq_len = job.prefix_seq->ne[0];
- if (prefix_seq_len >= max_seq_len) {
- printf(
- "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
- prefix_seq_len,
- max_seq_len
- );
- GGML_ASSERT(prefix_seq_len < max_seq_len);
- }
- return max_seq_len;
- }
- void _fan_out_encoder_output(
- ggml_context* ctx,
- ggml_tensor** encoder_output_out,
- ggml_tensor** encoder_padding_mask_out,
- int beam_size
- ) {
- // (S_enc, M)
- ggml_tensor* encoder_output = *encoder_output_out;
- ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
- // (B, S_enc, M)
- ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
- // (S_enc, M) -> (B, S_enc, M)
- *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
- // (S_enc) -> (B, S_enc)
- ggml_tensor* shape_mask = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], beam_size);
- if (encoder_padding_mask != nullptr) {
- *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
- }
- }
- ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
- // TODO: this isn't the smartest way of doing this
- return ggml_log(ctx, ggml_soft_max(ctx, logits));
- }
- void _bootstrap_seqs_and_scores(
- fairseq2_model& model,
- const SequenceGeneratorJob& job,
- ggml_tensor* seqs,
- ggml_tensor* scores,
- ggml_tensor* encoder_output,
- ggml_tensor* encoder_padding_mask,
- IncrementalStateBag state_bag
- ) {
- int prefix_seq_len = job.prefix_seq->ne[0];
- int max_seq_len = scores->ne[0];
- int beam_size = scores->ne[1];
- GGML_ASSERT(prefix_seq_len > 0);
- if (prefix_seq_len == 1)
- return;
- ggml_context* ctx = model.ctx;
- // seqs[:, : prefix_seq_len] = job.prefix_seq;
- ggml_cpy(ctx, job.prefix_seq, ggml_view_2d(ctx, seqs, 0, prefix_seq_len, seqs->nb[1], 0));
- // We have to bootstrap the model with the already fanned-out encoder
- // output to correctly initialize its incremental state. This causes some
- // redundancy as we have to expand `decoder_input` to match the shape of
- // `encoder_output`.
- // (S_pfx) -> (N x B, S_pfx - 1)
- // prefix_seq[:-1].expand(encoder_output.size(0), -1)
- ggml_tensor* decoder_input = ggml_repeat(ctx, ggml_view_1d(ctx, job.prefix_seq, prefix_seq_len - 1, 0), encoder_output);
- // Bootstrap the model state with prefix sequence.
- ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
- model,
- "text_decoder",
- seqs,
- /*padding_mask*/ nullptr,
- encoder_output,
- encoder_padding_mask
- // TODO: state_bag
- );
- // TODO state_bag.increment_step(prefix_seq_len - 1)
- // logits, lprobs: (N, S_pfx - 1, V)
- ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
- ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_view_3d(ctx, logits, logits->ne[0], logits->ne[1], 1, 0, 0, 0));
- int vocab_size = logits->ne[0];
- ggml_cgraph gf = ggml_build_forward(lprobs);
- ggml_graph_compute_with_ctx(ctx, &gf, 1);
- // Fetch scores of next steps from "lprobs"
- float p_score = 0;
- for (int i = 0; i < prefix_seq_len; ++i) {
- int p = ggml_get_i32_1d(job.prefix_seq, i);
- p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
- for (int b = 0; b < beam_size; ++b) {
- // scores: (N, S)
- // Note: First step (e.g. BOS)'s score is always 0.
- ggml_set_f32_1d(scores, b * max_seq_len + i + 1, p_score);
- }
- }
- }
- /// Represents a hypothesis produced by a sequence generator.
- struct Hypothesis {
- /// The generated sequence.
- ggml_tensor* seq;
- /// The score of the hypothesis.
- float score;
- /// The score of each individual sequence step.
- ggml_tensor* step_scores;
- };
- /// Represents a standard beam search algoritm.
- int StandardBeamSearch_step(
- ggml_context* ctx,
- int step_nr,
- bool is_start_step,
- ggml_tensor* lprobs, // (N, S, V)
- ggml_tensor* scores, // (N, S)
- ggml_tensor* candidate_indices
- ) {
- int vocab_size = lprobs->ne[0];
- int sent_len = lprobs->ne[1];
- int beam_size = lprobs->ne[2];
- GGML_ASSERT(scores->ne[0] == sent_len);
- GGML_ASSERT(scores->ne[1] == beam_size);
- // should this be done by the caller ?
- ggml_tensor* last_scores = ggml_view_2d(ctx, scores, beam_size, 1, 0, step_nr);
- if (is_start_step) {
- // At the initial step, all hypotheses are equally likely, so we use
- // only the first beam.
- lprobs = ggml_view_3d(ctx, lprobs, vocab_size, sent_len, 1, 0, 0, 0);
- lprobs = ggml_cont(ctx, lprobs);
- // The first step always indicates the beginning of the sequence and
- // has no score.
- if (step_nr > 0) {
- lprobs = ggml_add(ctx, lprobs, last_scores);
- }
- } else {
- // Make probabilities contain cumulative scores for each hypothesis.
- lprobs = ggml_add(ctx, lprobs, last_scores);
- }
- ggml_cgraph gf = ggml_build_forward(lprobs);
- ggml_graph_compute_with_ctx(ctx, &gf, 1);
- // Take the best 2 x `beam_size` predictions. We'll choose the first
- // `beam_size` of these which don't predict EOS to continue with.
- // (N, 2 x B)
- // `vocab_size` - 1 to never select PAD.
- int topk = std::min(2 * beam_size, vocab_size - 1);
- auto comp = [scores](std::int32_t a, std::int32_t b) {
- return ggml_get_f32_1d(scores, a) < ggml_get_f32_1d(scores, b);
- };
- auto cand = (std::int32_t*)candidate_indices->data;
- std::partial_sort(cand, cand + topk, cand + (beam_size * vocab_size), comp);
- return topk;
- }
- bool _finalize_hypothesis(
- const SequenceGeneratorJob& job,
- ggml_context* ctx,
- int step_nr,
- std::int32_t candidate,
- ggml_tensor* seqs, // (beam_size, seq_len)
- ggml_tensor* scores, // (beam_size, seq_len)
- std::vector<Hypothesis>& hypotheses
- ) {
- int vocab_size = scores->ne[0];
- std::int32_t beam = candidate / vocab_size;
- std::int32_t token = candidate % vocab_size;
- float tok_score = ggml_get_f32_1d(scores, candidate);
- // Detect beams that reached the minimum length and that end with an EOS.
- bool eos = token == job.eos_idx;
- eos &= tok_score != -INFINITY;
- // TODO ignored_beam_mask ?
- // eos &= ggml_get_i32_1d(ignored_beam_mask, beam);
- // ggml_set_i32_1d(eos_mask, beam, eos);
- if (!eos) return false;
- // If the candidate beam is "finished", let's copy the score and sequence
- ggml_tensor* tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
- ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
- auto tok = (std::int32_t*)tokens->data;
- auto sc = (float*)step_scores->data;
- ggml_set_f32_1d(scores, scores->ne[0] * beam + step_nr + 1, tok_score);
- for (int i = 0; i < step_nr + 1; ++i) {
- tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
- }
- tok[step_nr + 1] = token;
- float last_score = tok_score;
- for (int i = step_nr; i >= 0; --i) {
- // Convert from cumulative to per-step scores.
- float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i + 0);
- sc[i] = last_score - sc0;
- last_score = sc0;
- }
- // Skip first EOS since it is always 0 and skews normalization.
- if (job.opts.normalize_scores)
- tok_score /= std::pow((step_nr + 1), job.opts.len_penalty);
- hypotheses.emplace_back(Hypothesis{tokens, tok_score, step_scores});
- return true;
- }
- /// Generates a translation for a single sequence
- // TODO: finish this for beam_size=1
- // * implement the lprobs tweaking
- // TODO: add IncrementalStateBag support to avoid a O(N^3) generation.
- // TODO: support beam_size > 1:
- // * most layers assume un-batched input, but we want to handle several beams at once
- // * need to port "reorder_state_dict"
- // * once beam are selected with topk, we need to update seqs and scores tensors
- extern "C" float generate_sequence(
- fairseq2_model& model,
- const SequenceGeneratorJob& job,
- ggml_tensor* encoder_output,
- ggml_tensor* encoder_padding_mask,
- ggml_tensor* output_seq
- ) {
- int vocab_size = encoder_output->ne[0];
- int beam_size = job.opts.beam_size;
- int source_seq_len = encoder_output->ne[1];
- int max_seq_len = _determine_max_seq_len(job, source_seq_len);
- ggml_context* ctx = model.ctx;
- // (S_enc, M) -> (B, S_enc, M)
- _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);
- std::vector<Hypothesis> finished_searches(beam_size);
- // Initialize buffers. (B, S)
- ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);
- ggml_set_i32(seqs, 0);
- ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);
- ggml_set_f32(scores, 0.0);
- IncrementalStateBag state_bag = {};
- _bootstrap_seqs_and_scores(
- model, job, seqs, scores, encoder_output, encoder_padding_mask, state_bag
- );
- int prefix_seq_len = job.prefix_seq->ne[0];
- int start_step = prefix_seq_len - 1;
- // Holds the indices of beams (a beam can occur more than once) that we
- // should continue with in the next step.
- ggml_tensor* beam_indices = nullptr;
- // Indices of next token
- ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);
- for (int i = 0; i < vocab_size * beam_size; ++i) ggml_set_i32_1d(candidate_indices, i, i);
- // Holds the indices of searches that we should continue with in the next
- // step. If not `None`, it means we finalized one or more searches in the
- // last step.
- ggml_tensor* search_indices = nullptr;
- for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
- // if (beam_indices != nullptr) {
- // // If not `None`, it means in the last step we finalized one or
- // // more searches. We should ensure that we adjust `beam_indices`
- // // before reordering `decoder`'s incremental state.
- // if (search_indices != nullptr) {
- // num_searches = search_indices->ne[0];
- // // (N)
- // delta = search_indices - torch.arange(num_searches, device=device)
- // // (N) -> (N, 1)
- // delta.unsqueeze_(-1)
- // // Adjust indices to take into account removed searches.
- // beam_indices.view(num_searches, beam_size).add_(delta * beam_size)
- // }
- // // state_bag.reorder(beam_indices)
- // }
- seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
- ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
- model,
- "text_decoder",
- // seqs[:, step_nr : step_nr + 1]
- ggml_view_2d(ctx, seqs, 1, beam_size, step_nr * seqs->nb[0], 0),
- nullptr, // We never generate PAD.
- encoder_output,
- encoder_padding_mask
- // state_bag=state_bag,
- );
- // state_bag.increment_step()
- ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
- ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);
- // // Do not allow EOS before reaching the minimum sequence length.
- // if step_nr < self.opts.min_seq_len:
- // lprobs[:, :, self.eos_idx] = -torch.inf
- // // If we have reached the maximum length, force the last step to be
- // // EOS.
- // if step_nr == max_seq_len - 2:
- // lprobs[:, :, : self.eos_idx] = -torch.inf
- // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
- // // Never allow PAD.
- // lprobs[:, :, self.pad_idx] = -torch.inf
- // // Apply UNK penalty.
- // if self.unk_idx is not None:
- // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
- // Determine candidates for the next step.
- // (N, 2 x B)
- int topk = StandardBeamSearch_step(
- ctx,
- step_nr,
- step_nr == start_step,
- lprobs,
- // TODO only pass scores for new tokens
- ggml_view_2d(ctx, scores, step_nr + 1, beam_size, 0, 0),
- candidate_indices
- );
- int ongoing_beams = 0;
- for (std::int32_t c = 0; c < topk; ++c) {
- bool finished = _finalize_hypothesis(job, ctx, step_nr, c, seqs, scores, finished_searches);
- if (!finished) ongoing_beams += 1;
- if (ongoing_beams >= beam_size) break;
- }
- if (finished_searches.size() == beam_size) break;
- // TODO: recreate scores and seqs with the best beams
- // Remove finished searches (ones for which `beam_size` finalized
- // beams have been generated) from the batch.
- ggml_tensor* search_indices = nullptr;
- // if (newly_finished_searches) {
- // new_num_searches = num_searches - len(newly_finished_searches)
- // // Construct `search_indices` which holds indices of searches
- // // to keep for the next step.
- // search_mask = torch.full((num_searches,), True, device=device)
- // search_mask[newly_finished_searches] = False
- // search_indices = torch.arange(num_searches, device=device)
- // search_indices = search_indices.masked_select(search_mask)
- // // Filter out removed batches from state variables.
- // // (N, B) -> (N - F, B)
- // ignored_beam_mask = ignored_beam_mask[search_indices]
- // // (N, 2 x B) -> (N - F, 2 x B)
- // cand_scores = cand_scores [search_indices]
- // cand_indices = cand_indices [search_indices]
- // cand_beam_indices = cand_beam_indices[search_indices]
- // // (N) -> (N - F)
- // search_offsets.resize_(new_num_searches, 1)
- // // (N - F, 2 x B) + (N - F) -> (N - F, 2 x B)
- // global_cand_beam_indices = cand_beam_indices + search_offsets
- // // (N, 2 x B) -> (N - F, 2 x B)
- // eos_mask = eos_mask[search_indices]
- // // (N x B, S) -> (N, B, S)
- // seqs = seqs .view(num_searches, -1)
- // scores = scores.view(num_searches, -1)
- // // (N, B, S + 1) -> ((N - F) x B, S)
- // seqs = seqs [search_indices].view(new_num_searches * beam_size, -1)
- // scores = scores[search_indices].view(new_num_searches * beam_size, -1)
- // // (N x B, S_enc, M) -> (N, B, S_enc, M)
- // encoder_output = encoder_output.unflatten(0, (num_searches, -1))
- // // (N, B, S_enc, M) -> ((N - F) x B, S_enc, M)
- // encoder_output = encoder_output[search_indices].flatten(0, 1)
- // if encoder_padding_mask is not None:
- // // (N x B, S_enc, M) -> (N, B, S_enc, M)
- // padding_mask = encoder_padding_mask.unflatten(0, (num_searches, -1))
- // // (N, B, S_enc, M) -> ((N - F) x B, S_enc, M)
- // encoder_padding_mask = padding_mask[search_indices].flatten(0, 1)
- // num_searches = new_num_searches
- // }
- // eos_mask[:, :beam_size][ignored_beam_mask] = True
- // // Set `beam_weights` so that values greater than or equal to 2 x
- // // `beam_size` indicate finished beams (i.e. end with EOS) and values
- // // less than 2 x `beam_size` indicate active beams.
- // // (N, 2 x B)
- // beam_weights = cand_offsets + (eos_mask * (2 * beam_size))
- // // Get the top `beam_size` active beams, which are the beams with the
- // // smallest weights in `active_beam_weights`.
- // // (N, B)
- // active_beam_weights, active_beams = torch.topk(
- // beam_weights, k=beam_size, dim=1, largest=False
- // )
- // // Update to ignore finalized beams in the next step.
- // // (N, B)
- // ignored_beam_mask = active_beam_weights >= 2 * beam_size
- // // We should always have at least one active beam in each search.
- // assert (~ignored_beam_mask).any(dim=1).all()
- // // Denotes which beams are continued for each new hypothesis (a beam
- // // can be selected more than once).
- // // (N, B)
- // beam_indices = torch.gather(
- // global_cand_beam_indices, dim=1, index=active_beams
- // )
- // // (N, B) -> (N x B)
- // beam_indices = beam_indices.view(-1)
- // // Reorder beams in the `seq` and `score` buffers. The same beam can
- // // be selected more than once.
- // if (step_nr > start_step) {
- // // seqs [:, : step_nr + 1] = torch.index_select(
- // // seqs [:, : step_nr + 1], dim=0, index=beam_indices
- // // )
- // // scores[:, : step_nr + 1] = torch.index_select(
- // // scores[:, : step_nr + 1], dim=0, index=beam_indices
- // // )
- // }
- // // (N x B, S) -> (N, B, S)
- // // seqs_view = seqs .view(num_searches, beam_size, -1)
- // // scores_view = scores.view(num_searches, beam_size, -1)
- // // seqs_view [:, :, step_nr + 1] = torch.gather(cand_indices, dim=1, index=active_beams)
- // // scores_view[:, :, step_nr + 1] = torch.gather(cand_scores, dim=1, index=active_beams)
- }
- // Ensure that hypotheses are sorted by their scores before returning.
- // for batch in finished_searches:
- // batch.sort(key=lambda b: b.score, reverse=True) # type: ignore[arg-type, return-value]
- // return SequenceGeneratorOutput(
- // results=finished_searches, device=device, pad_idx=self.pad_idx
- // )
- return 0.0f;
- }
|