unity_model_loader.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. // Copyright (c) Meta Platforms, Inc. and affiliates.
  2. // All rights reserved.
  3. //
  4. // This source code is licensed under the license found in the
  5. // LICENSE file in the root directory of this source tree.
  6. #pragma once
  7. #include <vector>
  8. #include "model_loader.h"
  9. // TODO Merge with Ning implementation
  10. struct unity_hparams {
  11. std::int64_t model_dim;
  12. std::int64_t w2v2_encoder_config__model_dim;
  13. std::int64_t w2v2_encoder_config__max_seq_len;
  14. std::int64_t w2v2_encoder_config__feature_dim;
  15. std::int64_t w2v2_encoder_config__use_fbank;
  16. float w2v2_encoder_config__first_pass_dropout_p;
  17. std::int64_t w2v2_encoder_config__layer_norm_features;
  18. // Error: Unsupported type <class 'list'> w2v2_encoder_config__feature_extractor_layer_descs;
  19. std::int64_t w2v2_encoder_config__feature_extractor_bias;
  20. std::int64_t w2v2_encoder_config__feature_extractor_layer_norm_convs;
  21. std::int64_t w2v2_encoder_config__feature_grad_scale;
  22. std::int64_t w2v2_encoder_config__num_fbank_channels;
  23. std::int64_t w2v2_encoder_config__fbank_stride;
  24. std::int64_t w2v2_encoder_config__sample_fbank_every_k;
  25. // Error: Unsupported type <class 'str'> w2v2_encoder_config__pos_encoder_type;
  26. std::int64_t w2v2_encoder_config__pos_encoder_depth;
  27. std::int64_t w2v2_encoder_config__pos_conv_kernel_size;
  28. std::int64_t w2v2_encoder_config__num_pos_conv_groups;
  29. std::int64_t w2v2_encoder_config__use_conformer;
  30. std::int64_t w2v2_encoder_config__num_encoder_layers;
  31. std::int64_t w2v2_encoder_config__num_encoder_attn_heads;
  32. std::int64_t w2v2_encoder_config__ffn_inner_dim;
  33. float w2v2_encoder_config__dropout_p;
  34. float w2v2_encoder_config__attn_dropout_p;
  35. float w2v2_encoder_config__layer_drop_p;
  36. std::int32_t w2v2_encoder_config__norm_order;
  37. std::int64_t w2v2_encoder_config__depthwise_conv_kernel_size;
  38. std::int64_t nllb_config__model_dim;
  39. std::int64_t nllb_config__max_seq_len;
  40. std::int64_t nllb_config__vocabulary_size;
  41. std::int64_t nllb_config__pad_idx;
  42. std::int64_t nllb_config__num_encoder_layers;
  43. std::int64_t nllb_config__num_decoder_layers;
  44. std::int64_t nllb_config__num_encoder_attn_heads;
  45. std::int64_t nllb_config__num_decoder_attn_heads;
  46. std::int64_t nllb_config__ffn_inner_dim;
  47. float nllb_config__dropout_p;
  48. std::int64_t t2u_config__model_dim;
  49. std::int64_t t2u_config__unit_max_seq_len;
  50. std::int64_t t2u_config__unit_vocabulary_size;
  51. std::int64_t t2u_config__unit_pad_idx;
  52. std::int64_t t2u_config__num_encoder_layers;
  53. std::int64_t t2u_config__num_decoder_layers;
  54. std::int64_t t2u_config__num_encoder_attn_heads;
  55. std::int64_t t2u_config__num_decoder_attn_heads;
  56. std::int64_t t2u_config__ffn_inner_dim;
  57. float t2u_config__dropout_p;
  58. std::int64_t use_text_encoder;
  59. std::int64_t use_conformer_adaptor;
  60. std::int64_t num_adaptor_layers;
  61. std::int64_t adaptor_kernel_size;
  62. std::int64_t adaptor_stride;
  63. std::int64_t adaptor_layer_norm;
  64. float adaptor_dropout_p;
  65. std::int64_t model_byte_size;
  66. std::int64_t __end_of_hparams__;
  67. };
  68. void read_unity_hparams(unity_hparams* out, std::ifstream &fin) {
  69. fin.read((char*) &out->model_dim, sizeof(out->model_dim));
  70. fin.read((char*) &out->w2v2_encoder_config__model_dim, sizeof(out->w2v2_encoder_config__model_dim));
  71. fin.read((char*) &out->w2v2_encoder_config__max_seq_len, sizeof(out->w2v2_encoder_config__max_seq_len));
  72. fin.read((char*) &out->w2v2_encoder_config__feature_dim, sizeof(out->w2v2_encoder_config__feature_dim));
  73. fin.read((char*) &out->w2v2_encoder_config__use_fbank, sizeof(out->w2v2_encoder_config__use_fbank));
  74. fin.read((char*) &out->w2v2_encoder_config__first_pass_dropout_p, sizeof(out->w2v2_encoder_config__first_pass_dropout_p));
  75. fin.read((char*) &out->w2v2_encoder_config__layer_norm_features, sizeof(out->w2v2_encoder_config__layer_norm_features));
  76. fin.read((char*) &out->w2v2_encoder_config__feature_extractor_bias, sizeof(out->w2v2_encoder_config__feature_extractor_bias));
  77. fin.read((char*) &out->w2v2_encoder_config__feature_extractor_layer_norm_convs, sizeof(out->w2v2_encoder_config__feature_extractor_layer_norm_convs));
  78. fin.read((char*) &out->w2v2_encoder_config__feature_grad_scale, sizeof(out->w2v2_encoder_config__feature_grad_scale));
  79. fin.read((char*) &out->w2v2_encoder_config__num_fbank_channels, sizeof(out->w2v2_encoder_config__num_fbank_channels));
  80. fin.read((char*) &out->w2v2_encoder_config__fbank_stride, sizeof(out->w2v2_encoder_config__fbank_stride));
  81. fin.read((char*) &out->w2v2_encoder_config__sample_fbank_every_k, sizeof(out->w2v2_encoder_config__sample_fbank_every_k));
  82. fin.read((char*) &out->w2v2_encoder_config__pos_encoder_depth, sizeof(out->w2v2_encoder_config__pos_encoder_depth));
  83. fin.read((char*) &out->w2v2_encoder_config__pos_conv_kernel_size, sizeof(out->w2v2_encoder_config__pos_conv_kernel_size));
  84. fin.read((char*) &out->w2v2_encoder_config__num_pos_conv_groups, sizeof(out->w2v2_encoder_config__num_pos_conv_groups));
  85. fin.read((char*) &out->w2v2_encoder_config__use_conformer, sizeof(out->w2v2_encoder_config__use_conformer));
  86. fin.read((char*) &out->w2v2_encoder_config__num_encoder_layers, sizeof(out->w2v2_encoder_config__num_encoder_layers));
  87. fin.read((char*) &out->w2v2_encoder_config__num_encoder_attn_heads, sizeof(out->w2v2_encoder_config__num_encoder_attn_heads));
  88. fin.read((char*) &out->w2v2_encoder_config__ffn_inner_dim, sizeof(out->w2v2_encoder_config__ffn_inner_dim));
  89. fin.read((char*) &out->w2v2_encoder_config__dropout_p, sizeof(out->w2v2_encoder_config__dropout_p));
  90. fin.read((char*) &out->w2v2_encoder_config__attn_dropout_p, sizeof(out->w2v2_encoder_config__attn_dropout_p));
  91. fin.read((char*) &out->w2v2_encoder_config__layer_drop_p, sizeof(out->w2v2_encoder_config__layer_drop_p));
  92. fin.read((char*) &out->w2v2_encoder_config__norm_order, sizeof(out->w2v2_encoder_config__norm_order));
  93. fin.read((char*) &out->w2v2_encoder_config__depthwise_conv_kernel_size, sizeof(out->w2v2_encoder_config__depthwise_conv_kernel_size));
  94. fin.read((char*) &out->nllb_config__model_dim, sizeof(out->nllb_config__model_dim));
  95. fin.read((char*) &out->nllb_config__max_seq_len, sizeof(out->nllb_config__max_seq_len));
  96. fin.read((char*) &out->nllb_config__vocabulary_size, sizeof(out->nllb_config__vocabulary_size));
  97. fin.read((char*) &out->nllb_config__pad_idx, sizeof(out->nllb_config__pad_idx));
  98. fin.read((char*) &out->nllb_config__num_encoder_layers, sizeof(out->nllb_config__num_encoder_layers));
  99. fin.read((char*) &out->nllb_config__num_decoder_layers, sizeof(out->nllb_config__num_decoder_layers));
  100. fin.read((char*) &out->nllb_config__num_encoder_attn_heads, sizeof(out->nllb_config__num_encoder_attn_heads));
  101. fin.read((char*) &out->nllb_config__num_decoder_attn_heads, sizeof(out->nllb_config__num_decoder_attn_heads));
  102. fin.read((char*) &out->nllb_config__ffn_inner_dim, sizeof(out->nllb_config__ffn_inner_dim));
  103. fin.read((char*) &out->nllb_config__dropout_p, sizeof(out->nllb_config__dropout_p));
  104. fin.read((char*) &out->t2u_config__model_dim, sizeof(out->t2u_config__model_dim));
  105. fin.read((char*) &out->t2u_config__unit_max_seq_len, sizeof(out->t2u_config__unit_max_seq_len));
  106. fin.read((char*) &out->t2u_config__unit_vocabulary_size, sizeof(out->t2u_config__unit_vocabulary_size));
  107. fin.read((char*) &out->t2u_config__unit_pad_idx, sizeof(out->t2u_config__unit_pad_idx));
  108. fin.read((char*) &out->t2u_config__num_encoder_layers, sizeof(out->t2u_config__num_encoder_layers));
  109. fin.read((char*) &out->t2u_config__num_decoder_layers, sizeof(out->t2u_config__num_decoder_layers));
  110. fin.read((char*) &out->t2u_config__num_encoder_attn_heads, sizeof(out->t2u_config__num_encoder_attn_heads));
  111. fin.read((char*) &out->t2u_config__num_decoder_attn_heads, sizeof(out->t2u_config__num_decoder_attn_heads));
  112. fin.read((char*) &out->t2u_config__ffn_inner_dim, sizeof(out->t2u_config__ffn_inner_dim));
  113. fin.read((char*) &out->t2u_config__dropout_p, sizeof(out->t2u_config__dropout_p));
  114. fin.read((char*) &out->use_text_encoder, sizeof(out->use_text_encoder));
  115. fin.read((char*) &out->use_conformer_adaptor, sizeof(out->use_conformer_adaptor));
  116. fin.read((char*) &out->num_adaptor_layers, sizeof(out->num_adaptor_layers));
  117. fin.read((char*) &out->adaptor_kernel_size, sizeof(out->adaptor_kernel_size));
  118. fin.read((char*) &out->adaptor_stride, sizeof(out->adaptor_stride));
  119. fin.read((char*) &out->adaptor_layer_norm, sizeof(out->adaptor_layer_norm));
  120. fin.read((char*) &out->adaptor_dropout_p, sizeof(out->adaptor_dropout_p));
  121. fin.read((char*) &out->model_byte_size, sizeof(out->model_byte_size));
  122. fin.read((char*) &out->__end_of_hparams__, sizeof(out->__end_of_hparams__));
  123. };
  124. // Embedding
  125. std::size_t compute_embed_size(int32_t vocab_size, int32_t dim)
  126. {
  127. return vocab_size * dim * ggml_type_size(GGML_TYPE_F32);
  128. };
  129. // Attention Layer
  130. struct attention_layer {
  131. struct ggml_tensor* layer_norm_w; // model_dim
  132. struct ggml_tensor* layer_norm_b; // model_dim
  133. struct ggml_tensor* q_proj_w; // model_dim x model_dim
  134. struct ggml_tensor* q_proj_b; // model_dim
  135. struct ggml_tensor* k_proj_w; // model_dim x model_dim
  136. struct ggml_tensor* k_proj_b; // model_dim
  137. struct ggml_tensor* v_proj_w; // model_dim x model_dim
  138. struct ggml_tensor* v_proj_b; // model_dim
  139. struct ggml_tensor* output_proj_w; // model_dim x model_dim
  140. struct ggml_tensor* output_proj_b; // model_dim
  141. };
  142. std::size_t compute_attention_layer_size(int32_t dim)
  143. {
  144. return LayerNorm_size(dim)
  145. + 4 * Linear_size(dim, dim); // q, k, v, and out
  146. };
  147. void init_attention_layer(
  148. attention_layer *layer,
  149. fairseq2_model &model_ctx,
  150. const std::string &prefix)
  151. {
  152. auto hparams = (unity_hparams&)model_ctx.hparams;
  153. const auto dim = hparams.nllb_config__model_dim;
  154. auto ctx = model_ctx.ctx;
  155. auto &tensor_map = model_ctx.tensors;
  156. layer->layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  157. tensor_map[prefix + "_layer_norm.weight"] = layer->layer_norm_w;
  158. layer->layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  159. tensor_map[prefix + "_layer_norm.bias"] = layer->layer_norm_b;
  160. layer->q_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);
  161. tensor_map[prefix + ".q_proj.weight"] = layer->q_proj_w;
  162. layer->q_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  163. tensor_map[prefix + ".q_proj.bias"] = layer->q_proj_b;
  164. layer->k_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);
  165. tensor_map[prefix + ".k_proj.weight"] = layer->k_proj_w;
  166. layer->k_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  167. tensor_map[prefix + ".k_proj.bias"] = layer->k_proj_b;
  168. layer->v_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);
  169. tensor_map[prefix + ".v_proj.weight"] = layer->v_proj_w;
  170. layer->v_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  171. tensor_map[prefix + ".v_proj.bias"] = layer->v_proj_b;
  172. layer->output_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);
  173. tensor_map[prefix + ".output_proj.weight"] = layer->output_proj_w;
  174. layer->output_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  175. tensor_map[prefix + ".output_proj.bias"] = layer->output_proj_b;
  176. }
  177. // Attention Head
  178. struct attention_head {
  179. struct attention_layer* self_attn; // model_dim
  180. struct attention_layer* encoder_decoder_attn; // model_dim
  181. struct StandardFeedForwardNetwork* ffn;
  182. };
  183. std::size_t compute_attention_head_size(int32_t dim, int32_t inner_dim)
  184. {
  185. return 2 * compute_attention_layer_size(dim) + StandardFeedForwardNetwork_size(dim, inner_dim);
  186. };
  187. void init_attention_head(
  188. attention_head *head,
  189. fairseq2_model &model_ctx,
  190. const std::string &prefix)
  191. {
  192. auto hparams = (unity_hparams&)model_ctx.hparams;
  193. init_attention_layer(head->self_attn, model_ctx, prefix + ".self_attn");
  194. init_attention_layer(head->encoder_decoder_attn, model_ctx, prefix + ".encoder_decoder_attn");
  195. StandardFeedForwardNetwork_init((StandardFeedForwardNetwork&)(head->ffn), model_ctx, prefix + ".ffn", hparams.nllb_config__model_dim, hparams.nllb_config__ffn_inner_dim);
  196. }
  197. // TODO: attention_head_compute_graph
  198. // Text Decoder
  199. struct text_decoder {
  200. struct ggml_tensor* frontend_embed_w; // vocab_size x model_dim
  201. std::vector<attention_head*> multi_head;
  202. struct ggml_tensor* layer_norm_w;
  203. struct ggml_tensor* layer_norm_b;
  204. };
  205. std::size_t compute_context_size(void* raw_hparams)
  206. {
  207. auto hparams = (unity_hparams&)raw_hparams;
  208. const auto vocab_size = hparams.nllb_config__vocabulary_size;
  209. const auto dim = hparams.nllb_config__model_dim;
  210. const auto inner_dim = hparams.nllb_config__ffn_inner_dim;
  211. const auto n_layers = hparams.nllb_config__num_decoder_layers;
  212. const auto overhead = (6 + 12 * n_layers) * 512; // TODO Find out what this is.
  213. return compute_embed_size(vocab_size, dim)
  214. + n_layers * compute_attention_head_size(dim, inner_dim)
  215. + LayerNorm_size(dim)
  216. + overhead;
  217. };
  218. class unity_model_loader: public model_loader {
  219. public:
  220. void load_hparams(fairseq2_model& model, std::ifstream &fin);
  221. std::size_t compute_context_size(void* raw_hparams);
  222. void tensors_alloc(fairseq2_model &model);
  223. };