fairseq2.cpp 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349
  1. #include <math.h>
  2. #include "kaldi-native-fbank/csrc/feature-fbank.h"
  3. #include "kaldi-native-fbank/csrc/feature-window.h"
  4. #include "ggml.h"
  5. #include "fairseq2.h"
  6. #include <unordered_map>
  7. #include <algorithm>
  8. #include <iostream>
  9. #include <fnmatch.h>
  10. /// allocate the fairseq2 model and hyperparameters
  11. extern "C" fairseq2_model* fairseq2_model_alloc() {
  12. // pre-allocate some memory to write hyperparameters and tensors pointers
  13. auto* model = new fairseq2_model;
  14. model->tensors_ctx = nullptr;
  15. return model;
  16. }
  17. void fairseq2_kv_cache_alloc(const fairseq2_model& model, std::size_t beam_size, std::size_t max_seq_len) {
  18. // Note: we only allocate the cache for the decoder attention.
  19. // For encoder attention since we compute it all at once,
  20. // the allocation is delayed to the first forward pass, to not over allocate.
  21. auto layer_glob_c = "*decoder.*attn.k_proj.weight";
  22. for (auto named_tensor : model.tensors) {
  23. const std::string& name = named_tensor.first;
  24. if (::fnmatch(layer_glob_c, name.c_str(), 0) == FNM_NOMATCH)
  25. continue;
  26. ggml_tensor* k_proj = named_tensor.second;
  27. int model_dim = k_proj->ne[0];
  28. // remove the ".k_proj.weight" suffix
  29. model.kv_cache[name.substr(0, name.size() - 14)] = KeyValueTensor {
  30. ggml_new_tensor_3d(model.ctx, k_proj->type, model_dim, max_seq_len, beam_size),
  31. ggml_new_tensor_3d(model.ctx, k_proj->type, model_dim, max_seq_len, beam_size),
  32. 0,
  33. };
  34. }
  35. }
  36. bool has_kv_cache(const fairseq2_model& model) {
  37. return model.kv_cache.size() > 0;
  38. }
  39. // copy k and v to kv cache
  40. // kv.full_k[step_nr] = k;
  41. // kv.full_v[step_nr] = v;
  42. void append_to_prev_kv(const fairseq2_model& model, const std::string& prefix, ggml_tensor** k, ggml_tensor** v) {
  43. KeyValueTensor& kv = model.kv_cache[prefix];
  44. int step_nr = kv.step_nr;
  45. ggml_tensor* full_k = kv.full_k;
  46. ggml_tensor* full_v = kv.full_v;
  47. ggml_tensor* updated_k = ggml_set_2d_inplace(model.ctx, full_k, *k, full_k->nb[2], full_k->nb[1] * step_nr);
  48. ggml_tensor* updated_v = ggml_set_2d_inplace(model.ctx, full_v, *v, full_v->nb[2], full_v->nb[1] * step_nr);
  49. *k = ggml_slice(model.ctx, updated_k, 1, 0, step_nr + 1);
  50. *v = ggml_slice(model.ctx, updated_v, 1, 0, step_nr + 1);
  51. kv.step_nr = step_nr + 1;
  52. }
  53. inline double model_layer_config_d(const fairseq2_model& model, std::string name) {
  54. const std::int64_t* data = &model.layer_config.at(name);
  55. double val = *(const double*)data;
  56. return val;
  57. }
  58. extern "C" double fairseq2_model_layer_config_double(const fairseq2_model& model, const char* name) {
  59. return model_layer_config_d(model, std::string(name));
  60. }
  61. extern "C" std::int64_t fairseq2_model_layer_config_int(const fairseq2_model& model, const char* name) {
  62. return model.layer_config.at(std::string(name));
  63. }
  64. extern "C" void fairseq2_model_free(fairseq2_model* model) {
  65. if (model->tensors_ctx) ggml_free(model->tensors_ctx);
  66. delete model;
  67. }
  68. extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
  69. model->ctx = ctx;
  70. }
  71. extern "C" std::string* std_string_alloc(char* c_str) {
  72. return new std::string(c_str);
  73. }
  74. extern "C" void std_string_free(std::string* str) {
  75. delete str;
  76. }
  77. bool has_layer(fairseq2_model& model, const std::string& name) {
  78. return model.tensors.find(name) != model.tensors.end();
  79. }
  80. extern "C" ggml_tensor* Linear_forward(
  81. fairseq2_model& model,
  82. const std::string &prefix,
  83. ggml_tensor* input // (d_in)
  84. ) {
  85. // Note: for now we assumed un-batched input
  86. ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
  87. GGML_ASSERT(weight != nullptr);
  88. ggml_tensor* out = ggml_mul_mat(model.ctx, weight, input); // (d_out)
  89. ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
  90. if (bias == nullptr) return out;
  91. return ggml_add_inplace(model.ctx, out, bias);
  92. }
  93. extern "C" ggml_tensor* LayerNorm_forward(
  94. fairseq2_model& model,
  95. const std::string &prefix,
  96. ggml_tensor* input
  97. ) {
  98. ggml_tensor* weight = model.tensors[prefix + ".weight"];
  99. GGML_ASSERT(weight != nullptr);
  100. ggml_tensor* bias = model.tensors[prefix + ".bias"];
  101. GGML_ASSERT(bias != nullptr);
  102. auto ctx = model.ctx;
  103. double eps = model_layer_config_d(model, prefix + ".eps");
  104. input = ggml_norm(ctx, input, /*eps*/eps);
  105. return ggml_add_inplace(
  106. ctx,
  107. ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),
  108. ggml_repeat(ctx, bias, input)
  109. );
  110. }
  111. extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
  112. fairseq2_model& model,
  113. const std::string& prefix,
  114. ggml_tensor* seqs
  115. ) {
  116. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  117. // inner_activation = ReLu // TODO: allow other activation
  118. seqs = ggml_relu_inplace(model.ctx, seqs);
  119. if (has_layer(model, prefix + ".inner_layer_norm")) {
  120. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  121. }
  122. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  123. return seqs;
  124. }
  125. extern "C" ggml_tensor* SiluFeedForwardNetwork_forward(
  126. fairseq2_model& model,
  127. const std::string& prefix,
  128. ggml_tensor* seqs
  129. ) {
  130. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  131. seqs = ggml_silu(model.ctx, seqs);
  132. if (has_layer(model, prefix + ".inner_layer_norm")) {
  133. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  134. }
  135. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  136. return seqs;
  137. }
  138. ggml_tensor* ggml_flatten_1d(ggml_context* ctx, ggml_tensor* x, int dim) {
  139. int n_dims = x->n_dims;
  140. GGML_ASSERT(dim >= 0);
  141. GGML_ASSERT(dim < n_dims);
  142. GGML_ASSERT(ggml_is_contiguous(x));
  143. // Nothing to do
  144. if (dim == n_dims - 1) return x;
  145. if (n_dims == 2) {
  146. return ggml_reshape_1d(ctx, x, x->ne[0] * x->ne[1]);
  147. } else if (n_dims == 3) {
  148. if (dim == 0) {
  149. return ggml_reshape_2d(ctx, x, x->ne[0] * x->ne[1], x->ne[2]);
  150. } else { // dim == 1
  151. return ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2]);
  152. }
  153. } else { // n_dims == 4
  154. if (dim == 0) {
  155. return ggml_reshape_3d(ctx, x, x->ne[0] * x->ne[1], x->ne[2], x->ne[3]);
  156. } else if (dim == 1) {
  157. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1] * x->ne[2], x->ne[3]);
  158. } else { // dim == 2
  159. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2] * x->ne[3]);
  160. }
  161. }
  162. }
  163. ggml_tensor* ggml_unflatten_1d(ggml_context* ctx, ggml_tensor* x, int dim, int num_el) {
  164. int n_dims = x->n_dims;
  165. GGML_ASSERT(dim >= 0);
  166. GGML_ASSERT(dim < n_dims);
  167. GGML_ASSERT(n_dims < 4);
  168. GGML_ASSERT(x->ne[dim] % num_el == 0);
  169. GGML_ASSERT(x->nb[dim + 1] == x->nb[dim] * x->ne[dim]); // `x` isn't contiguous along `dim`
  170. if (n_dims == 1) {
  171. return ggml_view_2d(ctx, x, num_el, x->ne[0] / num_el, x->nb[0] * num_el, 0);
  172. } else if (n_dims == 2) {
  173. if (dim == 0) {
  174. return ggml_view_3d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->nb[0] * num_el, x->nb[1], 0);
  175. } else { // dim == 1
  176. return ggml_view_3d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->nb[1], num_el * x->nb[1], 0);
  177. }
  178. } else { // (n_dims == 3)
  179. if (dim == 0) {
  180. return ggml_view_4d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->ne[2], x->nb[0] * num_el, x->nb[1], x->nb[2], 0);
  181. } else if (dim == 1) {
  182. return ggml_view_4d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->ne[2], x->nb[1], num_el * x->nb[1], x->nb[2], 0);
  183. } else { // dim == 2
  184. return ggml_view_4d(ctx, x, x->ne[0], x->ne[1], num_el, x->ne[2] / num_el, x->nb[1], x->nb[2], num_el * x->nb[2], 0);
  185. }
  186. }
  187. }
  188. ggml_tensor* _reshape_num_head(ggml_context* ctx, ggml_tensor* x, int head_dim) {
  189. // (B, S, dim) -> (B, S, H, H_dim)
  190. x = ggml_unflatten_1d(ctx, x, 0, head_dim);
  191. x = ggml_permute(ctx, x, 0, 2, 1, 3); // (B, H, S, H_dim)
  192. x = ggml_cont(ctx, x);
  193. x = ggml_flatten_1d(ctx, x, 2); // (B * H, S, H_dim)
  194. return x;
  195. }
  196. /// (B, Sk, dim) -> // (B?, H, H_dim, Sk)
  197. ggml_tensor* _reshape_num_head_values(ggml_context* ctx, ggml_tensor* v, int head_dim ) {
  198. // (B, Sk, dim) -> (B, Sk, H, H_dim)
  199. v = ggml_unflatten_1d(ctx, v, 0, head_dim);
  200. v = ggml_permute(ctx, v, 1, 2, 0, 3); // (B?, H, H_dim, Sk)
  201. v = ggml_cont(ctx, v);
  202. v = ggml_flatten_1d(ctx, v, 2); // (B * H, S, H_dim)
  203. return v;
  204. }
  205. // flash_attn doesn't work for cross attention because it assumes Q <= K
  206. // and it seems to yield slightly different scores than expected, and thus a different beam search
  207. # define UNITY_FLASH_ATTN 0
  208. extern "C" ggml_tensor* MultiheadAttention_forward(
  209. fairseq2_model& model,
  210. const std::string &prefix,
  211. ggml_tensor* queries, // (slen, d_in)
  212. ggml_tensor* keys, // (klen, d_in)
  213. ggml_tensor* values, // (klen, d_out)
  214. ggml_tensor* attn_mask // (klen, slen)
  215. ) {
  216. int model_dim = queries->ne[0];
  217. int num_heads = model.layer_config.at(prefix + ".num_heads");
  218. int head_dim = model_dim / num_heads;
  219. GGML_ASSERT(model_dim % num_heads == 0);
  220. ggml_context* ctx = model.ctx;
  221. ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries); // (B, S, H * H_dim)
  222. ggml_set_name(q, "q");
  223. q = _reshape_num_head(ctx, q, head_dim); // (B * H, S, H_dim)
  224. ggml_tensor *k, *v;
  225. if (!has_kv_cache(model)) {
  226. k = Linear_forward(model, prefix + ".k_proj", keys);
  227. ggml_set_name(k, "k");
  228. v = Linear_forward(model, prefix + ".v_proj", values);
  229. ggml_set_name(v, "v");
  230. } else {
  231. bool encoder_decoder_attn = keys == values && keys != queries;
  232. if (encoder_decoder_attn) {
  233. // The K and V tensors of an encoder-decoder attention (i.e. the
  234. // projected encoder outputs) remain static during evaluation.
  235. KeyValueTensor& kv_cache = model.kv_cache[prefix];
  236. if (kv_cache.step_nr == 0) {
  237. k = Linear_forward(model, prefix + ".k_proj", keys);
  238. ggml_set_name(k, "k");
  239. v = Linear_forward(model, prefix + ".v_proj", values);
  240. ggml_set_name(v, "v");
  241. model.kv_cache[prefix] = KeyValueTensor{k, v, 1};
  242. } else {
  243. k = kv_cache.full_k;
  244. v = kv_cache.full_v;
  245. }
  246. } else {
  247. // (1, K) -> (N, 1, K_proj)
  248. k = Linear_forward(model, prefix + ".k_proj", keys);
  249. // (1, V) -> (N, 1, V_proj)
  250. v = Linear_forward(model, prefix + ".v_proj", values);
  251. append_to_prev_kv(model, prefix, &k, &v);
  252. }
  253. }
  254. k = _reshape_num_head(ctx, k, head_dim); // (B * H, Sk, H_dim)
  255. v = _reshape_num_head_values(ctx, v, head_dim); // (B * H, H_dim, Sk)
  256. v = ggml_cont(ctx, v);
  257. #if UNITY_FLASH_ATTN
  258. // For flash_attn, we assume either no masks, or triangular masks.
  259. ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/attn_mask != nullptr); // (B * H, S, H_dim)
  260. ggml_set_name(attn, "attn");
  261. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  262. attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (B, S, H, H_dim)
  263. #else
  264. // (B * H, Sk, H_dim) x (B * H, S, H_dim) -> (B * H, S, Sk)
  265. ggml_tensor* qk = ggml_mul_mat(ctx, k, q);
  266. ggml_set_name(qk, "qk");
  267. ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);
  268. ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
  269. qk = ggml_scale(ctx, qk, qk_scale);
  270. ggml_set_name(qk, "qk_scaled");
  271. // TODO: Should we replace this by ggml_diag_mask_inf ?
  272. if (attn_mask) qk = ggml_add(ctx, qk, attn_mask);
  273. // TODO: upgrade qk to float32 if needed
  274. ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (B * H, S, Sk)
  275. ggml_set_name(attn_weights, "attn_weights");
  276. // (B * H, S, Sk) x (B * H, H_dim, Sk) -> (B * H, H_dim, S)
  277. ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);
  278. ggml_set_name(attn, "attn");
  279. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  280. attn = ggml_permute(ctx, attn, 2, 0, 1, 3); // (B, S, H, H_dim)
  281. #endif // UNITY_FLASH_ATTN
  282. attn = ggml_cont(ctx, attn);
  283. attn = ggml_flatten_1d(ctx, attn, 0); // (B, S, H * H_dim)
  284. // out -> (B, S, d_out)
  285. ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
  286. ggml_set_name(out, "out");
  287. return out;
  288. }
  289. extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
  290. fairseq2_model& model,
  291. const std::string& prefix,
  292. ggml_tensor* seqs,
  293. ggml_tensor* padding_mask
  294. ) {
  295. ggml_context* ctx = model.ctx;
  296. auto norm_order = model.layer_config.at(prefix + ".norm_order");
  297. // _forward_self_attn(seqs, padding_mask)
  298. auto residual = seqs;
  299. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  300. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  301. // TODO: add padding_mask to MultiheadAttention_forward
  302. GGML_ASSERT(padding_mask == nullptr);
  303. seqs = MultiheadAttention_forward(
  304. model,
  305. prefix + ".self_attn",
  306. seqs,
  307. seqs,
  308. seqs,
  309. /*attn_mask=*/nullptr
  310. );
  311. if (has_layer(model, prefix + ".self_attn_norm"))
  312. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  313. seqs = ggml_add(ctx, seqs, residual);
  314. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  315. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  316. // _forward_ffn(seqs)
  317. residual = seqs;
  318. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  319. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  320. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  321. // TODO: if self.residual_scale is not None:
  322. // residual = self.residual_scale * residual
  323. seqs = ggml_add(ctx, seqs, residual);
  324. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  325. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  326. return seqs;
  327. }
  328. extern "C" ggml_tensor* WaveformToFbank_forward(
  329. fairseq2_model& model,
  330. const std::string &prefix,
  331. ggml_tensor* waveform
  332. ) {
  333. // Hardcoding: num_bins 80, sample rate 16k, always standardize
  334. ggml_context* ctx = model.ctx;
  335. knf::MelBanksOptions mel_opts{};
  336. mel_opts.num_bins = 80;
  337. knf::FrameExtractionOptions frame_opts{};
  338. frame_opts.samp_freq = 16000;
  339. knf::FbankOptions opts{};
  340. opts.frame_opts = frame_opts;
  341. opts.mel_opts = mel_opts;
  342. std::vector<float_t> signal_frame{};
  343. std::int32_t num_frames = knf::NumFrames(/*num_samples=*/waveform->ne[0], frame_opts);
  344. struct ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 80, num_frames);
  345. knf::FbankComputer native_(opts);
  346. knf::FeatureWindowFunction window_fn_(native_.GetFrameOptions());
  347. for (std::int32_t frame_nr = 0; frame_nr < num_frames; ++frame_nr) {
  348. signal_frame.resize(0);
  349. // Extract the frame from the waveform tensor.
  350. knf::ExtractWindow(
  351. /*sample_offset=*/0,
  352. (float *)(waveform->data),
  353. waveform->ne[0],
  354. frame_nr,
  355. frame_opts,
  356. window_fn_,
  357. &signal_frame);
  358. native_.Compute(
  359. /*signal_raw_log_energy=*/0, /*vtln_warp=*/1.0, &signal_frame, ((float *)(output->data) + frame_nr * 80));
  360. }
  361. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  362. output = ggml_norm(ctx, output, 1e-5);
  363. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  364. if (output->ne[1] % 2 == 1) {
  365. struct ggml_tensor * remove_last = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, output->ne[1]-1);
  366. for (int i = 0; i < output->ne[1]-1; ++i) {
  367. ((int32_t *) remove_last->data)[i] = i;
  368. }
  369. output = ggml_get_rows(ctx, output, remove_last);
  370. }
  371. output = ggml_reshape_2d(ctx, output, output->ne[0] * 2, output->ne[1] / 2);
  372. return output;
  373. }
  374. // TODO: Check if it's possible to merge with standard MHA
  375. extern "C" ggml_tensor* RelativePositionMHA_forward(
  376. fairseq2_model& model,
  377. const std::string& prefix,
  378. ggml_tensor* seqs
  379. ) {
  380. ggml_context* ctx = model.ctx;
  381. ggml_tensor* residual = seqs;
  382. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  383. // self_attn: qkv
  384. struct ggml_tensor * Qcur = Linear_forward(model, prefix + ".q_proj", seqs);
  385. struct ggml_tensor * Kcur = Linear_forward(model, prefix + ".k_proj", seqs);
  386. struct ggml_tensor * Vcur = Linear_forward(model, prefix + ".v_proj", seqs);
  387. // self_attn: rel_pos SDPA
  388. int32_t S = seqs->ne[1];
  389. int32_t H = 16; // TODO: Make this configurable
  390. int32_t n_ctx = 4096;
  391. int32_t K_h = seqs->ne[0] / H;
  392. int32_t start_index = n_ctx - S;
  393. int32_t end_index = n_ctx + S - 1;
  394. int num_indices = end_index - start_index;
  395. struct ggml_tensor *rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, num_indices);
  396. rows->data = malloc(ggml_nbytes(rows));
  397. for (int i = 0; i < num_indices; i++) {
  398. ((int32_t *)rows->data)[i] = start_index + i;
  399. }
  400. // self_attn: load pos_enc weights & compute_r
  401. // In fairseq2 pos_enc weights are calculated on the fly, since some more custom operators might be needed to enable this,
  402. // we store the results (fixed) in checkpoint as model.audio_enc_pos_enc_w and load directly.
  403. struct ggml_tensor * r = ggml_get_rows(ctx, model.tensors["speech_encoder.pos_enc"], rows);
  404. r = ggml_mul_mat(ctx, model.tensors[prefix + ".sdpa.r_proj.weight"], r);
  405. r = ggml_dup(ctx, ggml_permute(ctx,
  406. ggml_cpy(ctx,
  407. r,
  408. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S*2-1)),
  409. 0, 2, 1, 3));
  410. struct ggml_tensor * u_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.u_bias"], K_h, 1, H);
  411. struct ggml_tensor * v_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.v_bias"], K_h, 1, H);
  412. // self_attn: Permute QKV
  413. struct ggml_tensor * Q =
  414. ggml_dup(ctx, ggml_permute(ctx,
  415. ggml_cpy(ctx,
  416. Qcur,
  417. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  418. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  419. struct ggml_tensor * K =
  420. ggml_dup(ctx, ggml_permute(ctx,
  421. ggml_cpy(ctx,
  422. Kcur,
  423. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  424. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  425. struct ggml_tensor * V =
  426. ggml_dup(ctx, ggml_permute(ctx,
  427. ggml_cpy(ctx,
  428. Vcur,
  429. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  430. 1, 2, 0, 3)); // (H * K_h, S) -> (K_h, H, S) -> (H, S, K_h)
  431. struct ggml_tensor * q_with_u_bias = ggml_add(ctx, Q, u_bias); // (K_h, S, H)
  432. struct ggml_tensor * q_with_v_bias = ggml_add(ctx, Q, v_bias); // (K_h, S, H)
  433. struct ggml_tensor * ac = ggml_mul_mat(ctx, K, q_with_u_bias);
  434. struct ggml_tensor * bd = ggml_mul_mat(ctx, r, q_with_v_bias);
  435. // self_attn: shift_bd. Logic follows https://github.com/facebookresearch/fairseq2/blob/main/src/fairseq2/nn/transformer/relative_attention.py#L161
  436. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // H, S, 2S-1
  437. struct ggml_tensor * pad = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, H, S, 1);
  438. pad->data = malloc(ggml_nbytes(pad));
  439. pad = ggml_set_f32(pad, 0.0);
  440. bd = ggml_concat(ctx, pad, bd); // bd[i][j][0] == 0, (H, S, 2S)
  441. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // (2S, S, H)
  442. bd = ggml_dup(ctx, ggml_reshape_3d(ctx, bd, S, 2*S, H)); // (S, 2S, H)
  443. bd = ggml_remove_head_row(ctx, bd); // A custom operator introduced to reduce 1st row (in the 2nd dim)
  444. bd = ggml_reshape_3d(ctx, bd, 2*S-1, S, H);
  445. bd = ggml_get_first_cols_by_rows(ctx, bd); // A custom operator introduced to get first #rows cols.
  446. // self_attn: compute attn / weights
  447. struct ggml_tensor * attn_weights = ggml_add(ctx, ac, bd);
  448. struct ggml_tensor * attn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  449. attn_scale->data = malloc(ggml_nbytes(attn_scale));
  450. ggml_set_f32(attn_scale, 1.0 / pow(K_h, 0.5));
  451. attn_weights = ggml_mul(ctx, ggml_repeat(ctx, attn_scale, attn_weights), attn_weights);
  452. attn_weights = ggml_soft_max(ctx, attn_weights);
  453. struct ggml_tensor * attn = ggml_mul_mat(ctx, V, attn_weights); // K_h, S, H
  454. attn = ggml_dup(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3));
  455. struct ggml_tensor * attn_2d = ggml_reshape_2d(ctx, attn, K_h * H, S);
  456. struct ggml_tensor * attn_out = ggml_mul_mat(ctx, model.tensors[prefix + ".output_proj.weight"], attn_2d);
  457. attn_out = ggml_add(ctx,
  458. ggml_repeat(ctx,
  459. model.tensors[prefix + ".output_proj.bias"],
  460. attn_out),
  461. attn_out);
  462. attn_out = ggml_add(ctx, residual, attn_out);
  463. return attn_out;
  464. }
  465. extern "C" ggml_tensor* ConvModule_forward(
  466. fairseq2_model& model,
  467. const std::string& prefix,
  468. ggml_tensor* seqs
  469. ) {
  470. ggml_context* ctx = model.ctx;
  471. ggml_tensor* residual = seqs;
  472. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  473. // conv: Use matmul for pointwise conv 1 - kernel_size=1, no padding case
  474. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv1.weight"], seqs);
  475. // conv: GLU
  476. seqs = ggml_glu(ctx, seqs);
  477. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  478. // S x C -> (S+K-1) x C -> K x S x C -> S x C
  479. seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".depthwise_conv.weight"], seqs, 1, 15, 1);
  480. // conv: Custom implementation of batch norm
  481. seqs = ggml_batch_norm(ctx, seqs, model.tensors[prefix + ".batch_norm.weight"], model.tensors[prefix + ".batch_norm.bias"], model.tensors[prefix + ".batch_norm.running_mean"], model.tensors[prefix + ".batch_norm.running_var"], 1e-5);
  482. // conv: SiLU actvation
  483. seqs = ggml_silu(ctx, seqs);
  484. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  485. // conv: Use matmul for pointwise conv 2 - kernel_size=1, no padding case
  486. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv2.weight"], seqs);
  487. // conv: + residual
  488. seqs = ggml_add(ctx, seqs, residual);
  489. return seqs;
  490. }
  491. extern "C" ggml_tensor* StandardConformerEncoderLayer_forward(
  492. fairseq2_model& model,
  493. const std::string& prefix,
  494. ggml_tensor* seqs,
  495. ggml_tensor* padding_mask
  496. ) {
  497. ggml_context* ctx = model.ctx;
  498. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  499. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  500. ggml_set_f32(ffn_scale, 0.5f);
  501. struct ggml_tensor * residual = seqs;
  502. seqs = LayerNorm_forward(model, prefix + ".ffn1_layer_norm", seqs);
  503. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn1", seqs);
  504. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  505. seqs = ggml_add(ctx, seqs, residual);
  506. seqs = RelativePositionMHA_forward(model, prefix + ".self_attn", seqs);
  507. seqs = ConvModule_forward(model, prefix + ".conv", seqs);
  508. residual = seqs;
  509. seqs = LayerNorm_forward(model, prefix + ".ffn2_layer_norm", seqs);
  510. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn2", seqs);
  511. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  512. seqs = ggml_add(ctx, seqs, residual);
  513. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  514. return seqs;
  515. }
  516. extern "C" ggml_tensor* StandardConformerEncoder_forward(
  517. fairseq2_model& model,
  518. const std::string& prefix,
  519. ggml_tensor* seqs,
  520. ggml_tensor* padding_mask
  521. ) { // TODO: Implement this!
  522. ggml_context* ctx = model.ctx;
  523. seqs = WaveformToFbank_forward(model, prefix, seqs);
  524. seqs = LayerNorm_forward(model, prefix + "_frontend.post_extract_layer_norm", seqs);
  525. seqs = Linear_forward(model, prefix + "_frontend.model_dim_proj", seqs);
  526. int layer_idx = 0;
  527. std::string layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  528. while (has_layer(model, layer_name)) {
  529. seqs = StandardConformerEncoderLayer_forward(
  530. model, layer_name, seqs, padding_mask
  531. );
  532. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  533. layer_idx += 1;
  534. layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  535. }
  536. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  537. ggml_tensor* residual = seqs;
  538. seqs = Linear_forward(model, prefix + ".proj1", seqs);
  539. seqs = ggml_relu_inplace(ctx, seqs);
  540. seqs = Linear_forward(model, prefix + ".proj2", seqs);
  541. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  542. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  543. ggml_set_f32(ffn_scale, 0.5f);
  544. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  545. seqs = ggml_add(ctx, seqs, residual);
  546. layer_idx = 0;
  547. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  548. while (has_layer(model, layer_name)) {
  549. seqs = StandardConformerEncoderAdaptorLayer_forward(
  550. model, layer_name, seqs, padding_mask
  551. );
  552. ggml_set_name(seqs, ("x_ada_" + std::to_string(layer_idx)).c_str());
  553. layer_idx += 1;
  554. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  555. }
  556. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  557. return seqs;
  558. }
  559. extern "C" ggml_tensor* StandardConformerEncoderAdaptorLayer_forward(
  560. fairseq2_model& model,
  561. const std::string& prefix,
  562. ggml_tensor* seqs,
  563. ggml_tensor* padding_mask
  564. ) {
  565. ggml_context* ctx = model.ctx;
  566. struct ggml_tensor * residual = seqs;
  567. residual = LayerNorm_forward(model, prefix + ".residual_layer_norm", residual);
  568. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  569. residual = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".residual_conv.weight"], residual, 8, 4, 1);
  570. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  571. residual = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".residual_conv.bias"], residual), residual);
  572. residual = ggml_glu(ctx, residual);
  573. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  574. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  575. seqs = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".self_attn_conv.weight"], seqs, 8, 4, 1);
  576. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  577. seqs = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".self_attn_conv.bias"], seqs), seqs);
  578. seqs = ggml_glu(ctx, seqs);
  579. seqs = MultiheadAttention_forward(
  580. model,
  581. prefix + ".self_attn",
  582. seqs,
  583. seqs,
  584. seqs,
  585. /*attention masks=*/nullptr
  586. );
  587. seqs = ggml_add(ctx, seqs, residual);
  588. residual = seqs;
  589. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  590. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  591. seqs = ggml_add(ctx, seqs, residual);
  592. return seqs;
  593. }
  594. /// ggml_slice(X, -1, start, end) is equivalent to X[start:end]
  595. /// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]
  596. struct ggml_tensor * ggml_slice(
  597. struct ggml_context * ctx,
  598. struct ggml_tensor * a,
  599. int axis,
  600. int64_t start,
  601. int64_t end
  602. ) {
  603. int64_t ne[4];
  604. std::copy(a->ne, a->ne + 4, ne);
  605. if (axis < 0) axis = a->n_dims + axis;
  606. if (start < 0) start = ne[axis] + start;
  607. if (end < 0) end = ne[axis] + end;
  608. GGML_ASSERT(0 <= start);
  609. GGML_ASSERT(start <= end);
  610. GGML_ASSERT(end <= ne[axis]);
  611. ne[axis] = end - start;
  612. size_t offset = a->nb[axis] * start;
  613. size_t* nb = a->nb;
  614. ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
  615. result->n_dims = a->n_dims;
  616. return result;
  617. }
  618. extern "C" ggml_tensor* PositionalEmbedding_forward(
  619. fairseq2_model& model,
  620. const std::string& prefix,
  621. ggml_tensor* embeds
  622. ) {
  623. // This only work with the simple pos encoders
  624. int seq_len = embeds->ne[1];
  625. ggml_tensor* full_pos_embeds = model.tensors[prefix];
  626. ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, 0, seq_len);
  627. return ggml_add(model.ctx, embeds, pos_embeds);
  628. }
  629. extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
  630. fairseq2_model& model,
  631. const std::string& prefix,
  632. ggml_tensor* seqs
  633. // TODO: state_bag
  634. ) {
  635. GGML_ASSERT(seqs->n_dims < GGML_MAX_DIMS);
  636. ggml_context* ctx = model.ctx;
  637. ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
  638. GGML_ASSERT(embed_weights != nullptr);
  639. ggml_tensor* embeds;
  640. if (seqs->n_dims == 1) {
  641. embeds = ggml_get_rows(ctx, embed_weights, seqs);
  642. } else {
  643. // ggml_get_rows isn't very flexible, we have to handle the reshape ourselves.
  644. ggml_tensor* flat_seqs = seqs;
  645. if (!ggml_is_contiguous(seqs)) {
  646. flat_seqs->type = GGML_TYPE_F32;
  647. flat_seqs = ggml_cont(ctx, flat_seqs);
  648. }
  649. flat_seqs = ggml_reshape_1d(ctx, flat_seqs, ggml_nelements(seqs));
  650. flat_seqs->type = GGML_TYPE_I32;
  651. embeds = ggml_get_rows(ctx, embed_weights, flat_seqs);
  652. embeds = ggml_reshape_4d(ctx, embeds, embed_weights->ne[0], seqs->ne[0], seqs->ne[1], seqs->ne[2]);
  653. embeds->n_dims = seqs->n_dims + 1;
  654. }
  655. // padding mask ?
  656. // padding_mask = to_padding_mask(embeds, seq_lens)
  657. if (has_layer(model, prefix + ".pos_encoder")) {
  658. embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);
  659. }
  660. if (has_layer(model, prefix + ".layer_norm")) {
  661. embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
  662. }
  663. return embeds;
  664. }
  665. extern "C" ggml_tensor* StandardTransformerEncoder_forward(
  666. fairseq2_model& model,
  667. const std::string& prefix,
  668. ggml_tensor* seqs,
  669. ggml_tensor* padding_mask
  670. ) {
  671. int layer_idx = 0;
  672. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  673. while (has_layer(model, layer_name)) {
  674. seqs = StandardTransformerEncoderLayer_forward(
  675. model, layer_name, seqs, padding_mask
  676. );
  677. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  678. layer_idx += 1;
  679. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  680. }
  681. if (has_layer(model, prefix + ".layer_norm"))
  682. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  683. return seqs;
  684. }
  685. extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
  686. fairseq2_model& model,
  687. const std::string& prefix,
  688. ggml_tensor* seqs,
  689. ggml_tensor* self_attn_mask,
  690. ggml_tensor* encoder_output,
  691. ggml_tensor* encoder_padding_mask
  692. ) {
  693. ggml_context* ctx = model.ctx;
  694. auto norm_order = model.layer_config.at(prefix + ".norm_order");
  695. // _forward_self_attn(seqs, padding_mask)
  696. auto residual = seqs;
  697. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  698. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  699. seqs = MultiheadAttention_forward(
  700. model,
  701. prefix + ".self_attn",
  702. seqs,
  703. seqs,
  704. seqs,
  705. /*attn_mask=*/self_attn_mask
  706. );
  707. if (has_layer(model, prefix + ".self_attn_norm"))
  708. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  709. seqs = ggml_add(ctx, seqs, residual);
  710. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  711. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  712. // _forward_encoder_decoder_attn
  713. if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
  714. // `encoder_output` must be `None` for decoder-only attention.
  715. GGML_ASSERT(encoder_output == nullptr);
  716. return seqs;
  717. }
  718. // `encoder_output` must not be `None` for encoder-decoder attention.
  719. GGML_ASSERT(encoder_output != nullptr);
  720. residual = seqs;
  721. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  722. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  723. seqs = MultiheadAttention_forward(
  724. model,
  725. prefix + ".encoder_decoder_attn",
  726. seqs,
  727. encoder_output,
  728. encoder_output,
  729. /*attention masks=*/encoder_padding_mask
  730. );
  731. seqs = ggml_add(ctx, seqs, residual);
  732. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  733. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  734. // _forward_ffn(seqs)
  735. residual = seqs;
  736. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  737. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  738. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  739. // TODO:
  740. // if self.residual_scale is not None:
  741. // residual = self.residual_scale * residual
  742. seqs = ggml_add(ctx, seqs, residual);
  743. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  744. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  745. return seqs;
  746. }
  747. extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
  748. auto seq_len = seqs->ne[1];
  749. // TODO: allow other ggml_type
  750. ggml_tensor* mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
  751. return ggml_diag_mask_inf(ctx, mask, 0);
  752. }
  753. extern "C" ggml_tensor* StandardTransformerDecoder_forward(
  754. fairseq2_model& model,
  755. const std::string& prefix,
  756. ggml_tensor* seqs,
  757. ggml_tensor* padding_mask,
  758. ggml_tensor* encoder_output,
  759. ggml_tensor* encoder_padding_mask
  760. ) {
  761. int layer_idx = 0;
  762. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  763. ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
  764. while (has_layer(model, layer_name)) {
  765. seqs = StandardTransformerDecoderLayer_forward(
  766. model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
  767. );
  768. ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
  769. layer_idx += 1;
  770. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  771. }
  772. if (has_layer(model, prefix + ".layer_norm"))
  773. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  774. return seqs;
  775. }
  776. int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
  777. auto opts = job.opts;
  778. int max_seq_len = -1;
  779. if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
  780. max_seq_len = opts.hard_max_seq_len;
  781. } else {
  782. max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len) + opts.soft_max_seq_len_b);
  783. }
  784. if (opts.min_seq_len > max_seq_len) {
  785. printf(
  786. "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
  787. opts.min_seq_len,
  788. max_seq_len
  789. );
  790. GGML_ASSERT(opts.min_seq_len <= max_seq_len);
  791. }
  792. int prefix_seq_len = job.prefix_seq->ne[0];
  793. if (prefix_seq_len >= max_seq_len) {
  794. printf(
  795. "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
  796. prefix_seq_len,
  797. max_seq_len
  798. );
  799. GGML_ASSERT(prefix_seq_len < max_seq_len);
  800. }
  801. return max_seq_len;
  802. }
  803. void _fan_out_encoder_output(
  804. ggml_context* ctx,
  805. ggml_tensor** encoder_output_out,
  806. ggml_tensor** encoder_padding_mask_out,
  807. int beam_size
  808. ) {
  809. // (S_enc, M)
  810. ggml_tensor* encoder_output = *encoder_output_out;
  811. ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
  812. // (B, S_enc, M)
  813. ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
  814. // (S_enc, M) -> (B, S_enc, M)
  815. *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
  816. // (S_enc) -> (B, S_enc)
  817. if (encoder_padding_mask != nullptr) {
  818. ggml_tensor* shape_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], 1, beam_size);
  819. *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
  820. }
  821. }
  822. ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
  823. // TODO: this isn't the most precise way of doing this
  824. return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));
  825. }
  826. ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {
  827. ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);
  828. ggml_type true_type = x->type;
  829. x->type = GGML_TYPE_F32;
  830. ggml_tensor* y = ggml_repeat(ctx, x, shape);
  831. y->type = true_type;
  832. return y;
  833. }
  834. void _bootstrap_seqs_and_scores(
  835. fairseq2_model& model,
  836. const SequenceGeneratorJob& job,
  837. ggml_tensor* full_seqs,
  838. ggml_tensor* scores,
  839. ggml_tensor* encoder_output,
  840. ggml_tensor* encoder_padding_mask
  841. ) {
  842. int prefix_seq_len = job.prefix_seq->ne[0];
  843. int max_seq_len = scores->ne[0];
  844. int beam_size = scores->ne[1];
  845. GGML_ASSERT(prefix_seq_len > 0);
  846. if (prefix_seq_len == 1)
  847. return;
  848. ggml_context* ctx = model.ctx;
  849. // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
  850. full_seqs->type = GGML_TYPE_F32;
  851. job.prefix_seq->type = GGML_TYPE_F32;
  852. ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
  853. seqs = ggml_cpy(ctx, ggml_repeat(ctx, job.prefix_seq, seqs), seqs);
  854. // We have to bootstrap the model with the already fanned-out encoder
  855. // output to correctly initialize its incremental state.
  856. // Note: we don't start decoding the last prefix token just yet.
  857. seqs = ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1);
  858. seqs->type = GGML_TYPE_I32;
  859. // Bootstrap the model state with prefix sequence.
  860. seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
  861. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  862. model,
  863. "text_decoder",
  864. seqs,
  865. /*padding_mask*/ nullptr,
  866. encoder_output,
  867. encoder_padding_mask
  868. );
  869. // TODO state_bag.increment_step(prefix_seq_len - 1)
  870. // logits, lprobs: (N, S_pfx - 1, V)
  871. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
  872. int vocab_size = logits->ne[0];
  873. ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
  874. ggml_cgraph gf = ggml_build_forward(lprobs);
  875. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  876. full_seqs->type = GGML_TYPE_I32;
  877. job.prefix_seq->type = GGML_TYPE_I32;
  878. // Fetch scores of next steps from "lprobs"
  879. float p_score = 0;
  880. for (int i = 1; i < prefix_seq_len; ++i) {
  881. int p = ggml_get_i32_1d(job.prefix_seq, i);
  882. p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
  883. for (int b = 0; b < beam_size; ++b) {
  884. // scores: (N, S)
  885. // Note: First step (e.g. BOS)'s score is always 0.
  886. ggml_set_f32_1d(scores, b * max_seq_len + i, p_score);
  887. }
  888. }
  889. }
  890. /// Finds the topk indices, and write the winning indices in "candidate_indices" array.
  891. int topk(
  892. ggml_tensor* lprobs, // (B, V)
  893. std::int64_t k,
  894. ggml_tensor* candidate_indices
  895. ) {
  896. // Take the best 2 x `beam_size` predictions. We'll choose the first
  897. // `beam_size` of these which don't predict EOS to continue with.
  898. // (N, 2 x B)
  899. // `vocab_size` - 1 to never select PAD.
  900. std::int64_t K = std::min(k, ggml_nelements(lprobs));
  901. auto comp = [lprobs](std::int32_t a, std::int32_t b) {
  902. return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);
  903. };
  904. GGML_ASSERT(ggml_nelements(candidate_indices) >= k);
  905. auto cand = (std::int32_t*)candidate_indices->data;
  906. std::partial_sort(cand, cand + K, cand + ggml_nelements(lprobs), comp);
  907. return K;
  908. }
  909. void ggml_detach(ggml_tensor* a) {
  910. a->op = GGML_OP_NONE;
  911. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  912. a->src[i] = nullptr;
  913. }
  914. }
  915. /// Copies the sequence and scores of a given candidate beam.
  916. void _finalize_hypothesis(
  917. const SequenceGeneratorJob& job,
  918. ggml_context* ctx,
  919. int step_nr,
  920. std::int32_t beam,
  921. std::int32_t token,
  922. float eos_score,
  923. ggml_tensor* seqs, // (beam_size, seq_len)
  924. ggml_tensor* scores, // (beam_size, seq_len)
  925. Hypothesis* hypothesis
  926. ) {
  927. ggml_tensor* seq = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
  928. hypothesis->seq = seq;
  929. ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
  930. hypothesis->step_scores = step_scores;
  931. auto tok = (std::int32_t*)seq->data;
  932. for (int i = 0; i < step_nr + 1; ++i) {
  933. tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
  934. }
  935. tok[step_nr + 1] = token;
  936. // Convert from cumulative to per-step scores.
  937. auto sc = (float*)step_scores->data;
  938. float last_score = eos_score;
  939. for (int i = step_nr; i >= 0; --i) {
  940. float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);
  941. sc[i + 1] = last_score - sc0;
  942. last_score = sc0;
  943. }
  944. sc[0] = 0;
  945. if (job.opts.normalize_scores)
  946. // Skip first EOS since it is always 0 and skews normalization.
  947. eos_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
  948. hypothesis->score = eos_score;
  949. }
  950. // Uses ggml_context to store any object.
  951. #define GGML_CTX_ALLOC(ctx, Type, n) \
  952. (Type*)(ggml_new_tensor_1d(ctx, GGML_TYPE_I8, sizeof(Type) * n)->data);
  953. /// Generates a translation for a single sequence
  954. // TODO: add IncrementalStateBag support to avoid a O(N^3) generation.
  955. // TODO: clean ups
  956. // * replace manual tensor tweaking with ggml_set_*d (a ggml_set_slice could be useful)
  957. extern "C" Hypothesis* generate_sequence(
  958. fairseq2_model& model,
  959. const SequenceGeneratorJob& job,
  960. ggml_tensor* encoder_output,
  961. ggml_tensor* encoder_padding_mask,
  962. ggml_context* result_ctx
  963. ) {
  964. ggml_context* ctx = model.ctx;
  965. size_t eos_idx = job.eos_idx;
  966. auto pad_idx = job.pad_idx;
  967. ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
  968. size_t vocab_size = embed->ne[1];
  969. std::size_t beam_size = job.opts.beam_size;
  970. int source_seq_len = encoder_output->ne[1];
  971. int max_seq_len = _determine_max_seq_len(job, source_seq_len);
  972. fairseq2_kv_cache_alloc(model, beam_size, max_seq_len);
  973. // (S_enc, M) -> (B, S_enc, M)
  974. _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);
  975. // Allocate results in the context provided by the caller.
  976. Hypothesis* finished_searches_begin = GGML_CTX_ALLOC(result_ctx, Hypothesis, beam_size);
  977. Hypothesis* finished_searches = finished_searches_begin;
  978. for (std::size_t i = 0; i < beam_size; ++i) finished_searches[i] = {nullptr, -INFINITY, nullptr};
  979. Hypothesis* finished_searches_end = finished_searches + beam_size;
  980. // Initialize buffers. (B, S)
  981. ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);
  982. ggml_set_i32(seqs, 0);
  983. ggml_set_name(seqs, "seqs_0");
  984. ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);
  985. ggml_set_name(scores, "scores_0");
  986. ggml_set_f32(scores, 0.0);
  987. _bootstrap_seqs_and_scores(
  988. model, job, seqs, scores, encoder_output, encoder_padding_mask
  989. );
  990. int prefix_seq_len = job.prefix_seq->ne[0];
  991. int start_step = prefix_seq_len - 1;
  992. // Holds the indices of beams (a beam can occur more than once) that we
  993. // should continue with in the next step.
  994. ggml_tensor* beam_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  995. ggml_tensor* next_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  996. ggml_tensor* next_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, beam_size);
  997. // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore
  998. ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);
  999. for (std::size_t i = 0; i < vocab_size * beam_size; ++i)
  1000. ((int32_t *)(candidate_indices->data))[i] = i;
  1001. // TODO: memory management, there should be a per-step ggml_context for intermediary results
  1002. for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
  1003. ggml_tensor* decoder_input = ggml_slice(ctx, seqs, 0, step_nr, step_nr + 1);
  1004. decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", decoder_input);
  1005. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  1006. model,
  1007. "text_decoder",
  1008. decoder_input,
  1009. nullptr, // We never generate PAD.
  1010. encoder_output,
  1011. encoder_padding_mask
  1012. ); // (B, 1, D)
  1013. // Just look at the last token.
  1014. decoder_output = ggml_flatten_1d(ctx, decoder_output, 0); // (B, model_dim)
  1015. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output); // (B, vocab_size)
  1016. ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);
  1017. // Compute lprobs here so we can modify it in place in the lprob tweaking phase
  1018. // TODO: use ggml properly compute the tweaks
  1019. ggml_cgraph gf = ggml_build_forward(lprobs);
  1020. printf("beam search step %d. Graph.n_nodes: %d\n", step_nr, gf.n_nodes);
  1021. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1022. ggml_detach(lprobs);
  1023. // // Do not allow EOS before reaching the minimum sequence length.
  1024. if (step_nr < job.opts.min_seq_len) {
  1025. // lprobs[:, :, self.eos_idx] = -INFINITY;
  1026. for (size_t i = 0; i < beam_size; ++i)
  1027. ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);
  1028. }
  1029. // If we have reached the maximum length, force the last step to be EOS.
  1030. if (step_nr == max_seq_len - 2) {
  1031. // lprobs[:, :, : self.eos_idx] = -torch.inf
  1032. // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
  1033. for (size_t b = 0; b < beam_size; ++b) {
  1034. size_t t = 0;
  1035. for (t = 0; t < eos_idx; ++t)
  1036. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  1037. for (t = eos_idx + 1; t < vocab_size; ++t)
  1038. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  1039. }
  1040. }
  1041. // Never allow PAD.
  1042. for (size_t i = 0; i < beam_size; ++i)
  1043. ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);
  1044. // Apply UNK penalty.
  1045. if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {
  1046. // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
  1047. auto lprobs_raw = ggml_get_data_f32(lprobs);
  1048. for (size_t i = 0; i < beam_size; ++i)
  1049. lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;
  1050. }
  1051. ggml_tensor* last_scores = ggml_slice(ctx, scores, 0, step_nr, step_nr+1);
  1052. if (step_nr == start_step) {
  1053. // At the initial step, all hypotheses are equally likely, so we use
  1054. // only the first beam.
  1055. lprobs = ggml_slice(ctx, lprobs, 1, 0, 1);
  1056. lprobs = ggml_cont(ctx, lprobs);
  1057. // The first step always indicates the beginning of the sequence and has no score.
  1058. if (step_nr > 0) {
  1059. last_scores = ggml_slice(ctx, last_scores, 1, 0, 1);
  1060. lprobs = ggml_add_inplace(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1061. }
  1062. } else {
  1063. // Make probabilities contain cumulative scores for each hypothesis.
  1064. lprobs = ggml_add(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1065. }
  1066. gf = ggml_build_forward(lprobs);
  1067. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1068. // Determine (beam, token) candidates for the next step.
  1069. // (N, 2 x B)
  1070. std::int64_t K = topk(
  1071. lprobs, std::min(2 * beam_size, vocab_size - 1), candidate_indices
  1072. );
  1073. std::size_t ongoing_beams = 0;
  1074. for (std::int32_t i = 0; i < K; ++i) {
  1075. int c = ggml_get_f32_1d(candidate_indices, i);
  1076. std::int32_t beam = c / vocab_size;
  1077. std::int32_t token = c % vocab_size;
  1078. float tok_score = ggml_get_f32_1d(lprobs, c);
  1079. // Detect beams that reached the minimum length and that end with an EOS.
  1080. bool eos = token == job.eos_idx;
  1081. eos &= tok_score != -INFINITY;
  1082. if (eos) {
  1083. _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, finished_searches++);
  1084. if (finished_searches == finished_searches_end)
  1085. goto end_of_beam_search;
  1086. continue;
  1087. }
  1088. ggml_set_f32_1d(beam_indices, ongoing_beams, beam);
  1089. ggml_set_f32_1d(next_tokens, ongoing_beams, token);
  1090. ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);
  1091. ongoing_beams += 1;
  1092. if (ongoing_beams >= beam_size) break;
  1093. }
  1094. // Reorder beams in the `seq` and `score` buffers. The same beam can
  1095. // be selected more than once.
  1096. ggml_tensor* new_seqs = seqs;
  1097. ggml_tensor* new_scores = scores;
  1098. if (step_nr > start_step) {
  1099. // (B, S), (B) -> (B, S)
  1100. // ggml_get_rows and ggml_set only work with floats ...
  1101. new_seqs->type = GGML_TYPE_F32;
  1102. new_seqs = ggml_get_rows(ctx, seqs, beam_indices);
  1103. new_scores = ggml_get_rows(ctx, scores, beam_indices);
  1104. gf = ggml_build_forward(new_seqs);
  1105. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1106. ggml_detach(new_seqs);
  1107. new_seqs->type = GGML_TYPE_I32;
  1108. gf = ggml_build_forward(new_scores);
  1109. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1110. ggml_detach(new_scores);
  1111. }
  1112. // new_seqs[:, step_nr + 1] = next_tokens
  1113. // new_scores[:, step_nr + 1] = next_scores
  1114. for (std::size_t i = 0; i < beam_size; ++i) {
  1115. ((std::int32_t*)new_seqs->data)[step_nr + 1 + i * max_seq_len] = ggml_get_i32_1d(next_tokens, i);
  1116. ((float*)new_scores->data)[step_nr + 1 + i * max_seq_len] = ggml_get_f32_1d(next_scores, i);
  1117. }
  1118. // TODO the old seqs and score buffers could be reused for next step
  1119. seqs = new_seqs;
  1120. scores = new_scores;
  1121. }
  1122. end_of_beam_search:
  1123. // Ensure that hypotheses are sorted by decreasing scores before returning.
  1124. std::sort(
  1125. finished_searches_begin,
  1126. finished_searches_end,
  1127. [](Hypothesis a, Hypothesis b) { return a.score > b.score; }
  1128. );
  1129. return finished_searches_begin;
  1130. }
  1131. extern "C" Hypothesis* _testing_return_hypothesis_ptr(ggml_context* ctx) {
  1132. Hypothesis* result = GGML_CTX_ALLOC(ctx, struct Hypothesis, 2);
  1133. result[0] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 3.14f, (ggml_tensor*)result};
  1134. ggml_set_i32_1d(result[0].seq, 0, 314);
  1135. result[1] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 4.21f, nullptr};
  1136. ggml_set_i32_1d(result[1].seq, 0, 421);
  1137. return result;
  1138. }