fairseq2.cpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865
  1. #include <math.h>
  2. #include "ggml.h"
  3. #include "fairseq2.h"
  4. #include <unordered_map>
  5. #include <algorithm>
  6. /// allocate the fairseq2 model and hyperparameters
  7. extern "C" fairseq2_model* fairseq2_model_alloc() {
  8. // pre-allocate some memory to write hyperparameters and tensors pointers
  9. auto* model = new fairseq2_model;
  10. model->hparams = new std::uint8_t[8 * 1024];
  11. model->arch = new std::uint64_t[16 * 1024]; // max tensors allowed
  12. model->tensors_ctx = nullptr;
  13. return model;
  14. };
  15. extern "C" void fairseq2_model_free(fairseq2_model* model) {
  16. if (model->tensors_ctx) ggml_free(model->tensors_ctx);
  17. delete (std::uint64_t*)(model->arch);
  18. delete (std::uint8_t*)model->hparams;
  19. delete model;
  20. };
  21. extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
  22. model->ctx = ctx;
  23. }
  24. extern "C" std::string* std_string_alloc(char* c_str) {
  25. return new std::string(c_str);
  26. }
  27. extern "C" void std_string_free(std::string* str) {
  28. delete str;
  29. }
  30. bool has_layer(fairseq2_model& model, const std::string& name) {
  31. return model.tensors.find(name) != model.tensors.end();
  32. }
  33. extern "C" ggml_tensor* Linear_forward(
  34. fairseq2_model& model,
  35. const std::string &prefix,
  36. ggml_tensor* input // (d_in)
  37. ) {
  38. // Note: for now we assumed un-batched input
  39. ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
  40. GGML_ASSERT(weight != nullptr);
  41. ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
  42. GGML_ASSERT(bias != nullptr);
  43. return ggml_add(
  44. model.ctx,
  45. ggml_mul_mat(model.ctx, weight, input), // (d_out)
  46. bias
  47. );
  48. }
  49. extern "C" ggml_tensor* LayerNorm_forward(
  50. fairseq2_model& model,
  51. const std::string &prefix,
  52. ggml_tensor* input) {
  53. ggml_tensor* weight = model.tensors[prefix + ".weight"];
  54. GGML_ASSERT(weight != nullptr);
  55. ggml_tensor* bias = model.tensors[prefix + ".bias"];
  56. GGML_ASSERT(bias != nullptr);
  57. auto ctx = model.ctx;
  58. // TODO: should `eps` be part of unity hparams ?
  59. input = ggml_norm(ctx, input, /*eps*/1e-5);
  60. return ggml_add(
  61. ctx,
  62. ggml_mul(ctx, ggml_repeat(ctx, weight, input), input),
  63. ggml_repeat(ctx, bias, input)
  64. );
  65. }
  66. extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
  67. fairseq2_model& model,
  68. const std::string& prefix,
  69. ggml_tensor* seqs
  70. ) {
  71. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  72. // inner_activation = ReLu // TODO: allow other activation
  73. seqs = ggml_relu(model.ctx, seqs);
  74. if (has_layer(model, prefix + ".inner_layer_norm")) {
  75. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  76. }
  77. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  78. return seqs;
  79. }
  80. ggml_tensor* reshape_num_head(ggml_context* ctx, ggml_tensor* x, int num_heads) {
  81. int slen = x->ne[1];
  82. int model_dim = x->ne[0];
  83. // (S, dim) -> (S, H, H_dim)
  84. x = ggml_reshape_3d(ctx, x, model_dim / num_heads, num_heads, slen);
  85. // (S, H, H_dim) -> (H, S, H_dim)
  86. x = ggml_permute(ctx, x, 0, 2, 1, 3);
  87. return x;
  88. }
  89. # define UNITY_FLASH_ATTN
  90. extern "C" ggml_tensor* MultiheadAttention_forward(
  91. fairseq2_model& model,
  92. const std::string &prefix,
  93. ggml_tensor* queries, // (slen, d_in)
  94. ggml_tensor* keys, // (klen, d_in)
  95. ggml_tensor* values, // (klen, d_out)
  96. ggml_tensor* mask // (klen, slen)
  97. ) {
  98. int slen = queries->ne[1];
  99. int slenk = keys->ne[1];
  100. int num_heads = 16;
  101. int head_dim = queries->ne[0] / num_heads;
  102. ggml_context* ctx = model.ctx;
  103. ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries);
  104. q = reshape_num_head(ctx, q, num_heads); // (H, S, H_dim)
  105. ggml_set_name(q, "q");
  106. ggml_tensor* k = Linear_forward(model, prefix + ".k_proj", keys);
  107. k = reshape_num_head(ctx, k, num_heads); // (H, Sk, H_dim)
  108. ggml_set_name(k, "k");
  109. ggml_tensor* v = Linear_forward(model, prefix + ".v_proj", values);
  110. v = ggml_reshape_3d(ctx, v, head_dim, num_heads, slenk); // (Sk, H, H_dim)
  111. v = ggml_permute(ctx, v, 1, 2, 0, 3); // (H, H_dim, Sk)
  112. v = ggml_cont(ctx, v);
  113. ggml_set_name(v, "v");
  114. #ifdef UNITY_FLASH_ATTN
  115. // For flash_attn, we assume either no masks, or triangular masks.
  116. ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/mask != nullptr); // (H, S, H_dim)
  117. ggml_set_name(attn, "attn");
  118. attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (S, H, H_dim)
  119. attn = ggml_cont(ctx, attn);
  120. attn = ggml_reshape_2d(ctx, attn, num_heads * head_dim, slen); // (S, H * H_dim)
  121. #else
  122. // (H, Sk, H_dim) x (H, S, H_dim) -> (H, S, Sk)
  123. ggml_tensor* qk = ggml_mul_mat(ctx, k, q);
  124. ggml_set_name(qk, "qk");
  125. ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);
  126. ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
  127. qk = ggml_scale(ctx, qk, qk_scale);
  128. ggml_set_name(qk, "qk_scaled");
  129. if (mask) qk = ggml_add(ctx, qk, mask);
  130. // TODO: upgrade qk to float32 if needed
  131. ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (H, Sk, S)
  132. ggml_set_name(attn_weights, "attn_weights");
  133. // (H, S, Sk) x (H, H_dim, Sk) -> (H, H_dim, S)
  134. ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);
  135. ggml_set_name(attn, "attn");
  136. attn = ggml_reshape_2d(ctx, attn, slen, num_heads * head_dim); // (H * H_dim, S)
  137. attn = ggml_transpose(ctx, attn); // (S, H * H_dim)
  138. // // I'm not sure why this one is needed ...
  139. attn = ggml_cont(ctx, attn);
  140. #endif // UNITY_FLASH_ATTN
  141. // out -> (S, d_out)
  142. ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
  143. ggml_set_name(out, "out");
  144. return out;
  145. }
  146. extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
  147. fairseq2_model& model,
  148. const std::string& prefix,
  149. ggml_tensor* seqs,
  150. ggml_tensor* padding_mask
  151. ) {
  152. ggml_context* ctx = model.ctx;
  153. // TODO: read norm_order from model
  154. auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
  155. // _forward_self_attn(seqs, padding_mask)
  156. auto residual = seqs;
  157. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  158. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  159. // TODO: add padding_mask to MultiheadAttention_forward
  160. GGML_ASSERT(padding_mask == nullptr);
  161. seqs = MultiheadAttention_forward(
  162. model,
  163. prefix + ".self_attn",
  164. seqs,
  165. seqs,
  166. seqs,
  167. /*attention masks=*/nullptr
  168. );
  169. if (has_layer(model, prefix + ".self_attn_norm"))
  170. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  171. seqs = ggml_add(ctx, seqs, residual);
  172. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  173. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  174. // _forward_ffn(seqs)
  175. residual = seqs;
  176. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  177. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  178. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  179. // TODO: if self.residual_scale is not None:
  180. // residual = self.residual_scale * residual
  181. seqs = ggml_add(ctx, seqs, residual);
  182. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  183. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  184. return seqs;
  185. }
  186. extern "C" ggml_tensor* StandardTransformerEncoder_forward(
  187. fairseq2_model& model,
  188. const std::string& prefix,
  189. ggml_tensor* seqs,
  190. ggml_tensor* padding_mask
  191. ) {
  192. int layer_idx = 0;
  193. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  194. while (has_layer(model, layer_name)) {
  195. seqs = StandardTransformerEncoderLayer_forward(
  196. model, layer_name, seqs, padding_mask
  197. );
  198. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  199. layer_idx += 1;
  200. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  201. }
  202. if (has_layer(model, prefix + ".layer_norm"))
  203. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  204. return seqs;
  205. }
  206. extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
  207. fairseq2_model& model,
  208. const std::string& prefix,
  209. ggml_tensor* seqs,
  210. ggml_tensor* self_attn_mask,
  211. ggml_tensor* encoder_output,
  212. ggml_tensor* encoder_padding_mask
  213. ) {
  214. ggml_context* ctx = model.ctx;
  215. // TODO: read norm_order from model
  216. auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
  217. // _forward_self_attn(seqs, padding_mask)
  218. auto residual = seqs;
  219. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  220. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  221. seqs = MultiheadAttention_forward(
  222. model,
  223. prefix + ".self_attn",
  224. seqs,
  225. seqs,
  226. seqs,
  227. /*attention masks=*/self_attn_mask
  228. );
  229. if (has_layer(model, prefix + ".self_attn_norm"))
  230. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  231. seqs = ggml_add(ctx, seqs, residual);
  232. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  233. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  234. // _forward_encoder_decoder_attn
  235. if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
  236. // `encoder_output` must be `None` for decoder-only attention.
  237. GGML_ASSERT(encoder_output == nullptr);
  238. return seqs;
  239. }
  240. // `encoder_output` must not be `None` for encoder-decoder attention.
  241. GGML_ASSERT(encoder_output != nullptr);
  242. residual = seqs;
  243. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  244. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  245. seqs = MultiheadAttention_forward(
  246. model,
  247. prefix + ".encoder_decoder_attn",
  248. seqs,
  249. encoder_output,
  250. encoder_output,
  251. /*attention masks=*/encoder_padding_mask
  252. );
  253. seqs = ggml_add(ctx, seqs, residual);
  254. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  255. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  256. // _forward_ffn(seqs)
  257. residual = seqs;
  258. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  259. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  260. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  261. // TODO:
  262. // if self.residual_scale is not None:
  263. // residual = self.residual_scale * residual
  264. seqs = ggml_add(ctx, seqs, residual);
  265. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  266. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  267. return seqs;
  268. }
  269. ggml_tensor* causal_mask_cache = nullptr;
  270. extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
  271. auto seq_len = seqs->ne[0];
  272. auto mask = causal_mask_cache;
  273. // TODO: this cache only works as long as we don't change the size/device too often
  274. // TODO: allow other ggml_type
  275. if (mask == nullptr || mask->backend != seqs->backend || mask->ne[0] < seq_len) {
  276. printf("new causal_mask (%ld, %ld) created\n", seq_len, seq_len);
  277. mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
  278. char* data = (char*)mask->data;
  279. // tensor([[0., -inf, -inf, -inf],
  280. // [0., 0., -inf, -inf],
  281. // [0., 0., 0., -inf],
  282. // [0., 0., 0., 0.]])
  283. for (int i = 0; i < seq_len; ++i) {
  284. char* row = data + i * mask->nb[1];
  285. for (int j = 0; j <= i; ++j) {*(float*)(row + j * mask->nb[0]) = 0;}
  286. for (int j = i + 1; j < seq_len; ++j) {*(float*)(row + j * mask->nb[0]) = -INFINITY;}
  287. }
  288. causal_mask_cache = mask;
  289. }
  290. return ggml_view_2d(ctx, mask, seq_len, seq_len, mask->nb[1], 0);
  291. }
  292. extern "C" ggml_tensor* StandardTransformerDecoder_forward(
  293. fairseq2_model& model,
  294. const std::string& prefix,
  295. ggml_tensor* seqs,
  296. ggml_tensor* padding_mask,
  297. ggml_tensor* encoder_output,
  298. ggml_tensor* encoder_padding_mask
  299. ) {
  300. int layer_idx = 0;
  301. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  302. ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
  303. while (has_layer(model, layer_name)) {
  304. seqs = StandardTransformerDecoderLayer_forward(
  305. model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
  306. );
  307. ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
  308. layer_idx += 1;
  309. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  310. }
  311. if (has_layer(model, prefix + ".layer_norm"))
  312. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  313. return seqs;
  314. }
  315. using IncrementalStateBag = std::unordered_map<ggml_tensor*, ggml_tensor*>*;
  316. int _determine_max_seq_len(const SequenceGeneratorJob& job) {
  317. auto opts = job.opts;
  318. int max_seq_len = -1;
  319. if (job.source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
  320. max_seq_len = opts.hard_max_seq_len;
  321. } else {
  322. max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * job.source_seq_len + opts.soft_max_seq_len_b));
  323. }
  324. if (opts.min_seq_len > max_seq_len) {
  325. printf(
  326. "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
  327. opts.min_seq_len,
  328. max_seq_len
  329. );
  330. GGML_ASSERT(opts.min_seq_len <= max_seq_len);
  331. }
  332. int prefix_seq_len = job.prefix_seq->ne[0];
  333. if (prefix_seq_len >= max_seq_len) {
  334. printf(
  335. "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
  336. prefix_seq_len,
  337. max_seq_len
  338. );
  339. GGML_ASSERT(prefix_seq_len < max_seq_len);
  340. }
  341. return max_seq_len;
  342. }
  343. void _fan_out_encoder_output(
  344. ggml_context* ctx,
  345. ggml_tensor** encoder_output_out,
  346. ggml_tensor** encoder_padding_mask_out,
  347. int beam_size
  348. ) {
  349. // (S_enc, M)
  350. ggml_tensor* encoder_output = *encoder_output_out;
  351. ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
  352. // (B, S_enc, M)
  353. ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
  354. // (S_enc, M) -> (B, S_enc, M)
  355. *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
  356. if (encoder_padding_mask != nullptr) {
  357. *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape);
  358. }
  359. }
  360. ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
  361. // TODO: this isn't the smartest way of doing this
  362. return ggml_log(ctx, ggml_soft_max(ctx, logits));
  363. }
  364. void _bootstrap_seqs_and_scores(
  365. fairseq2_model& model,
  366. const SequenceGeneratorJob& job,
  367. ggml_tensor* seqs,
  368. ggml_tensor* scores,
  369. ggml_tensor* encoder_output,
  370. ggml_tensor* encoder_padding_mask,
  371. IncrementalStateBag state_bag
  372. ) {
  373. int prefix_seq_len = job.prefix_seq->ne[0];
  374. int max_seq_len = scores->ne[0];
  375. int beam_size = scores->ne[1];
  376. GGML_ASSERT(prefix_seq_len > 0);
  377. if (prefix_seq_len == 1)
  378. return;
  379. ggml_context* ctx = model.ctx;
  380. // seqs[:, : prefix_seq_len] = job.prefix_seq;
  381. ggml_cpy(ctx, job.prefix_seq, ggml_view_2d(ctx, seqs, 0, prefix_seq_len, 0, 0));
  382. // We have to bootstrap the model with the already fanned-out encoder
  383. // output to correctly initialize its incremental state. This causes some
  384. // redundancy as we have to expand `decoder_input` to match the shape of
  385. // `encoder_output`.
  386. // (S_pfx) -> (N x B, S_pfx - 1)
  387. // prefix_seq[:-1].expand(encoder_output.size(0), -1)
  388. ggml_tensor* decoder_input = ggml_repeat(ctx, ggml_view_1d(ctx, job.prefix_seq, prefix_seq_len - 1, 0), encoder_output);
  389. // Bootstrap the model state with prefix sequence.
  390. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  391. model,
  392. ".decoder",
  393. seqs,
  394. /*padding_mask*/ nullptr,
  395. encoder_output,
  396. encoder_padding_mask
  397. // TODO: state_bag
  398. );
  399. // TODO state_bag.increment_step(prefix_seq_len - 1)
  400. // logits, lprobs: (N, S_pfx - 1, V)
  401. ggml_tensor* logits = Linear_forward(model, ".decoder.final_proj", decoder_output);
  402. ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_view_3d(ctx, logits, logits->ne[0], logits->ne[1], 1, 0, 0, 0));
  403. int vocab_size = logits->ne[0];
  404. ggml_cgraph gf = ggml_build_forward(lprobs);
  405. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  406. // Fetch scores of next steps from "lprobs"
  407. float p_score = 0;
  408. for (int i = 0; i < prefix_seq_len; ++i) {
  409. int p = ggml_get_i32_1d(job.prefix_seq, i);
  410. p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
  411. for (int b = 0; b < beam_size; ++b) {
  412. // scores: (N, S)
  413. // Note: First step (e.g. BOS)'s score is always 0.
  414. ggml_set_f32_1d(scores, b * max_seq_len + i + 1, p_score);
  415. }
  416. }
  417. }
  418. /// Represents a hypothesis produced by a sequence generator.
  419. struct Hypothesis {
  420. /// The generated sequence.
  421. ggml_tensor* seq;
  422. /// The score of the hypothesis.
  423. float score;
  424. /// The score of each individual sequence step.
  425. ggml_tensor* step_scores;
  426. };
  427. /// Represents a standard beam search algoritm.
  428. int StandardBeamSearch_step(
  429. ggml_context* ctx,
  430. int step_nr,
  431. bool is_start_step,
  432. ggml_tensor* lprobs, // (N, S, V)
  433. ggml_tensor* scores, // (N, S)
  434. ggml_tensor* candidate_indices
  435. ) {
  436. int vocab_size = lprobs->ne[0];
  437. int sent_len = lprobs->ne[1];
  438. int beam_size = lprobs->ne[2];
  439. GGML_ASSERT(scores->ne[0] == sent_len);
  440. GGML_ASSERT(scores->ne[1] == beam_size);
  441. // should this be done by the caller ?
  442. ggml_tensor* last_scores = ggml_view_2d(ctx, scores, beam_size, 1, 0, step_nr);
  443. if (is_start_step) {
  444. // At the initial step, all hypotheses are equally likely, so we use
  445. // only the first beam.
  446. lprobs = ggml_view_3d(ctx, lprobs, vocab_size, sent_len, 1, 0, 0, 0);
  447. lprobs = ggml_cont(ctx, lprobs);
  448. // The first step always indicates the beginning of the sequence and
  449. // has no score.
  450. if (step_nr > 0) {
  451. lprobs = ggml_add(ctx, lprobs, last_scores);
  452. }
  453. } else {
  454. // Make probabilities contain cumulative scores for each hypothesis.
  455. lprobs = ggml_add(ctx, lprobs, last_scores);
  456. }
  457. ggml_cgraph gf = ggml_build_forward(lprobs);
  458. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  459. // Take the best 2 x `beam_size` predictions. We'll choose the first
  460. // `beam_size` of these which don't predict EOS to continue with.
  461. // (N, 2 x B)
  462. // `vocab_size` - 1 to never select PAD.
  463. int topk = std::min(2 * beam_size, vocab_size - 1);
  464. auto comp = [scores](std::int32_t a, std::int32_t b) {
  465. return ggml_get_f32_1d(scores, a) < ggml_get_f32_1d(scores, b);
  466. };
  467. auto cand = (std::int32_t*)candidate_indices->data;
  468. std::partial_sort(cand, cand + topk, cand + (beam_size * vocab_size), comp);
  469. return topk;
  470. }
  471. bool _finalize_hypothesis(
  472. const SequenceGeneratorJob& job,
  473. ggml_context* ctx,
  474. int step_nr,
  475. std::int32_t candidate,
  476. ggml_tensor* seqs, // (beam_size, seq_len)
  477. ggml_tensor* scores, // (beam_size, seq_len)
  478. std::vector<Hypothesis>& hypotheses
  479. ) {
  480. int vocab_size = scores->ne[0];
  481. std::int32_t beam = candidate / vocab_size;
  482. std::int32_t token = candidate % vocab_size;
  483. float tok_score = ggml_get_f32_1d(scores, candidate);
  484. // Detect beams that reached the minimum length and that end with an EOS.
  485. bool eos = token == job.eos_idx;
  486. eos &= tok_score != -INFINITY;
  487. // TODO ignored_beam_mask ?
  488. // eos &= ggml_get_i32_1d(ignored_beam_mask, beam);
  489. // ggml_set_i32_1d(eos_mask, beam, eos);
  490. if (!eos) return false;
  491. // If the candidate beam is "finished", let's copy the score and sequence
  492. ggml_tensor* tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
  493. ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
  494. auto tok = (std::int32_t*)tokens->data;
  495. auto sc = (float*)step_scores->data;
  496. ggml_set_f32_1d(scores, scores->ne[0] * beam + step_nr + 1, tok_score);
  497. for (int i = 0; i < step_nr + 1; ++i) {
  498. tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
  499. }
  500. tok[step_nr + 1] = token;
  501. float last_score = tok_score;
  502. for (int i = step_nr; i >= 0; --i) {
  503. // Convert from cumulative to per-step scores.
  504. float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i + 0);
  505. sc[i] = last_score - sc0;
  506. last_score = sc0;
  507. }
  508. // Skip first EOS since it is always 0 and skews normalization.
  509. if (job.opts.normalize_scores)
  510. tok_score /= std::pow((step_nr + 1), job.opts.len_penalty);
  511. hypotheses.emplace_back(Hypothesis{tokens, tok_score, step_scores});
  512. return true;
  513. }
  514. /// Generates a translation for a single sequence
  515. extern "C" float generate_sequence(
  516. fairseq2_model& model,
  517. const SequenceGeneratorJob& job,
  518. ggml_tensor* encoder_output,
  519. ggml_tensor* encoder_padding_mask,
  520. ggml_tensor** output_seq
  521. ) {
  522. int input_seq_len = encoder_output->ne[1];
  523. int vocab_size = encoder_output->ne[0];
  524. int beam_size = job.opts.beam_size;
  525. int max_seq_len = _determine_max_seq_len(job);
  526. ggml_context* ctx = model.ctx;
  527. // (S_enc, M) -> (B, S_enc, M)
  528. _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);
  529. std::vector<Hypothesis> active_searches(beam_size);
  530. std::vector<Hypothesis> finished_searches(beam_size);
  531. // Initialize buffers. (B, S)
  532. ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);
  533. ggml_set_i32(seqs, 0);
  534. ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);
  535. ggml_set_f32(scores, 0.0);
  536. IncrementalStateBag state_bag = {};
  537. _bootstrap_seqs_and_scores(
  538. model, job, seqs, scores, encoder_output, encoder_padding_mask, state_bag
  539. );
  540. int prefix_seq_len = job.prefix_seq->ne[0];
  541. int start_step = prefix_seq_len - 1;
  542. // Holds the indices of beams (a beam can occur more than once) that we
  543. // should continue with in the next step.
  544. ggml_tensor* beam_indices = nullptr;
  545. // Indices of next token
  546. ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);
  547. for (int i = 0; i < vocab_size * beam_size; ++i) ggml_set_i32_1d(candidate_indices, i, i);
  548. // Holds the indices of searches that we should continue with in the next
  549. // step. If not `None`, it means we finalized one or more searches in the
  550. // last step.
  551. ggml_tensor* search_indices = nullptr;
  552. for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
  553. // if (beam_indices != nullptr) {
  554. // // If not `None`, it means in the last step we finalized one or
  555. // // more searches. We should ensure that we adjust `beam_indices`
  556. // // before reordering `decoder`'s incremental state.
  557. // if (search_indices != nullptr) {
  558. // num_searches = search_indices->ne[0];
  559. // // (N)
  560. // delta = search_indices - torch.arange(num_searches, device=device)
  561. // // (N) -> (N, 1)
  562. // delta.unsqueeze_(-1)
  563. // // Adjust indices to take into account removed searches.
  564. // beam_indices.view(num_searches, beam_size).add_(delta * beam_size)
  565. // }
  566. // // state_bag.reorder(beam_indices)
  567. // }
  568. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  569. model,
  570. ".decoder",
  571. // seqs[:, step_nr : step_nr + 1]
  572. ggml_view_2d(ctx, seqs, 1, beam_size, step_nr * seqs->nb[0], 0),
  573. nullptr, // We never generate PAD.
  574. encoder_output,
  575. encoder_padding_mask
  576. // state_bag=state_bag,
  577. );
  578. // state_bag.increment_step()
  579. ggml_tensor* logits = Linear_forward(model, ".decoder.final_proj", decoder_output);
  580. ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);
  581. // // Do not allow EOS before reaching the minimum sequence length.
  582. // if step_nr < self.opts.min_seq_len:
  583. // lprobs[:, :, self.eos_idx] = -torch.inf
  584. // // If we have reached the maximum length, force the last step to be
  585. // // EOS.
  586. // if step_nr == max_seq_len - 2:
  587. // lprobs[:, :, : self.eos_idx] = -torch.inf
  588. // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
  589. // // Never allow PAD.
  590. // lprobs[:, :, self.pad_idx] = -torch.inf
  591. // // Apply UNK penalty.
  592. // if self.unk_idx is not None:
  593. // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
  594. // Determine candidates for the next step.
  595. // (N, 2 x B)
  596. int topk = StandardBeamSearch_step(
  597. ctx,
  598. step_nr,
  599. step_nr == start_step,
  600. lprobs,
  601. // TODO only pass scores for new tokens
  602. ggml_view_2d(ctx, scores, step_nr + 1, beam_size, 0, 0),
  603. candidate_indices
  604. );
  605. int ongoing_beams = 0;
  606. for (std::int32_t c = 0; c < topk; ++c) {
  607. bool finished = _finalize_hypothesis(job, ctx, step_nr, c, seqs, scores, finished_searches);
  608. if (!finished) ongoing_beams += 1;
  609. if (ongoing_beams >= beam_size) break;
  610. }
  611. if (finished_searches.size() == beam_size) break;
  612. // TODO: recreate scores and seqs with the best beams
  613. // Remove finished searches (ones for which `beam_size` finalized
  614. // beams have been generated) from the batch.
  615. ggml_tensor* search_indices = nullptr;
  616. // if (newly_finished_searches) {
  617. // new_num_searches = num_searches - len(newly_finished_searches)
  618. // // Construct `search_indices` which holds indices of searches
  619. // // to keep for the next step.
  620. // search_mask = torch.full((num_searches,), True, device=device)
  621. // search_mask[newly_finished_searches] = False
  622. // search_indices = torch.arange(num_searches, device=device)
  623. // search_indices = search_indices.masked_select(search_mask)
  624. // // Filter out removed batches from state variables.
  625. // // (N, B) -> (N - F, B)
  626. // ignored_beam_mask = ignored_beam_mask[search_indices]
  627. // // (N, 2 x B) -> (N - F, 2 x B)
  628. // cand_scores = cand_scores [search_indices]
  629. // cand_indices = cand_indices [search_indices]
  630. // cand_beam_indices = cand_beam_indices[search_indices]
  631. // // (N) -> (N - F)
  632. // search_offsets.resize_(new_num_searches, 1)
  633. // // (N - F, 2 x B) + (N - F) -> (N - F, 2 x B)
  634. // global_cand_beam_indices = cand_beam_indices + search_offsets
  635. // // (N, 2 x B) -> (N - F, 2 x B)
  636. // eos_mask = eos_mask[search_indices]
  637. // // (N x B, S) -> (N, B, S)
  638. // seqs = seqs .view(num_searches, -1)
  639. // scores = scores.view(num_searches, -1)
  640. // // (N, B, S + 1) -> ((N - F) x B, S)
  641. // seqs = seqs [search_indices].view(new_num_searches * beam_size, -1)
  642. // scores = scores[search_indices].view(new_num_searches * beam_size, -1)
  643. // // (N x B, S_enc, M) -> (N, B, S_enc, M)
  644. // encoder_output = encoder_output.unflatten(0, (num_searches, -1))
  645. // // (N, B, S_enc, M) -> ((N - F) x B, S_enc, M)
  646. // encoder_output = encoder_output[search_indices].flatten(0, 1)
  647. // if encoder_padding_mask is not None:
  648. // // (N x B, S_enc, M) -> (N, B, S_enc, M)
  649. // padding_mask = encoder_padding_mask.unflatten(0, (num_searches, -1))
  650. // // (N, B, S_enc, M) -> ((N - F) x B, S_enc, M)
  651. // encoder_padding_mask = padding_mask[search_indices].flatten(0, 1)
  652. // num_searches = new_num_searches
  653. // }
  654. // eos_mask[:, :beam_size][ignored_beam_mask] = True
  655. // // Set `beam_weights` so that values greater than or equal to 2 x
  656. // // `beam_size` indicate finished beams (i.e. end with EOS) and values
  657. // // less than 2 x `beam_size` indicate active beams.
  658. // // (N, 2 x B)
  659. // beam_weights = cand_offsets + (eos_mask * (2 * beam_size))
  660. // // Get the top `beam_size` active beams, which are the beams with the
  661. // // smallest weights in `active_beam_weights`.
  662. // // (N, B)
  663. // active_beam_weights, active_beams = torch.topk(
  664. // beam_weights, k=beam_size, dim=1, largest=False
  665. // )
  666. // // Update to ignore finalized beams in the next step.
  667. // // (N, B)
  668. // ignored_beam_mask = active_beam_weights >= 2 * beam_size
  669. // // We should always have at least one active beam in each search.
  670. // assert (~ignored_beam_mask).any(dim=1).all()
  671. // // Denotes which beams are continued for each new hypothesis (a beam
  672. // // can be selected more than once).
  673. // // (N, B)
  674. // beam_indices = torch.gather(
  675. // global_cand_beam_indices, dim=1, index=active_beams
  676. // )
  677. // // (N, B) -> (N x B)
  678. // beam_indices = beam_indices.view(-1)
  679. // // Reorder beams in the `seq` and `score` buffers. The same beam can
  680. // // be selected more than once.
  681. // if (step_nr > start_step) {
  682. // // seqs [:, : step_nr + 1] = torch.index_select(
  683. // // seqs [:, : step_nr + 1], dim=0, index=beam_indices
  684. // // )
  685. // // scores[:, : step_nr + 1] = torch.index_select(
  686. // // scores[:, : step_nr + 1], dim=0, index=beam_indices
  687. // // )
  688. // }
  689. // // (N x B, S) -> (N, B, S)
  690. // // seqs_view = seqs .view(num_searches, beam_size, -1)
  691. // // scores_view = scores.view(num_searches, beam_size, -1)
  692. // // seqs_view [:, :, step_nr + 1] = torch.gather(cand_indices, dim=1, index=active_beams)
  693. // // scores_view[:, :, step_nr + 1] = torch.gather(cand_scores, dim=1, index=active_beams)
  694. }
  695. // Ensure that hypotheses are sorted by their scores before returning.
  696. // for batch in finished_searches:
  697. // batch.sort(key=lambda b: b.score, reverse=True) # type: ignore[arg-type, return-value]
  698. // return SequenceGeneratorOutput(
  699. // results=finished_searches, device=device, pad_idx=self.pad_idx
  700. // )
  701. return 0.0f;
  702. }