dataloader.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215
  1. # Copyright (c) Meta Platforms, Inc. and affiliates
  2. # All rights reserved.
  3. #
  4. # This source code is licensed under the license found in the
  5. # LICENSE file in the root directory of this source tree.
  6. import json
  7. import logging
  8. from dataclasses import dataclass
  9. from typing import Any, Dict, Iterable, List, Optional
  10. import numpy as np
  11. import torch
  12. import torchaudio
  13. import torchaudio.compliance.kaldi as ta_kaldi
  14. from datasets import Dataset
  15. from datasets.distributed import split_dataset_by_node
  16. from fairseq2.models.nllb.tokenizer import NllbTokenizer, TextTokenEncoder
  17. from torch import Tensor
  18. from torch.nn.functional import pad as pad_tensor
  19. from torch.utils.data import DataLoader
  20. from seamless_communication.datasets.datatypes import LangPairSample
  21. from seamless_communication.models.unity.unit_tokenizer import (
  22. UnitTokenEncoder, UnitTokenizer)
  23. logger = logging.getLogger(__name__)
  24. @dataclass
  25. class SeqsBatch:
  26. src_tokens: Optional[Tensor]
  27. src_lengths: Optional[Tensor]
  28. target_tokens: Tensor
  29. prev_output_tokens: Tensor
  30. target_lengths: Tensor
  31. def __del__(self) -> None:
  32. """Explicitly delete tensors
  33. to force GPU memory cleanup"""
  34. for tensor in [
  35. self.src_tokens,
  36. self.src_lengths,
  37. self.target_tokens,
  38. self.prev_output_tokens,
  39. self.target_lengths,
  40. ]:
  41. if tensor is not None:
  42. del tensor
  43. @dataclass
  44. class MultimodalSeqsBatch:
  45. speech_to_text: SeqsBatch
  46. text_to_units: SeqsBatch
  47. def __del__(self) -> None:
  48. del self.speech_to_text
  49. del self.text_to_units
  50. @dataclass
  51. class BatchingConfig:
  52. fbank_feats_pad_idx: int = 0
  53. """The pad index to use in fbanks batching."""
  54. batch_size: int = 5
  55. rank: int = 0
  56. """The rank of this worker in the process group."""
  57. world_size: int = 1
  58. """The world size of the process group."""
  59. num_workers: int = 2
  60. """Parallelism in dataset preparation."""
  61. float_dtype: torch.dtype = torch.float16
  62. """Select between fp16/fp32 for float tensors """
  63. def worker_init_fn(worker_id):
  64. np.random.seed(np.random.get_state()[1][0] + worker_id)
  65. class UnitYDataLoader:
  66. def __init__(
  67. self,
  68. text_tokenizer: NllbTokenizer,
  69. unit_tokenizer: UnitTokenizer,
  70. dataset_manifest_path: str,
  71. batching_config: BatchingConfig,
  72. ):
  73. self.text_tokenizer = text_tokenizer
  74. self.text_encoders_per_lang: Dict[str, TextTokenEncoder] = {}
  75. self.unit_tokenizer = unit_tokenizer
  76. self.unit_encoders_per_lang: Dict[str, UnitTokenEncoder] = {}
  77. self.batching_config = batching_config
  78. self.dataset = self._load_manifest(dataset_manifest_path)
  79. def get_dataloader(self) -> DataLoader:
  80. subset = split_dataset_by_node(
  81. self.dataset,
  82. rank=self.batching_config.rank,
  83. world_size=self.batching_config.world_size,
  84. )
  85. data_loader = DataLoader(
  86. dataset=subset,
  87. batch_size=self.batching_config.batch_size,
  88. shuffle=True,
  89. num_workers=self.batching_config.num_workers,
  90. collate_fn=self._prepare_batch,
  91. worker_init_fn=worker_init_fn,
  92. )
  93. return data_loader
  94. def __iter__(self) -> Iterable[MultimodalSeqsBatch]:
  95. return self.get_dataloader().__iter__()
  96. def _get_source_fbank(self, sample: LangPairSample) -> Tensor:
  97. audio_input = torchaudio.load(sample.source.audio_local_path)[0]
  98. return ta_kaldi.fbank(audio_input, num_mel_bins=80)
  99. def _get_tokenized_target_text(self, sample: LangPairSample) -> Tensor:
  100. """Expected sequence is [<eos>, <lang_tok> , ..text tokens.., <eos>]"""
  101. target_lang = sample.target.lang
  102. if target_lang not in self.text_encoders_per_lang:
  103. self.text_encoders_per_lang[
  104. target_lang
  105. ] = self.text_tokenizer.create_encoder(lang=target_lang, mode="target")
  106. tokens = self.text_encoders_per_lang[target_lang](sample.target.text)
  107. eos_idx = self.text_tokenizer.vocab_info.eos_idx
  108. tokens = torch.concat([tokens, torch.LongTensor([eos_idx])])
  109. return tokens
  110. def _get_tokenized_units(self, sample: LangPairSample) -> Tensor:
  111. """Expected sequence is [<eos>, <lang_tok> , ..unit tokens.., <eos>]"""
  112. target_lang = sample.target.lang
  113. if target_lang not in self.unit_encoders_per_lang:
  114. self.unit_encoders_per_lang[
  115. target_lang
  116. ] = self.unit_tokenizer.create_encoder(lang=target_lang)
  117. tokens = self.unit_encoders_per_lang[target_lang](
  118. torch.LongTensor(sample.target.units).unsqueeze(0)
  119. )
  120. eos_idx = self.unit_tokenizer.vocab_info.eos_idx
  121. tokens = torch.concat([tokens.squeeze(0), torch.LongTensor([eos_idx])])
  122. return tokens
  123. def _batch_tensors(self, tensors: List[Tensor], pad_value: Any) -> Tensor:
  124. padding_size = max(tensor.shape[0] for tensor in tensors)
  125. dims = len(tensors[0].shape)
  126. padded_tensors = []
  127. for tensor in tensors:
  128. padding = [0] * 2 * dims
  129. padding[-1] = padding_size - tensor.shape[0]
  130. padded_tensors.append(pad_tensor(tensor, padding, "constant", pad_value))
  131. return torch.stack([tensor for tensor in padded_tensors], dim=0)
  132. def _prepare_batch(self, samples: List[Dict[str, Any]]) -> MultimodalSeqsBatch:
  133. samples = [LangPairSample.from_json(sample) for sample in samples]
  134. # input speech
  135. src_tokens_list = [self._get_source_fbank(sample) for sample in samples]
  136. src_tokens = self._batch_tensors(
  137. src_tokens_list, pad_value=self.batching_config.fbank_feats_pad_idx
  138. ).to(self.batching_config.float_dtype)
  139. src_lengths = torch.LongTensor(
  140. [src_tokens.shape[0] for src_tokens in src_tokens_list]
  141. )
  142. # output text
  143. text_tokens_list = [
  144. self._get_tokenized_target_text(sample) for sample in samples
  145. ]
  146. text_pad_idx = self.text_tokenizer.vocab_info.pad_idx
  147. prev_outputs_tokens = self._batch_tensors(
  148. [tokens[:-1] for tokens in text_tokens_list], pad_value=text_pad_idx
  149. )
  150. target_tokens = self._batch_tensors(
  151. [tokens[1:] for tokens in text_tokens_list], pad_value=text_pad_idx
  152. )
  153. tokens_lengths = torch.LongTensor(
  154. [tokens.shape[0] - 1 for tokens in text_tokens_list]
  155. )
  156. # output units
  157. units_list = [self._get_tokenized_units(sample) for sample in samples]
  158. units_pad_idx = self.unit_tokenizer.vocab_info.pad_idx
  159. prev_outputs_units = self._batch_tensors(
  160. [tokens[:-1] for tokens in units_list], pad_value=units_pad_idx
  161. )
  162. target_units = self._batch_tensors(
  163. [tokens[1:] for tokens in units_list], pad_value=units_pad_idx
  164. )
  165. units_lengths = torch.LongTensor([tokens.shape[0] - 1 for tokens in units_list])
  166. return MultimodalSeqsBatch(
  167. speech_to_text=SeqsBatch(
  168. src_tokens=src_tokens,
  169. src_lengths=src_lengths,
  170. target_tokens=target_tokens,
  171. prev_output_tokens=prev_outputs_tokens,
  172. target_lengths=tokens_lengths,
  173. ),
  174. text_to_units=SeqsBatch(
  175. src_tokens=None,
  176. src_lengths=None,
  177. target_tokens=target_units,
  178. prev_output_tokens=prev_outputs_units,
  179. target_lengths=units_lengths,
  180. ),
  181. )
  182. def _load_manifest(self, dataset_manifest_path: str) -> Dataset:
  183. with open(dataset_manifest_path) as fp_in:
  184. dataset = [json.loads(line) for line in fp_in]
  185. return Dataset.from_list(dataset)