1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756 |
- #include <algorithm>
- #include <fnmatch.h>
- #include <iostream>
- #include <math.h>
- #include <queue>
- #include <unordered_map>
- #include "kaldi-native-fbank/csrc/feature-fbank.h"
- #include "kaldi-native-fbank/csrc/feature-window.h"
- #include "fairseq2.h"
- #include "ggml.h"
- #include "ggml-alloc.h"
- ggml_tensor* ggml_detach(ggml_tensor* a) {
- a->op = GGML_OP_NONE;
- std::fill(a->src, a->src + GGML_MAX_SRC, nullptr);
- return a;
- }
- // generate_sequence uses ggml_context and ggml_allocr to reuse memory buffers across steps.
- // This can lead to dangling pointers, which don't segfault, but instead read garbage data.
- // Enabling this flag allows to explictly reset memory buffers, making it more explicit
- // when we read garbage data.
- // It also prints memory usage information, which is useful to
- #define DEBUG_MEM_USAGE DEBUG
- void printf_mem_usage(ggml_context* ctx, std::string name) {
- #if DEBUG_MEM_USAGE
- double mb = 1024.0 * 1024.0;
- printf(
- "ctx %s: memory used = %8.2f MB, memory reserved = %8.2f Mb\n",
- name.c_str(),
- ggml_used_mem(ctx) / mb,
- ggml_get_mem_size(ctx) / mb
- );
- #endif
- }
- #define SWAP(x, y) \
- auto tmp_ ## x = x; x = y; y = tmp_ ## x;
- #define GGML_ASSERT_SHAPE(x, ne0, ne1, ne2, ne3) \
- GGML_ASSERT((ne0 == -1 || x->ne[0] == ne0) && (ne1 == -1 || x->ne[1] == ne1) && (ne2 == -1 || x->ne[2] == ne2) && (ne3 == -1 || x->ne[3] == ne3));
- /// allocate the fairseq2 model and hyperparameters
- extern "C" fairseq2_model* fairseq2_model_alloc() {
- // pre-allocate some memory to write hyperparameters and tensors pointers
- auto* model = new fairseq2_model;
- model->tensors_ctx = nullptr;
- return model;
- }
- extern "C" void fairseq2_kv_cache_alloc(fairseq2_model& model, ggml_context* kv_cache_ctx, int beam_size, int max_seq_len) {
- // Note: we only allocate the masks, proper kv cache allocation is delayed.
- GGML_ASSERT(kv_cache_ctx);
- GGML_ASSERT(!ggml_get_no_alloc(kv_cache_ctx)); // We need to be able to alloc the kv_cache buffers
- model.kv_cache_ctx = kv_cache_ctx;
- auto attn_glob = "text_decoder.*_attn.k_proj.weight";
- FORCE_ALLOC(self_attn_mask, kv_cache_ctx, ggml_new_tensor_2d(kv_cache_ctx, GGML_TYPE_F32, max_seq_len, max_seq_len));
- self_attn_mask = ggml_diag_mask_inf_inplace(kv_cache_ctx, self_attn_mask, 0);
- ggml_format_name(self_attn_mask, "self_attn_mask[%d]", max_seq_len);
- for (auto named_tensor : model.tensors) {
- const std::string& name = named_tensor.first;
- if (::fnmatch(attn_glob, name.c_str(), 0) == FNM_NOMATCH)
- continue;
- // create a cache entry without the ".k_proj.weight" suffix
- const std::string& shortname = name.substr(0, name.size() - 14);
- KeyValueTensor& kv = model.kv_cache[shortname];
- kv.step_nr = 0;
- kv.full_k = nullptr;
- kv.full_v = nullptr;
- kv.self_attn_mask = self_attn_mask;
- }
- }
- extern "C" void fairseq2_kv_cache_reset(const fairseq2_model& model) {
- // TODO: use a dedicated allocator, so that kv_cache.clear actually frees the memory
- model.kv_cache.clear();
- }
- bool has_kv_cache(const fairseq2_model& model) {
- return model.kv_cache.size() > 0;
- }
- inline ggml_tensor* ggml_squeeze(ggml_context* ctx, ggml_tensor* x, int dim) {
- int n_dims = x->n_dims;
- GGML_ASSERT(dim >= 0);
- GGML_ASSERT(dim < n_dims);
- GGML_ASSERT(x->ne[dim] == 1);
- return ggml_flatten_1d(ctx, x, dim);
- }
- inline ggml_tensor* ggml_unsqueeze(ggml_context* ctx, ggml_tensor* x, int dim) {
- return ggml_unflatten_1d(ctx, x, dim, 1);
- }
- // copy k and v to kv cache
- // kv.full_k[step_nr] = k;
- // kv.full_v[step_nr] = v;
- void append_to_prev_kv(const fairseq2_model& model, const std::string& prefix, ggml_tensor** k, ggml_tensor** v, ggml_tensor** self_attn_mask) {
- KeyValueTensor& kv = model.kv_cache[prefix];
- int step_nr = kv.step_nr;
- ggml_context* ctx = model.kv_cache_ctx ? model.kv_cache_ctx : model.ctx;
- int n_steps = (*k)->ne[1];
- int k_proj, batch_size;
- if (kv.full_k != nullptr) {
- // (N, S_kv, K_proj)
- k_proj = kv.full_k->ne[0];
- batch_size = kv.full_k->ne[2];
- ggml_detach(kv.full_k);
- ggml_detach(kv.full_v);
- kv.full_k = ggml_squeeze(ctx, ggml_concat(ctx, ggml_unsqueeze(ctx, kv.full_k, 1), ggml_unsqueeze(ctx, *k, 1)), 1);
- kv.full_v = ggml_squeeze(ctx, ggml_concat(ctx, ggml_unsqueeze(ctx, kv.full_v, 1), ggml_unsqueeze(ctx, *v, 1)), 1);
- } else {
- GGML_ASSERT(step_nr == 0);
- k_proj = (*k)->ne[0];
- batch_size = (*v)->ne[2];
- kv.full_k = ggml_dup(ctx, *k);
- kv.full_v = ggml_dup(ctx, *v);
- }
- *k = kv.full_k;
- *v = kv.full_v;
- ggml_format_name(kv.full_k, "%s.k (step=%d)", prefix.c_str(), step_nr);
- ggml_format_name(kv.full_v, "%s.v (step=%d)", prefix.c_str(), step_nr);
- step_nr += n_steps;
- GGML_ASSERT_SHAPE(kv.full_k, k_proj, step_nr, batch_size, 1);
- // qk is (B * H, Sq, Sk) == (B*H, 1, Sk) in incremental mode
- // we return the Sq slice of the (Sq, Sk) attention mask
- *self_attn_mask = ggml_slice(
- model.ctx,
- ggml_slice(model.ctx, kv.self_attn_mask, 0, 0, step_nr),
- 1,
- step_nr - 1,
- step_nr
- );
- kv.step_nr = step_nr;
- }
- // variant of ggml_get_rows that allows for a with more than 2 dims.
- ggml_tensor* ggml_get_rows2(ggml_context* ctx, ggml_tensor* a, ggml_tensor* b) {
- int flattened = 0;
- GGML_ASSERT(a->n_dims <= 3);
- if (a->n_dims == 3) {
- flattened = a->ne[0];
- a = ggml_flatten_1d(ctx, a, 0);
- }
- a = ggml_get_rows(ctx, a, b);
- if (flattened) {
- a = ggml_unflatten_1d(ctx, a, 0, flattened);
- }
- return a;
- }
- void _reorder_kv_cache(ggml_context* ctx, ggml_cgraph* gf, KeyValueTensor& kv, ggml_tensor* new_order) {
- // GGML_ASSERT(ctx == kv.full_k->con);
- if (kv.full_k != nullptr) {
- ggml_detach(kv.full_k);
- const char* name = kv.full_k->name;
- kv.full_k = ggml_get_rows2(ctx, kv.full_k, new_order);
- ggml_build_forward_expand(gf, kv.full_k);
- ggml_format_name(kv.full_k, "%s (sorted)", name);
- }
- if (kv.full_v != nullptr) {
- ggml_detach(kv.full_v);
- const char* name = kv.full_v->name;
- kv.full_v = ggml_get_rows2(ctx, kv.full_v, new_order);
- ggml_build_forward_expand(gf, kv.full_v);
- ggml_format_name(kv.full_v, "%s (sorted)", name);
- }
- }
- void reorder_kv_cache(const fairseq2_model& model, ggml_context* ctx, ggml_cgraph* gf, ggml_tensor* new_order) {
- auto self_attn_glob = "*.self_attn";
- for (auto& named_kv : model.kv_cache) {
- if (::fnmatch(self_attn_glob, named_kv.first.c_str(), 0) == FNM_NOMATCH)
- continue;
- _reorder_kv_cache(ctx, gf, named_kv.second, new_order);
- }
- }
- inline double model_layer_config_d(const fairseq2_model& model, std::string name) {
- const std::int64_t* data = &model.layer_config.at(name);
- double val = *(const double*)data;
- return val;
- }
- extern "C" double fairseq2_model_layer_config_double(const fairseq2_model& model, const char* name) {
- return model_layer_config_d(model, std::string(name));
- }
- extern "C" std::int64_t fairseq2_model_layer_config_int(const fairseq2_model& model, const char* name) {
- return model.layer_config.at(std::string(name));
- }
- extern "C" void fairseq2_model_free(fairseq2_model* model) {
- if (model->tensors_ctx) ggml_free(model->tensors_ctx);
- delete model;
- }
- extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
- model->ctx = ctx;
- }
- extern "C" std::string* std_string_alloc(char* c_str) {
- return new std::string(c_str);
- }
- extern "C" void std_string_free(std::string* str) {
- delete str;
- }
- bool has_layer(fairseq2_model& model, const std::string& name) {
- return model.tensors.find(name) != model.tensors.end();
- }
- ggml_tensor* mul_mat(ggml_context* ctx, ggml_tensor* a, ggml_tensor* b) {
- if (b->ne[1] == 1 && b->ne[2] > 1 && a->n_dims == 2) {
- // `b` has shape (B, 1, D).
- // if `a` is (D_out, D), then we do one matmul for the full batch.
- b = ggml_flatten_1d(ctx, b, 1);
- return ggml_unflatten_1d(ctx, ggml_mul_mat(ctx, a, b), 1, 1);
- }
- // there is also the k * q matmul -> (D, 1, B) * (D, 1, B) -> (1, 1, B)
- // not sure what's the best way to compute this with BLAS
- return ggml_mul_mat(ctx, a, b); // (d_out)
- }
- extern "C" ggml_tensor* Linear_forward(
- fairseq2_model& model,
- const std::string &prefix,
- ggml_tensor* input // (d_in)
- ) {
- // Note: for now we assumed un-batched input
- ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
- GGML_ASSERT(weight != nullptr);
- ggml_tensor* out = mul_mat(model.ctx, weight, input); // (d_out)
- ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
- if (bias == nullptr) return out;
- return ggml_add(model.ctx, out, bias);
- }
- extern "C" ggml_tensor* LayerNorm_forward(
- fairseq2_model& model,
- const std::string &prefix,
- ggml_tensor* input
- ) {
- ggml_tensor* weight = model.tensors[prefix + ".weight"];
- GGML_ASSERT(weight != nullptr);
- ggml_tensor* bias = model.tensors[prefix + ".bias"];
- GGML_ASSERT(bias != nullptr);
- auto ctx = model.ctx;
- double eps = model_layer_config_d(model, prefix + ".eps");
- input = ggml_norm(ctx, input, /*eps*/eps);
- return ggml_add_inplace(
- ctx,
- ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),
- ggml_repeat(ctx, bias, input)
- );
- }
- extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs
- ) {
- seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
- // inner_activation = ReLu // TODO: allow other activation
- seqs = ggml_relu_inplace(model.ctx, seqs);
- if (has_layer(model, prefix + ".inner_layer_norm")) {
- seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
- }
- seqs = Linear_forward(model, prefix + ".output_proj", seqs);
- return seqs;
- }
- extern "C" ggml_tensor* SiluFeedForwardNetwork_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs
- ) {
- seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
- seqs = ggml_silu(model.ctx, seqs);
- if (has_layer(model, prefix + ".inner_layer_norm")) {
- seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
- }
- seqs = Linear_forward(model, prefix + ".output_proj", seqs);
- return seqs;
- }
- ggml_tensor* ggml_flatten_1d(ggml_context* ctx, ggml_tensor* x, int dim) {
- int n_dims = x->n_dims;
- GGML_ASSERT(dim >= 0);
- GGML_ASSERT(dim < n_dims);
- GGML_ASSERT(ggml_is_contiguous(x));
- // Nothing to do
- if (dim == n_dims - 1) return x;
- if (n_dims == 2) {
- return ggml_reshape_1d(ctx, x, x->ne[0] * x->ne[1]);
- } else if (n_dims == 3) {
- if (dim == 0) {
- return ggml_reshape_2d(ctx, x, x->ne[0] * x->ne[1], x->ne[2]);
- } else { // dim == 1
- return ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2]);
- }
- } else { // n_dims == 4
- if (dim == 0) {
- return ggml_reshape_3d(ctx, x, x->ne[0] * x->ne[1], x->ne[2], x->ne[3]);
- } else if (dim == 1) {
- return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1] * x->ne[2], x->ne[3]);
- } else { // dim == 2
- return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2] * x->ne[3]);
- }
- }
- }
- ggml_tensor* ggml_unflatten_1d(ggml_context* ctx, ggml_tensor* x, int dim, int num_el) {
- int n_dims = x->n_dims;
- GGML_ASSERT(dim >= 0);
- GGML_ASSERT(dim < n_dims);
- GGML_ASSERT(n_dims < 4);
- GGML_ASSERT(x->ne[dim] % num_el == 0);
- GGML_ASSERT(x->nb[dim + 1] == x->nb[dim] * x->ne[dim]); // `x` isn't contiguous along `dim`
- if (n_dims == 1) {
- return ggml_view_2d(ctx, x, num_el, x->ne[0] / num_el, x->nb[0] * num_el, 0);
- } else if (n_dims == 2) {
- if (dim == 0) {
- return ggml_view_3d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->nb[0] * num_el, x->nb[1], 0);
- } else { // dim == 1
- return ggml_view_3d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->nb[1], num_el * x->nb[1], 0);
- }
- } else { // (n_dims == 3)
- if (dim == 0) {
- return ggml_view_4d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->ne[2], x->nb[0] * num_el, x->nb[1], x->nb[2], 0);
- } else if (dim == 1) {
- return ggml_view_4d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->ne[2], x->nb[1], num_el * x->nb[1], x->nb[2], 0);
- } else { // dim == 2
- return ggml_view_4d(ctx, x, x->ne[0], x->ne[1], num_el, x->ne[2] / num_el, x->nb[1], x->nb[2], num_el * x->nb[2], 0);
- }
- }
- }
- ggml_tensor* _reshape_num_head(ggml_context* ctx, ggml_tensor* x, int head_dim) {
- // (B, S, dim) -> (B, S, H, H_dim)
- x = ggml_unflatten_1d(ctx, x, 0, head_dim);
- x = ggml_permute(ctx, x, 0, 2, 1, 3); // (B, H, S, H_dim)
- x = ggml_cont(ctx, x);
- x = ggml_flatten_1d(ctx, x, 2); // (B * H, S, H_dim)
- return x;
- }
- /// (B, Sk, dim) -> // (B?, H, H_dim, Sk)
- ggml_tensor* _reshape_num_head_values(ggml_context* ctx, ggml_tensor* v, int head_dim ) {
- // (B, Sk, dim) -> (B, Sk, H, H_dim)
- v = ggml_unflatten_1d(ctx, v, 0, head_dim);
- v = ggml_permute(ctx, v, 1, 2, 0, 3); // (B?, H, H_dim, Sk)
- v = ggml_cont(ctx, v);
- v = ggml_flatten_1d(ctx, v, 2); // (B * H, S, H_dim)
- return v;
- }
- // flash_attn doesn't work for cross attention because it assumes Q <= K
- // and it seems to yield slightly different scores than expected, and thus a different beam search
- # define UNITY_FLASH_ATTN 0
- extern "C" ggml_tensor* MultiheadAttention_forward(
- fairseq2_model& model,
- const std::string &prefix,
- ggml_tensor* queries, // (slen, d_in)
- ggml_tensor* keys, // (klen, d_in)
- ggml_tensor* values, // (klen, d_out)
- ggml_tensor* attn_mask // (klen, slen)
- ) {
- int model_dim = queries->ne[0];
- int num_heads = model.layer_config.at(prefix + ".num_heads");
- int head_dim = model_dim / num_heads;
- GGML_ASSERT(model_dim % num_heads == 0);
- ggml_context* ctx = model.ctx;
- ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries); // (B, S, H * H_dim)
- q = _reshape_num_head(ctx, q, head_dim); // (B * H, S, H_dim)
- ggml_set_name(q, "q");
- ggml_tensor *k, *v;
- if (!has_kv_cache(model)) {
- k = Linear_forward(model, prefix + ".k_proj", keys);
- ggml_set_name(k, "k");
- v = Linear_forward(model, prefix + ".v_proj", values);
- ggml_set_name(v, "v");
- } else {
- bool encoder_decoder_attn = keys == values && keys != queries;
- if (encoder_decoder_attn) {
- // The K and V tensors of an encoder-decoder attention (i.e. the
- // projected encoder outputs) remain static during evaluation.
- KeyValueTensor& kv_cache = model.kv_cache[prefix];
- if (kv_cache.step_nr == 0) {
- // If possible we use the ctx dedicated to kv_cache here,
- // because the enc dec attention is typically long lived.
- if (model.kv_cache_ctx) model.ctx = model.kv_cache_ctx;
- k = Linear_forward(model, prefix + ".k_proj", keys);
- ggml_set_name(k, "k");
- v = Linear_forward(model, prefix + ".v_proj", values);
- ggml_set_name(v, "v");
- // Note we are only storing a pointer to the buffer, not the full graph
- kv_cache.full_k = ggml_detach(ggml_dup_inplace(model.ctx, k));
- ggml_format_name(kv_cache.full_k, "%s.k_cache", prefix.c_str());
- kv_cache.full_v = ggml_detach(ggml_dup_inplace(model.ctx, v));
- ggml_format_name(kv_cache.full_v, "%s.v_cache", prefix.c_str());
- kv_cache.step_nr = keys->ne[1];
- model.ctx = ctx;
- } else {
- k = kv_cache.full_k;
- v = kv_cache.full_v;
- GGML_ASSERT(keys->ne[1] == k->ne[1]); // cache content doesn't match the input sequence
- GGML_ASSERT(values->ne[1] == v->ne[1]); // cache content doesn't match the input sequence
- }
- } else { // self attention
- // (1, K) -> (N, 1, K_proj)
- k = Linear_forward(model, prefix + ".k_proj", keys);
- ggml_set_name(k, "k");
- // (1, V) -> (N, 1, V_proj)
- v = Linear_forward(model, prefix + ".v_proj", values);
- ggml_set_name(v, "v");
- append_to_prev_kv(model, prefix, &k, &v, &attn_mask);
- }
- }
- k = _reshape_num_head(ctx, k, head_dim); // (B * H, Sk, H_dim)
- v = _reshape_num_head_values(ctx, v, head_dim); // (B * H, H_dim, Sk)
- v = ggml_cont(ctx, v);
- #if UNITY_FLASH_ATTN
- // For flash_attn, we assume either no masks, or triangular masks.
- ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/attn_mask != nullptr); // (B * H, S, H_dim)
- ggml_set_name(attn, "attn");
- attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
- attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (B, S, H, H_dim)
- #else
- // (B * H, Sk, H_dim) x (B * H, S, H_dim) -> (B * H, S, Sk)
- ggml_tensor* qk = mul_mat(ctx, k, q);
- ggml_set_name(qk, "qk");
- FORCE_ALLOC(qk_scale, ctx, ggml_new_tensor_1d(ctx, qk->type, 1));
- ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
- qk = ggml_scale(ctx, qk, qk_scale);
- ggml_set_name(qk, "qk_scaled");
- if (attn_mask) qk = ggml_add_inplace(ctx, qk, attn_mask);
- // TODO: upgrade qk to float32 if needed
- ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (B * H, S, Sk)
- ggml_set_name(attn_weights, "attn_weights");
- // (B * H, S, Sk) x (B * H, H_dim, Sk) -> (B * H, H_dim, S)
- ggml_tensor* attn = mul_mat(ctx, attn_weights, v);
- ggml_set_name(attn, "attn");
- attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
- attn = ggml_permute(ctx, attn, 2, 0, 1, 3); // (B, S, H, H_dim)
- #endif // UNITY_FLASH_ATTN
- attn = ggml_cont(ctx, attn);
- attn = ggml_flatten_1d(ctx, attn, 0); // (B, S, H * H_dim)
- // out -> (B, S, d_out)
- ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
- ggml_set_name(out, "out");
- return out;
- }
- extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask
- ) {
- ggml_context* ctx = model.ctx;
- auto norm_order = model.layer_config.at(prefix + ".norm_order");
- // _forward_self_attn(seqs, padding_mask)
- auto residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- // TODO: add padding_mask to MultiheadAttention_forward
- GGML_ASSERT(padding_mask == nullptr);
- seqs = MultiheadAttention_forward(
- model,
- prefix + ".self_attn",
- seqs,
- seqs,
- seqs,
- /*attn_mask=*/nullptr
- );
- if (has_layer(model, prefix + ".self_attn_norm"))
- seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
- seqs = ggml_add_inplace(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- // _forward_ffn(seqs)
- residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
- // TODO: if self.residual_scale is not None:
- // residual = self.residual_scale * residual
- seqs = ggml_add_inplace(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- return seqs;
- }
- extern "C" ggml_tensor* WaveformToFbank_forward(
- fairseq2_model& model,
- const std::string &prefix,
- ggml_tensor* waveform
- ) {
- // Hardcoding: num_bins 80, sample rate 16k, always standardize
- ggml_context* ctx = model.ctx;
- knf::MelBanksOptions mel_opts{};
- mel_opts.num_bins = 80;
- knf::FrameExtractionOptions frame_opts{};
- frame_opts.samp_freq = 16000;
- knf::FbankOptions opts{};
- opts.frame_opts = frame_opts;
- opts.mel_opts = mel_opts;
- std::vector<float_t> signal_frame{};
- std::int32_t num_frames = knf::NumFrames(/*num_samples=*/waveform->ne[0], frame_opts);
- FORCE_ALLOC(output, ctx, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 80, num_frames));
- knf::FbankComputer native_(opts);
- knf::FeatureWindowFunction window_fn_(native_.GetFrameOptions());
- for (std::int32_t frame_nr = 0; frame_nr < num_frames; ++frame_nr) {
- signal_frame.resize(0);
- // Extract the frame from the waveform tensor.
- knf::ExtractWindow(
- /*sample_offset=*/0,
- (float *)(waveform->data),
- waveform->ne[0],
- frame_nr,
- frame_opts,
- window_fn_,
- &signal_frame);
- native_.Compute(
- /*signal_raw_log_energy=*/0, /*vtln_warp=*/1.0, &signal_frame, ((float *)(output->data) + frame_nr * 80));
- }
- output = ggml_dup(ctx, ggml_transpose(ctx, output));
- output = ggml_norm(ctx, output, 1e-5);
- output = ggml_dup(ctx, ggml_transpose(ctx, output));
- if (output->ne[1] % 2 == 1) {
- ggml_tensor* remove_last = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, output->ne[1]-1);
- for (int i = 0; i < output->ne[1]-1; ++i) {
- ((int32_t *) remove_last->data)[i] = i;
- }
- output = ggml_get_rows(ctx, output, remove_last);
- }
- output = ggml_reshape_2d(ctx, output, output->ne[0] * 2, output->ne[1] / 2);
- return output;
- }
- // TODO: Check if it's possible to merge with standard MHA
- extern "C" ggml_tensor* RelativePositionMHA_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs
- ) {
- ggml_context* ctx = model.ctx;
- ggml_tensor* residual = seqs;
- seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
- // self_attn: qkv
- ggml_tensor* Qcur = Linear_forward(model, prefix + ".q_proj", seqs);
- ggml_tensor* Kcur = Linear_forward(model, prefix + ".k_proj", seqs);
- ggml_tensor* Vcur = Linear_forward(model, prefix + ".v_proj", seqs);
- // self_attn: rel_pos SDPA
- int32_t S = seqs->ne[1];
- int32_t H = 16; // TODO: Make this configurable
- int32_t n_ctx = 4096;
- int32_t K_h = seqs->ne[0] / H;
- int32_t start_index = n_ctx - S;
- int32_t end_index = n_ctx + S - 1;
- int num_indices = end_index - start_index;
- FORCE_ALLOC(rows, ctx, ggml_new_tensor_1d(ctx, GGML_TYPE_I32, num_indices));
- for (int i = 0; i < num_indices; i++) {
- ((int32_t *)rows->data)[i] = start_index + i;
- }
- // self_attn: load pos_enc weights & compute_r
- // In fairseq2 pos_enc weights are calculated on the fly, since some more custom operators might be needed to enable this,
- // we store the results (fixed) in checkpoint as model.audio_enc_pos_enc_w and load directly.
- ggml_tensor* r = ggml_get_rows(ctx, model.tensors["speech_encoder.pos_enc"], rows);
- r = mul_mat(ctx, model.tensors[prefix + ".sdpa.r_proj.weight"], r);
- r = ggml_dup(ctx, ggml_permute(ctx,
- ggml_cpy(ctx,
- r,
- ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S*2-1)),
- 0, 2, 1, 3));
- ggml_tensor* u_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.u_bias"], K_h, 1, H);
- ggml_tensor* v_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.v_bias"], K_h, 1, H);
- // self_attn: Permute QKV
- ggml_tensor* Q = ggml_cont(ctx, ggml_permute(ctx,
- ggml_cpy(ctx,
- Qcur,
- ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
- 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
- ggml_tensor* K = ggml_cont(ctx, ggml_permute(ctx,
- ggml_cpy(ctx,
- Kcur,
- ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
- 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
- ggml_tensor* V = ggml_cont(ctx, ggml_permute(ctx,
- ggml_cpy(ctx,
- Vcur,
- ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
- 1, 2, 0, 3)); // (H * K_h, S) -> (K_h, H, S) -> (H, S, K_h)
- ggml_tensor* q_with_u_bias = ggml_add_inplace(ctx, ggml_dup(ctx, Q), u_bias); // (K_h, S, H)
- ggml_tensor* q_with_v_bias = ggml_add_inplace(ctx, Q, v_bias); // (K_h, S, H)
- ggml_tensor* ac = mul_mat(ctx, K, q_with_u_bias);
- ggml_tensor* bd = mul_mat(ctx, r, q_with_v_bias);
- // self_attn: shift_bd. Logic follows https://github.com/facebookresearch/fairseq2/blob/main/src/fairseq2/nn/transformer/relative_attention.py#L161
- bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // H, S, 2S-1
- FORCE_ALLOC(pad, ctx, ggml_new_tensor_3d(ctx, GGML_TYPE_F32, H, S, 1));
- pad = ggml_set_f32(pad, 0.0);
- bd = ggml_concat(ctx, pad, bd); // bd[i][j][0] == 0, (H, S, 2S)
- bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // (2S, S, H)
- bd = ggml_reshape_3d(ctx, bd, S, 2 * S, H); // (S, 2S, H)
- // discard the first set of positive positions
- bd = ggml_dup(ctx, ggml_slice(ctx, bd, 1, 1, 2 * S));
- // shifts each row by an extra step
- bd = ggml_reshape_3d(ctx, bd, 2 * S - 1, S, H);
- // Discard positions used for shift.
- bd = ggml_slice(ctx, bd, 0, 0, S);
- // self_attn: compute attn / weights
- ggml_tensor* attn_weights = ggml_add_inplace(ctx, ac, bd);
- FORCE_ALLOC(attn_scale, ctx, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1));
- ggml_set_f32(attn_scale, 1.0 / pow(K_h, 0.5));
- attn_weights = ggml_mul_inplace(ctx, attn_weights, ggml_repeat(ctx, attn_scale, attn_weights));
- attn_weights = ggml_soft_max(ctx, attn_weights);
- ggml_tensor* attn = mul_mat(ctx, V, attn_weights); // K_h, S, H
- attn = ggml_dup(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3));
- ggml_tensor* attn_2d = ggml_reshape_2d(ctx, attn, K_h * H, S);
- ggml_tensor* attn_out = mul_mat(ctx, model.tensors[prefix + ".output_proj.weight"], attn_2d);
- attn_out = ggml_add_inplace(
- ctx,
- attn_out,
- ggml_repeat(ctx, model.tensors[prefix + ".output_proj.bias"], attn_out)
- );
- attn_out = ggml_add_inplace(ctx, attn_out, residual);
- return attn_out;
- }
- extern "C" ggml_tensor* ConvModule_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs
- ) {
- ggml_context* ctx = model.ctx;
- ggml_tensor* residual = seqs;
- seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
- // conv: Use matmul for pointwise conv 1 - kernel_size=1, no padding case
- seqs = mul_mat(ctx, model.tensors[prefix + ".pointwise_conv1.weight"], seqs);
- // conv: GLU
- seqs = ggml_glu(ctx, seqs);
- seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
- // S x C -> (S+K-1) x C -> K x S x C -> S x C
- seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".depthwise_conv.weight"], seqs, 1, 15, 1);
- // conv: Custom implementation of batch norm
- seqs = ggml_batch_norm(ctx, seqs, model.tensors[prefix + ".batch_norm.weight"], model.tensors[prefix + ".batch_norm.bias"], model.tensors[prefix + ".batch_norm.running_mean"], model.tensors[prefix + ".batch_norm.running_var"], 1e-5);
- // conv: SiLU actvation
- seqs = ggml_silu_inplace(ctx, seqs);
- seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
- // conv: Use matmul for pointwise conv 2 - kernel_size=1, no padding case
- seqs = mul_mat(ctx, model.tensors[prefix + ".pointwise_conv2.weight"], seqs);
- // conv: + residual
- seqs = ggml_add_inplace(ctx, seqs, residual);
- return seqs;
- }
- extern "C" ggml_tensor* StandardConformerEncoderLayer_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask
- ) {
- ggml_context* ctx = model.ctx;
- FORCE_ALLOC(ffn_scale, ctx, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1));
- ggml_set_f32(ffn_scale, 0.5f);
- ggml_tensor* residual = seqs;
- seqs = LayerNorm_forward(model, prefix + ".ffn1_layer_norm", seqs);
- seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn1", seqs);
- seqs = ggml_mul_inplace(ctx, seqs, ggml_repeat(ctx, ffn_scale, seqs));
- seqs = ggml_add_inplace(ctx, seqs, residual);
- seqs = RelativePositionMHA_forward(model, prefix + ".self_attn", seqs);
- seqs = ConvModule_forward(model, prefix + ".conv", seqs);
- residual = seqs;
- seqs = LayerNorm_forward(model, prefix + ".ffn2_layer_norm", seqs);
- seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn2", seqs);
- seqs = ggml_mul_inplace(ctx, seqs, ggml_repeat(ctx, ffn_scale, seqs));
- seqs = ggml_add_inplace(ctx, seqs, residual);
- seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
- return seqs;
- }
- extern "C" ggml_tensor* StandardConformerEncoder_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask
- ) {
- ggml_context* ctx = model.ctx;
- seqs = WaveformToFbank_forward(model, prefix, seqs);
- seqs = LayerNorm_forward(model, prefix + "_frontend.post_extract_layer_norm", seqs);
- seqs = Linear_forward(model, prefix + "_frontend.model_dim_proj", seqs);
- int layer_idx = 0;
- std::string layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
- while (has_layer(model, layer_name)) {
- seqs = StandardConformerEncoderLayer_forward(
- model, layer_name, seqs, padding_mask
- );
- ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
- layer_idx += 1;
- layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
- }
- seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
- ggml_tensor* residual = seqs;
- seqs = Linear_forward(model, prefix + ".proj1", seqs);
- seqs = ggml_relu_inplace(ctx, seqs);
- seqs = Linear_forward(model, prefix + ".proj2", seqs);
- FORCE_ALLOC(ffn_scale, ctx, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1));
- ggml_set_f32(ffn_scale, 0.5f);
- seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
- seqs = ggml_add_inplace(ctx, seqs, residual);
- layer_idx = 0;
- layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
- while (has_layer(model, layer_name)) {
- seqs = StandardConformerEncoderAdaptorLayer_forward(
- model, layer_name, seqs, padding_mask
- );
- ggml_set_name(seqs, ("x_ada_" + std::to_string(layer_idx)).c_str());
- layer_idx += 1;
- layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
- }
- seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
- return seqs;
- }
- extern "C" ggml_tensor* StandardConformerEncoderAdaptorLayer_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask
- ) {
- ggml_context* ctx = model.ctx;
- ggml_tensor* residual = seqs;
- residual = LayerNorm_forward(model, prefix + ".residual_layer_norm", residual);
- residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
- residual = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".residual_conv.weight"], residual, 8, 4, 1);
- residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
- residual = ggml_add_inplace(ctx, ggml_repeat(ctx, model.tensors[prefix + ".residual_conv.bias"], residual), residual);
- residual = ggml_glu(ctx, residual);
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
- seqs = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".self_attn_conv.weight"], seqs, 8, 4, 1);
- seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
- seqs = ggml_add_inplace(ctx, seqs, ggml_repeat(ctx, model.tensors[prefix + ".self_attn_conv.bias"], seqs));
- seqs = ggml_glu(ctx, seqs);
- seqs = MultiheadAttention_forward(
- model,
- prefix + ".self_attn",
- seqs,
- seqs,
- seqs,
- /*attention masks=*/nullptr
- );
- seqs = ggml_add_inplace(ctx, seqs, residual);
- residual = seqs;
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
- seqs = ggml_add_inplace(ctx, seqs, residual);
- return seqs;
- }
- /// ggml_slice(X, -1, start, end) is equivalent to X[start:end]
- /// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]
- ggml_tensor* ggml_slice(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis,
- int64_t start,
- int64_t end
- ) {
- int64_t ne[4];
- std::copy(a->ne, a->ne + 4, ne);
- if (axis < 0) axis = a->n_dims + axis;
- if (start < 0) start = ne[axis] + start;
- if (end <= 0) end = ne[axis] + end;
- GGML_ASSERT(0 <= start);
- GGML_ASSERT(start < end);
- GGML_ASSERT(end <= ne[axis]);
- ne[axis] = end - start;
- size_t offset = a->nb[axis] * start;
- size_t* nb = a->nb;
- ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
- ggml_format_name(result, "%s [(%d)%ld:%ld]", a->name, axis, start, end);
- result->n_dims = a->n_dims;
- return result;
- }
- ggml_tensor* ggml_select(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis,
- int64_t index
- ) {
- int64_t ne[GGML_MAX_DIMS];
- std::copy(a->ne, a->ne + GGML_MAX_DIMS, ne);
- if (axis < 0) axis = a->n_dims + axis;
- if (index < 0) index = ne[axis] + index;
- GGML_ASSERT(0 <= index);
- GGML_ASSERT(index < ne[axis]);
- std::copy(a->ne + axis + 1, a->ne + GGML_MAX_DIMS, ne + axis);
- size_t offset = a->nb[axis] * index;
- size_t* nb = a->nb;
- GGML_ASSERT(GGML_MAX_DIMS == 4);
- ggml_tensor* result = ggml_view_3d(ctx, a, ne[0], ne[1], ne[2], nb[1], nb[2], offset);
- ggml_format_name(result, "%s [(%d)%ld]", a->name, axis, index);
- result->n_dims = a->n_dims - 1;
- return result;
- }
- // Inplace computation of PositionalEmbedding
- extern "C" ggml_tensor* PositionalEmbedding_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* embeds
- ) {
- // This only work with the simple pos encoders
- int seq_len = embeds->ne[1];
- ggml_tensor* full_pos_embeds = model.tensors[prefix];
- int start_step = 0;
- if (has_kv_cache(model)) {
- start_step = model.kv_cache[prefix].step_nr++;
- }
- ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, start_step, seq_len + start_step);
- return ggml_add(model.ctx, embeds, pos_embeds);
- }
- extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs
- ) {
- GGML_ASSERT(seqs->n_dims < GGML_MAX_DIMS);
- ggml_context* ctx = model.ctx;
- ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
- GGML_ASSERT(embed_weights != nullptr);
- ggml_tensor* embeds;
- if (seqs->n_dims == 1) {
- embeds = ggml_get_rows(ctx, embed_weights, seqs);
- } else {
- // ggml_get_rows isn't very flexible, we have to handle the reshape ourselves.
- ggml_tensor* flat_seqs = seqs;
- if (!ggml_is_contiguous(seqs)) {
- flat_seqs = ggml_cont(ctx, flat_seqs);
- }
- flat_seqs = ggml_reshape_1d(ctx, flat_seqs, ggml_nelements(seqs));
- embeds = ggml_get_rows(ctx, embed_weights, flat_seqs);
- embeds = ggml_reshape_4d(ctx, embeds, embed_weights->ne[0], seqs->ne[0], seqs->ne[1], seqs->ne[2]);
- embeds->n_dims = seqs->n_dims + 1;
- }
- // padding mask ?
- // padding_mask = to_padding_mask(embeds, seq_lens)
- if (has_layer(model, prefix + ".pos_encoder")) {
- embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);
- }
- if (has_layer(model, prefix + ".layer_norm")) {
- embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
- }
- return embeds;
- }
- extern "C" ggml_tensor* StandardTransformerEncoder_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask
- ) {
- int layer_idx = 0;
- std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
- while (has_layer(model, layer_name)) {
- seqs = StandardTransformerEncoderLayer_forward(
- model, layer_name, seqs, padding_mask
- );
- ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
- layer_idx += 1;
- layer_name = prefix + ".layers." + std::to_string(layer_idx);
- }
- if (has_layer(model, prefix + ".layer_norm"))
- seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
- return seqs;
- }
- extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* self_attn_mask,
- ggml_tensor* encoder_output,
- ggml_tensor* encoder_padding_mask
- ) {
- ggml_context* ctx = model.ctx;
- auto norm_order = model.layer_config.at(prefix + ".norm_order");
- // _forward_self_attn(seqs, padding_mask)
- auto residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- seqs = MultiheadAttention_forward(
- model,
- prefix + ".self_attn",
- seqs,
- seqs,
- seqs,
- /*attn_mask=*/self_attn_mask
- );
- if (has_layer(model, prefix + ".self_attn_norm"))
- seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
- seqs = ggml_add_inplace(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- // _forward_encoder_decoder_attn
- if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
- // `encoder_output` must be `None` for decoder-only attention.
- GGML_ASSERT(encoder_output == nullptr);
- return seqs;
- }
- // `encoder_output` must not be `None` for encoder-decoder attention.
- GGML_ASSERT(encoder_output != nullptr);
- residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
- seqs = MultiheadAttention_forward(
- model,
- prefix + ".encoder_decoder_attn",
- seqs,
- encoder_output,
- encoder_output,
- /*attention masks=*/encoder_padding_mask
- );
- seqs = ggml_add_inplace(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
- // _forward_ffn(seqs)
- residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
- // TODO:
- // if self.residual_scale is not None:
- // residual = self.residual_scale * residual
- seqs = ggml_add_inplace(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- return seqs;
- }
- extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
- auto seq_len = seqs->ne[1];
- // TODO: allow other ggml_type
- ggml_tensor* mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
- return ggml_diag_mask_inf(ctx, mask, 0);
- }
- extern "C" ggml_tensor* StandardTransformerDecoder_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask,
- ggml_tensor* encoder_output,
- ggml_tensor* encoder_padding_mask
- ) {
- int layer_idx = 0;
- std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
- ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
- while (has_layer(model, layer_name)) {
- seqs = StandardTransformerDecoderLayer_forward(
- model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
- );
- ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
- layer_idx += 1;
- layer_name = prefix + ".layers." + std::to_string(layer_idx);
- }
- if (has_layer(model, prefix + ".layer_norm"))
- seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
- return seqs;
- }
- int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
- auto opts = job.opts;
- int max_seq_len = -1;
- if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
- max_seq_len = opts.hard_max_seq_len;
- } else {
- max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len) + opts.soft_max_seq_len_b);
- }
- if (opts.min_seq_len > max_seq_len) {
- printf(
- "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
- opts.min_seq_len,
- max_seq_len
- );
- GGML_ASSERT(opts.min_seq_len <= max_seq_len);
- }
- int prefix_seq_len = job.prefix_seq->ne[0];
- if (prefix_seq_len >= max_seq_len) {
- printf(
- "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
- prefix_seq_len,
- max_seq_len
- );
- GGML_ASSERT(prefix_seq_len < max_seq_len);
- }
- return max_seq_len;
- }
- void _fan_out_encoder_output(
- ggml_context* ctx,
- ggml_tensor** encoder_output_out,
- ggml_tensor** encoder_padding_mask_out,
- int beam_size
- ) {
- // (S_enc, M)
- ggml_tensor* encoder_output = *encoder_output_out;
- ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
- // (B, S_enc, M)
- ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
- // (S_enc, M) -> (B, S_enc, M)
- *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
- // (S_enc) -> (B, S_enc)
- if (encoder_padding_mask != nullptr) {
- ggml_tensor* shape_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], 1, beam_size);
- *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
- }
- }
- ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
- // TODO: this isn't the most precise way of doing this
- return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));
- }
- ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {
- ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);
- ggml_type true_type = x->type;
- ggml_tensor* y = ggml_repeat(ctx, x, shape);
- y->type = true_type;
- return y;
- }
- extern "C" void _bootstrap_seqs_and_scores(
- fairseq2_model& model,
- const SequenceGeneratorJob& job,
- ggml_tensor* full_seqs,
- ggml_tensor* scores,
- ggml_tensor* encoder_output,
- ggml_tensor* encoder_padding_mask,
- int n_threads
- ) {
- int prefix_seq_len = job.prefix_seq->ne[0];
- int max_seq_len = scores->ne[0];
- int beam_size = scores->ne[1];
- GGML_ASSERT(prefix_seq_len > 0);
- if (prefix_seq_len == 1)
- return;
- ggml_context* ctx = model.ctx;
- // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
- ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
- seqs = ggml_cpy(ctx, ggml_repeat(ctx, job.prefix_seq, seqs), seqs);
- // We have to bootstrap the model with the already fanned-out encoder
- // output to correctly initialize its incremental state.
- // Note: we don't start decoding the last prefix token just yet.
- seqs = ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1);
- // Bootstrap the model state with prefix sequence.
- seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
- ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
- model,
- "text_decoder",
- seqs,
- /*padding_mask*/ nullptr,
- encoder_output,
- encoder_padding_mask
- );
- // logits, lprobs: (N, S_pfx - 1, V)
- ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
- int vocab_size = logits->ne[0];
- ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
- ggml_cgraph gf = ggml_build_forward(lprobs);
- ggml_graph_compute_with_ctx(ctx, &gf, 1);
- // Fetch scores of next steps from "lprobs"
- float p_score = 0;
- for (int i = 1; i < prefix_seq_len; ++i) {
- int p = ggml_get_i32_1d(job.prefix_seq, i);
- p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
- for (int b = 0; b < beam_size; ++b) {
- // scores: (N, S)
- // Note: First step (e.g. BOS)'s score is always 0.
- ggml_set_f32_1d(scores, b * max_seq_len + i, p_score);
- }
- }
- }
- /// Finds the topk indices, and write the winning indices in "candidate_indices" array.
- int topk(
- ggml_tensor* lprobs, // (B, V)
- std::int64_t k,
- ggml_tensor* candidate_indices
- ) {
- // Take the best 2 x `beam_size` predictions. We'll choose the first
- // `beam_size` of these which don't predict EOS to continue with.
- // (N, 2 x B)
- // `vocab_size` - 1 to never select PAD.
- std::int64_t K = std::min(k, ggml_nelements(lprobs));
- auto comp = [lprobs](std::int32_t a, std::int32_t b) {
- return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);
- };
- GGML_ASSERT(ggml_nelements(candidate_indices) >= k);
- auto cand = (std::int32_t*)candidate_indices->data;
- std::partial_sort(cand, cand + K, cand + ggml_nelements(lprobs), comp);
- return K;
- }
- void _tweak_lprobs(const SequenceGeneratorJob& job, ggml_tensor* lprobs, int step_nr, int max_seq_len, std::size_t vocab_size) {
- std::size_t beam_size = job.opts.beam_size;
- std::size_t eos_idx = job.eos_idx;
- // Do not allow EOS before reaching the minimum sequence length.
- if (step_nr < job.opts.min_seq_len) {
- // lprobs[:, :, self.eos_idx] = -INFINITY;
- for (size_t i = 0; i < beam_size; ++i)
- ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);
- }
- // If we have reached the maximum length, force the last step to be EOS.
- if (step_nr == max_seq_len - 2) {
- // lprobs[:, :, : self.eos_idx] = -torch.inf
- // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
- for (size_t b = 0; b < beam_size; ++b) {
- size_t t = 0;
- for (t = 0; t < eos_idx; ++t)
- ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
- for (t = eos_idx + 1; t < vocab_size; ++t)
- ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
- }
- }
- // Never allow PAD.
- std::size_t pad_idx = job.pad_idx;
- for (size_t i = 0; i < beam_size; ++i)
- ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);
- // Apply UNK penalty.
- if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {
- // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
- auto lprobs_raw = ggml_get_data_f32(lprobs);
- for (size_t i = 0; i < beam_size; ++i)
- lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;
- }
- }
- /// Copies the sequence and scores of a given candidate beam.
- void _finalize_hypothesis(
- const SequenceGeneratorJob& job,
- ggml_context* ctx,
- int step_nr,
- std::int32_t beam,
- std::int32_t token,
- float eos_score,
- ggml_tensor* seqs, // (beam_size, seq_len)
- ggml_tensor* scores, // (beam_size, seq_len)
- Hypothesis* hypothesis
- ) {
- ggml_tensor* seq = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
- hypothesis->seq = seq;
- ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
- hypothesis->step_scores = step_scores;
- auto tok = (std::int32_t*)seq->data;
- for (int i = 0; i < step_nr + 1; ++i) {
- tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
- }
- tok[step_nr + 1] = token;
- // Convert from cumulative to per-step scores.
- auto sc = (float*)step_scores->data;
- float last_score = eos_score;
- for (int i = step_nr; i >= 0; --i) {
- float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);
- sc[i + 1] = last_score - sc0;
- last_score = sc0;
- }
- sc[0] = 0;
- if (job.opts.normalize_scores)
- // Skip first EOS since it is always 0 and skews normalization.
- eos_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
- hypothesis->score = eos_score;
- }
- // Uses ggml_context to store any object.
- #define GGML_CTX_ALLOC(ctx, Type, n) \
- (Type*)(ggml_new_tensor_1d(ctx, GGML_TYPE_I8, sizeof(Type) * n)->data);
- ggml_context* ctx_from_buffer(std::vector<uint8_t>& buffer) {
- return ggml_init({
- /*.mem_size =*/ static_cast<int64_t>(buffer.capacity()),
- /*.mem_buffer =*/ buffer.data(),
- /*.no_alloc =*/ false,
- });
- }
- ggml_allocr* new_arena_allocr(std::vector<uint8_t>& buffer) {
- return ggml_allocr_new(buffer.data(), buffer.capacity(), 8);
- }
- /// Generates a translation for a single sequence
- /// The results Hypothesis are written inside `result_ctx`.
- extern "C" Hypothesis* generate_sequence(
- fairseq2_model& model,
- const SequenceGeneratorJob& job,
- ggml_tensor* encoder_output,
- ggml_tensor* encoder_padding_mask,
- ggml_context* result_ctx,
- int n_threads
- ) {
- // Pre allocate memory buffers.
- // * step_ctx: contains metadata for the model graph, as well as some explicit
- // buffers for the lprobs tweaking.
- // * prev_step_ctx: is an additional buffer because we need some results from previous steps,
- // to compute next step. Notably self attention kv cache.
- // * search_ctx contains tensors that should live for the full search,
- // like encoder kv cache.
- // * step_alloc contains buffer for the forward pass of the model.
- // TODO: the size allocated should depend on the input length and vocab size
- std::vector<uint8_t> local_bufs[5] = {
- std::vector<uint8_t>(128 * 1024 * 1024), // step_ctx
- std::vector<uint8_t>(128 * 1024 * 1024), // prev_step_ctx
- std::vector<uint8_t>(256 * 1024 * 1024), // search_ctx
- std::vector<uint8_t>(256 * 1024 * 1024), // step_alloc
- };
- ggml_allocr* step_alloc = new_arena_allocr(local_bufs[3]);
- ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
- size_t vocab_size = embed->ne[1];
- std::size_t beam_size = job.opts.beam_size;
- ggml_detach(encoder_output);
- int source_seq_len = encoder_output->ne[1];
- int max_seq_len = _determine_max_seq_len(job, source_seq_len);
- ggml_context* search_ctx = ctx_from_buffer(local_bufs[2]);
- ggml_context* original_ctx = model.ctx;
- fairseq2_kv_cache_alloc(model, search_ctx, beam_size, max_seq_len);
- // (S_enc, M) -> (B, S_enc, M)
- model.ctx = search_ctx;
- _fan_out_encoder_output(search_ctx, &encoder_output, &encoder_padding_mask, beam_size);
- // Allocate results in the context provided by the caller.
- ggml_set_no_alloc(result_ctx, false);
- Hypothesis* finished_searches_begin = GGML_CTX_ALLOC(result_ctx, Hypothesis, beam_size);
- Hypothesis* finished_searches = finished_searches_begin;
- for (std::size_t i = 0; i < beam_size; ++i) finished_searches[i] = {nullptr, -INFINITY, nullptr};
- Hypothesis* finished_searches_end = finished_searches + beam_size;
- // Initialize buffers. (B, S)
- ggml_tensor* seqs = ggml_new_tensor_2d(search_ctx, GGML_TYPE_I32, max_seq_len, beam_size);
- ggml_set_i32(seqs, 0);
- ggml_set_name(seqs, "seqs_0");
- ggml_tensor* scores = ggml_new_tensor_2d(search_ctx, GGML_TYPE_F32, max_seq_len, beam_size);
- ggml_set_name(scores, "scores_0");
- ggml_set_f32(scores, 0.0);
- int prefix_seq_len = job.prefix_seq->ne[0];
- int start_step = prefix_seq_len - 1;
- ggml_context* prev_step_ctx = ctx_from_buffer(local_bufs[(start_step - 1) % 2]);
- ggml_context* step_ctx = ctx_from_buffer(local_bufs[start_step % 2]);
- GGML_ASSERT(step_ctx != search_ctx);
- GGML_ASSERT(prev_step_ctx != step_ctx);
- model.ctx = prev_step_ctx;
- // search_ctx because we need encoder_decoder_attn.k_cache to survive for the full search
- model.kv_cache_ctx = search_ctx;
- _bootstrap_seqs_and_scores(
- model, job, seqs, scores, encoder_output, encoder_padding_mask, n_threads
- );
- // Holds the indices of beams (a beam can occur more than once) that we
- // should continue with in the next step.
- ggml_tensor* beam_indices = ggml_new_tensor_1d(search_ctx, GGML_TYPE_I32, beam_size);
- ggml_tensor* next_tokens = ggml_new_tensor_1d(search_ctx, GGML_TYPE_I32, beam_size);
- ggml_tensor* next_scores = ggml_new_tensor_1d(search_ctx, GGML_TYPE_F32, beam_size);
- // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore
- ggml_tensor* candidate_indices = ggml_new_tensor_1d(search_ctx, GGML_TYPE_I32, vocab_size * beam_size);
- for (std::size_t i = 0; i < vocab_size * beam_size; ++i)
- ((int32_t *)(candidate_indices->data))[i] = i;
- printf_mem_usage(search_ctx, "search_ctx");
- for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
- model.ctx = step_ctx;
- ggml_set_no_alloc(step_ctx, true); // Use allocr for the model forward pass
- ggml_tensor* prev_token = ggml_slice(step_ctx, seqs, 0, step_nr, step_nr + 1);
- ggml_tensor* decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", prev_token);
- ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
- model,
- "text_decoder",
- decoder_input,
- nullptr, // We never generate PAD.
- encoder_output,
- encoder_padding_mask
- ); // (B, 1, D)
- decoder_output = ggml_flatten_1d(step_ctx, decoder_output, 0); // (B, model_dim)
- // Force logits to be allocated in step_ctx, not in step_alloc.
- ggml_set_no_alloc(step_ctx, false);
- ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output); // (B, vocab_size)
- ggml_tensor* lprobs = ggml_log_softmax(step_ctx, logits);
- // Compute lprobs here so we can modify it in place in the lprob tweaking phase
- // TODO: use ggml properly compute the tweaks
- ggml_cgraph gf = ggml_build_forward(lprobs);
- size_t fwd_mem = ggml_allocr_alloc_graph(step_alloc, &gf);
- GGML_UNUSED(fwd_mem);
- ggml_graph_compute_with_ctx(step_ctx, &gf, 1);
- ggml_detach(lprobs);
- ggml_allocr_reset(step_alloc);
- #if DEBUG_MEM_USAGE
- printf("beam search step %d. Graph.n_nodes: %d.\n", step_nr, gf.n_nodes);
- printf(" Fwd mem: %.1fMB\n", fwd_mem/1024.0/1024.0);
- std::fill(local_bufs[3].begin(), local_bufs[3].end(), 0xAA);
- #endif
- _tweak_lprobs(job, lprobs, step_nr, max_seq_len, vocab_size);
- ggml_tensor* last_scores = ggml_slice(step_ctx, scores, 0, step_nr, step_nr+1);
- if (step_nr == start_step) {
- // At the initial step, all hypotheses are equally likely, so we use
- // only the first beam.
- lprobs = ggml_slice(step_ctx, lprobs, 1, 0, 1);
- lprobs = ggml_cont(step_ctx, lprobs);
- // The first step always indicates the beginning of the sequence and has no score.
- if (step_nr > 0) {
- last_scores = ggml_slice(step_ctx, last_scores, 1, 0, 1);
- lprobs = ggml_add_inplace(step_ctx, lprobs, ggml_repeat(step_ctx, last_scores, lprobs));
- }
- } else {
- // Make probabilities contain cumulative scores for each hypothesis.
- lprobs = ggml_add_inplace(step_ctx, lprobs, ggml_repeat(step_ctx, last_scores, lprobs));
- }
- gf = ggml_build_forward(lprobs);
- ggml_graph_compute_with_ctx(step_ctx, &gf, n_threads);
- // Determine (beam, token) candidates for the next step.
- // (N, 2 x B)
- std::int64_t K = topk(
- lprobs, std::min(2 * beam_size, vocab_size - 1), candidate_indices
- );
- std::size_t ongoing_beams = 0;
- for (std::int32_t i = 0; i < K; ++i) {
- int c = ggml_get_f32_1d(candidate_indices, i);
- std::int32_t beam = c / vocab_size;
- std::int32_t token = c % vocab_size;
- float tok_score = ggml_get_f32_1d(lprobs, c);
- // Detect beams that reached the minimum length and that end with an EOS.
- bool eos = token == job.eos_idx;
- eos &= tok_score != -INFINITY;
- if (eos) {
- _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, finished_searches++);
- if (finished_searches == finished_searches_end)
- goto end_of_beam_search;
- continue;
- }
- ggml_set_f32_1d(beam_indices, ongoing_beams, beam);
- ggml_set_f32_1d(next_tokens, ongoing_beams, token);
- ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);
- ongoing_beams += 1;
- if (ongoing_beams >= beam_size) break;
- }
- // Reorder beams in the `seq` and `score` buffers. The same beam can
- // be selected more than once.
- // (B, S), (B) -> (B, S)
- ggml_tensor* new_seqs = ggml_get_rows(step_ctx, seqs, beam_indices);
- ggml_tensor* new_scores = ggml_get_rows(step_ctx, scores, beam_indices);
- ggml_cgraph gf_reorder = ggml_build_forward(new_seqs);
- ggml_build_forward_expand(&gf_reorder, new_scores);
- reorder_kv_cache(model, step_ctx, &gf_reorder, beam_indices);
- ggml_graph_compute_with_ctx(step_ctx, &gf_reorder, 1);
- seqs = ggml_detach(new_seqs);
- scores = ggml_detach(new_scores);
- // seqs[:, step_nr + 1] = next_tokens
- // scores[:, step_nr + 1] = next_scores
- for (std::size_t i = 0; i < beam_size; ++i) {
- ((std::int32_t*)seqs->data)[step_nr + 1 + i * max_seq_len] = ggml_get_i32_1d(next_tokens, i);
- ((float*)scores->data)[step_nr + 1 + i * max_seq_len] = ggml_get_f32_1d(next_scores, i);
- }
- printf_mem_usage(step_ctx, "step_ctx");
- ggml_free(prev_step_ctx);
- prev_step_ctx = step_ctx;
- #if DEBUG_MEM_USAGE
- std::fill(local_bufs[(step_nr + 1) % 2].begin(), local_bufs[(step_nr + 1) % 2].end(), 0xAA);
- #endif
- step_ctx = ctx_from_buffer(local_bufs[(step_nr + 1) % 2]);
- }
- end_of_beam_search:
- // Ensure that hypotheses are sorted by decreasing scores before returning.
- std::sort(
- finished_searches_begin,
- finished_searches_end,
- [](Hypothesis a, Hypothesis b) { return a.score > b.score; }
- );
- fairseq2_kv_cache_reset(model);
- model.ctx = original_ctx;
- return finished_searches_begin;
- }
- extern "C" Hypothesis* _testing_return_hypothesis_ptr(ggml_context* ctx) {
- Hypothesis* result = GGML_CTX_ALLOC(ctx, struct Hypothesis, 2);
- result[0] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 3.14f, (ggml_tensor*)result};
- ggml_set_i32_1d(result[0].seq, 0, 314);
- result[1] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 4.21f, nullptr};
- ggml_set_i32_1d(result[1].seq, 0, 421);
- return result;
- }
- // SPM tokenizer
- // original implementation:
- // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
- struct llm_symbol {
- using index = int;
- index prev;
- index next;
- const char * text;
- size_t n;
- llama_vocab::id id;
- };
- static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
- static size_t utf8_len(char src) {
- const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
- uint8_t highbits = static_cast<uint8_t>(src) >> 4;
- return lookup[highbits];
- }
- struct llm_bigram_spm {
- struct comparator {
- bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
- return (l.score < r.score) || (l.score == r.score && l.left > r.left);
- }
- };
- using queue_storage = std::vector<llm_bigram_spm>;
- using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
- llm_symbol::index left;
- llm_symbol::index right;
- float score;
- size_t size;
- llama_vocab::id id;
- };
- struct llm_tokenizer_spm {
- llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
- void tokenize(const std::string& input_text, ggml_tensor& output) {
- llama_vocab::id unk_idx = vocab.token_to_id.at("<unk>");
- // split string into utf8 chars
- int index = 0;
- size_t offs = 0;
- // This is kind of annoying, but needed because with SPM,
- // characters following a space have a special meaning.
- // And the algorithm rely on substrings to do the lookups.
- std::string text = input_text;
- bool need_extra_space = text.size() > 0 && text[0] != ' ';
- if (need_extra_space) text = " " + text;
- while (offs < text.size()) {
- size_t len = utf8_len(text[offs]);
- size_t n = std::min(len, text.size() - offs);
- auto token = vocab.token_to_id.find(std::string(text, offs, n));
- llama_vocab::id id = token == vocab.token_to_id.end() ? unk_idx : token->second;
- llm_symbol sym = {
- /*prev*/ index - 1,
- /*next*/ offs + n == text.size() ? -1 : index + 1,
- /*text*/ text.c_str() + offs,
- /*n*/ n,
- /*id*/ id
- };
- offs += n;
- index++;
- symbols.emplace_back(sym);
- }
- // seed the work queue with all possible 2-character tokens.
- for (size_t i = 1; i < symbols.size(); ++i) {
- try_add_bigram(i - 1, i);
- }
- // keep substituting the highest frequency pairs for as long as we can.
- while (!work_queue.empty()) {
- auto bigram = work_queue.top();
- work_queue.pop();
- auto & left_sym = symbols[bigram.left];
- auto & right_sym = symbols[bigram.right];
- const std::string text = std::string(left_sym.text, left_sym.n + right_sym.n);
- // if one of the symbols already got merged, skip it.
- if (
- left_sym.n == 0
- || right_sym.n == 0
- || left_sym.n + right_sym.n != bigram.size
- ) continue;
- // merge the right sym into the left one
- left_sym.n += right_sym.n;
- left_sym.id = bigram.id;
- right_sym.n = 0;
- // remove the right sym from the chain
- left_sym.next = right_sym.next;
- if (right_sym.next >= 0) {
- symbols[right_sym.next].prev = bigram.left;
- }
- // find more substitutions
- try_add_bigram(left_sym.prev, bigram.left);
- try_add_bigram(bigram.left, left_sym.next);
- }
- llama_vocab::id* out = (llama_vocab::id*)output.data;
- int out_step = sizeof(llama_vocab::id) / output.nb[0];
- int num_tokens = 0;
- for (int i = 0; i > -1; i = symbols[i].next) {
- llm_symbol& symbol = symbols[i];
- *(out + num_tokens * out_step) = symbol.id;
- num_tokens += 1;
- }
- *(out + num_tokens * out_step) = vocab.token_to_id.at("</s>");
- num_tokens += 1;
- output.ne[0] = num_tokens;
- }
- private:
- void try_add_bigram(int left, int right) {
- if (left == -1 || right == -1) {
- return;
- }
- const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
- auto token = vocab.token_to_id.find(text);
- if (token == vocab.token_to_id.end()) {
- return;
- }
- llama_vocab::id id = token->second;
- if (static_cast<size_t>(id) >= vocab.id_to_token.size()) {
- return;
- }
- const auto& tok_data = vocab.id_to_token[id];
- llm_bigram_spm bigram = {
- /*left */ left,
- /*right*/ right,
- /*score*/ tok_data.score,
- /*size */ text.size(),
- /*id */ id
- };
- work_queue.push(bigram);
- }
- const llama_vocab& vocab;
- std::vector<llm_symbol> symbols;
- llm_bigram_spm::queue work_queue;
- };
- extern "C" void fairseq2_spm_tokenize(fairseq2_model* model, const char* text, ggml_tensor& out) {
- llm_tokenizer_spm spm = {model->vocab};
- spm.tokenize(std::string(text), out);
- }
- extern "C" std::size_t fairseq2_spm_detokenize(fairseq2_model* model, ggml_tensor* tokens, char* out) {
- int eos_idx = model->vocab.token_to_id["</s>"];
- int sent_len = tokens->ne[0];
- std::size_t written = 0;
- for (int i = 0; i < sent_len; ++i) {
- int id = ggml_get_i32_1d(tokens, i);
- // Don't print the EOS token but only if it appear at the end.
- if (i == sent_len - 1 && eos_idx == id) break;
- std::string token = model->vocab.id_to_token.at(id).text;
- // Skip the first space outputted.
- auto begin = token.begin();
- if (i == 0 && token.size() > 0 && token[0] == ' ') begin += 1;
- std::copy(begin, token.end(), out);
- std::size_t n = token.end() - begin;
- written += n;
- out += n;
- }
- *out = '0';
- return written;
- }
|