123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762 |
- # Copyright (c) Meta Platforms, Inc. and affiliates
- # All rights reserved.
- #
- # This source code is licensed under the license found in the
- # MIT_LICENSE file in the root directory of this source tree.
- import ctypes
- import functools
- from ctypes import c_void_p
- from pathlib import Path
- from typing import Any, Iterator, List, Tuple
- import ggml
- import fairseq2.nn
- import fairseq2.nn.transformer
- import numpy as np
- import pytest
- import torch
- import torchaudio
- from fairseq2.data.audio import WaveformToFbankConverter
- from seamless_communication.inference.generator import SequenceGeneratorOptions
- from fairseq2.models.wav2vec2.feature_extractor import Wav2Vec2FbankFeatureExtractor
- from seamless_communication.inference.translator import Modality, Translator
- from ctypes_utils import NULLPTR, Ptr
- from ggml import NativeObj
- from ggml_convert import convert_model, read_layer_config
- import requests
- Ctx = ggml.ggml_context_p
- UNITY_MODELS = Path(__file__).parent / "examples/unity/models"
- FAIRSEQ2_CPP = Path(__file__).parent / "examples/unity/fairseq2.cpp"
- UNITY_FLASH_ATTN = "\n# define UNITY_FLASH_ATTN 0\n" not in FAIRSEQ2_CPP.read_text()
- DATA = Path(__file__).parent / "test_data"
- LOCAL_AUDIO_SAMPLE_PATH = DATA / "LJ037-0171_sr16k.wav"
- TEST_AUDIO_SAMPLE_URL = (
- "https://dl.fbaipublicfiles.com/seamless/tests/LJ037-0171_sr16k.wav"
- )
- MB = 1024 * 1024
- @pytest.fixture(name="ctx")
- def _ctx() -> Iterator[Ctx]:
- """Allocate a new context with 1024 MB of memory"""
- try:
- mem_size = 16 * MB
- memory = torch.zeros(mem_size, dtype=torch.uint8)
- ctx = ggml.ggml_init(
- params=ggml.ggml_init_params(
- mem_size=mem_size,
- mem_buffer=ctypes.c_void_p(memory.data_ptr()),
- no_alloc=True,
- )
- )
- with torch.inference_mode():
- yield ctx
- finally:
- ggml.ggml_free(ctx)
- @functools.lru_cache()
- def _load_g_model_once() -> NativeObj:
- model_file = Path(__file__).parent / "seamlessM4T_medium.ggml"
- if not model_file.exists():
- convert_model("seamlessM4T_medium", model_file)
- return ggml.load_fairseq2_ggml_file(model_file)
- @pytest.fixture()
- def g_model(ctx: Ctx) -> c_void_p:
- model = _load_g_model_once()
- ggml.lib.fairseq2_model_set_inference_ctx(model.ptr, ctx)
- return model.ptr
- @functools.lru_cache(maxsize=1)
- def load_translator() -> Translator:
- return Translator("seamlessM4T_medium", None, device=torch.device("cpu"))
- def load_pt_model() -> Any:
- return load_translator().model
- def download_sample_audio() -> Any:
- response = requests.get(TEST_AUDIO_SAMPLE_URL, stream=True)
- with open(DATA / "LJ037-0171_sr16k.wav", "wb") as file:
- for chunk in response.iter_content(chunk_size=1024):
- if chunk:
- file.write(chunk)
- def test_convert_linear(tmp_path: Path) -> None:
- module = fairseq2.nn.Linear(16, 24, True)
- layer_config = read_layer_config(module)
- assert layer_config == {"input_dim": 16, "output_dim": 24}
- module_file = Path("module.ggml")
- convert_model(module, module_file)
- g_module = ggml.load_fairseq2_ggml_file(module_file)
- for k, v in layer_config.items():
- assert (
- ggml.fairseq2_model_layer_config_int(g_module.ptr, bytes(k, "ascii")) == v
- )
- def test_causal_attention_mask(ctx: Ctx):
- x = torch.zeros((1, 10, 32))
- generator = fairseq2.nn.transformer.CausalAttentionMaskFactory()
- mask_exp = generator(x, x).materialize().numpy()
- gx = ggml.from_numpy(ctx, x)
- gmask = ggml.causal_attention_mask(ctx, gx)
- ggml.build_and_compute(ctx, gmask)
- mask = ggml.to_numpy(gmask)
- assert mask_exp.shape == (10, 10)
- assert mask.shape == (10, 10)
- assert np.all(mask == mask_exp)
- x = x[:, :8, :]
- mask_exp = generator(x, x).materialize().numpy()
- gx = ggml.from_numpy(ctx, x)
- gmask = ggml.causal_attention_mask(ctx, gx)
- ggml.build_and_compute(ctx, gmask)
- mask = ggml.to_numpy(gmask)
- assert mask_exp.shape == (8, 8)
- assert mask.shape == (8, 8)
- assert np.all(mask == mask_exp)
- def test_LayerNorm_forward(ctx: Ctx, g_model: c_void_p) -> None:
- x = torch.empty((2, 21, 1024))
- torch.nn.init.uniform_(x, -1, 1)
- pt_model = load_pt_model()
- y_exp = pt_model.text_encoder.layers[0].ffn_layer_norm(x).numpy()
- gx = ggml.from_numpy(ctx, x)
- gy = ggml.forward("LayerNorm", g_model, "text_encoder.layers.0.ffn_layer_norm", gx)
- ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- assert np.allclose(y_exp, y, atol=1e-5)
- def test_Linear_forward(ctx: Ctx, g_model: c_void_p) -> None:
- x = torch.empty((2, 21, 1024))
- torch.nn.init.uniform_(x, -1, 1)
- pt_model = load_pt_model()
- y_exp = pt_model.text_encoder.layers[0].ffn.inner_proj(x).numpy()
- gx = ggml.from_numpy(ctx, x)
- gy = ggml.forward("Linear", g_model, "text_encoder.layers.0.ffn.inner_proj", gx)
- gf = ggml.build_and_compute(ctx, gy, dump="dot/test_Linear_forward.dot")
- y = ggml.to_numpy(gy)
- assert np.allclose(y_exp, y, atol=1e-5)
- def test_FeedForwardNetwork_forward(ctx: Ctx, g_model: c_void_p) -> None:
- x = torch.empty((2, 21, 1024)) # (bs, seq_len, model_dim)
- torch.nn.init.uniform_(x, -1 / 32, 1 / 32)
- # Test FFN without LayerNorm
- pt_model = load_pt_model()
- y_exp = pt_model.text_encoder.layers[0].ffn(x).numpy()
- gx = ggml.from_numpy(ctx, x)
- gy = ggml.forward(
- "StandardFeedForwardNetwork", g_model, "text_encoder.layers.0.ffn", gx
- )
- ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- assert np.allclose(y_exp, y, atol=1e-5)
- @pytest.mark.parametrize("lengths", [(11, 21), (21, 13)])
- def test_MultiheadAttention_forward(
- ctx: Ctx, g_model: c_void_p, lengths: Tuple[int, int]
- ) -> None:
- x = torch.empty((2, 21, 1024))
- torch.random.manual_seed(0)
- torch.nn.init.uniform_(x, -1, 1)
- # Note: we use different lengths for queries and keys,
- # this tests the implementation in decoding context too.
- # Note2: ggml_flash_attn requires that we have more keys than queries
- # qlen, klen = (11, 21) if flash_attn else (21, 13)
- qlen, klen = lengths
- xq = x[:, :qlen]
- xk = x[:, :klen]
- if qlen > klen and UNITY_FLASH_ATTN:
- pytest.skip(reason="flash_attn requires qlen > klen")
- gxq = ggml.from_numpy(ctx, xq.contiguous())
- ggml.ggml_set_name(gxq, b"xq")
- gxk = ggml.from_numpy(ctx, xk.contiguous())
- ggml.ggml_set_name(gxk, b"xk")
- ggml.ggml_set_no_alloc(ctx, True)
- gy = ggml.forward(
- "MultiheadAttention",
- g_model,
- "text_encoder.layers.0.self_attn",
- gxq,
- gxk,
- gxk,
- NULLPTR, # TODO: tests with causal attention masks
- )
- gf = ggml.build_and_compute(ctx, gy, dump="dot/test_MultiheadAttention_forward")
- y = ggml.to_numpy(gy)
- nodes = ggml.nodes(gf)
- node_buffers = set(t.contents.data for t in nodes.values())
- pt_model = load_pt_model()
- self_attn = pt_model.text_encoder.layers[0].self_attn
- # If buffers are overlapping, reading node contents, can be misleading.
- overlap = len(node_buffers) < len(nodes)
- if not overlap:
- q_exp = self_attn._project_q(xq, None).numpy().reshape(2 * 16, qlen, 64)
- q = ggml.to_numpy(nodes[b"q"])
- assert q.shape == q_exp.shape
- assert np.allclose(q_exp, q, atol=1e-5)
- attn_weights_hook = fairseq2.nn.transformer.AttentionWeightStoreHook([])
- self_attn.register_attn_weight_hook(attn_weights_hook)
- y_exp = self_attn(xq, None, xk, None, xk).numpy()
- # with flash_attn we don't have attn_weights
- naive_attn = b"attn_weights" in nodes
- if naive_attn and not overlap:
- attn_weights = ggml.to_numpy(nodes[b"attn_weights"]).reshape(-1, 16, qlen, klen)
- [(_, attn_weights_exp)] = attn_weights_hook._storage
- attn_weights_exp = attn_weights_exp.numpy()
- assert attn_weights_exp.shape == attn_weights.shape
- # GGML is very agressively reducing small softmax weights to 0,
- # so the error isn't that small
- assert np.allclose(attn_weights_exp, attn_weights, atol=1e-3)
- # But the sums should be close to 1
- assert np.allclose(np.sum(attn_weights, axis=-1), np.ones((2, 16, qlen)))
- # And the maximum index should match the original ones.
- assert np.allclose(
- np.argmax(attn_weights_exp, axis=-1), np.argmax(attn_weights, axis=-1)
- )
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=1e-2 if naive_attn else 1e-4)
- def test_MultiheadAttention_forward_self_attn_with_cache(
- ctx: Ctx, g_model: c_void_p
- ) -> None:
- pt_model = load_pt_model()
- attn = pt_model.text_decoder.layers[0].self_attn
- x = torch.empty((2, 21, 1024))
- torch.random.manual_seed(0)
- torch.nn.init.uniform_(x, -1, 1)
- state_bag = fairseq2.nn.IncrementalStateBag(100)
- with ggml.fairseq2_kv_cache_alloc(g_model, 16 * MB, 2, 21):
- # Incremental decoding
- for t in range(3):
- xq = x[:, t : t + 1]
- gxq = ggml.from_numpy(ctx, xq.contiguous())
- ggml.ggml_set_name(gxq, b"xq")
- gy = ggml.forward(
- "MultiheadAttention",
- g_model,
- "text_decoder.layers.0.self_attn",
- gxq,
- gxq,
- gxq,
- None, # type: ignore
- )
- gf = ggml.build_and_compute(
- ctx,
- gy,
- dump=f"dot/test_MultiheadAttention_forward_self_attn_with_cache_{t}.dot",
- )
- nodes = ggml.nodes(gf)
- gk_cache = ggml.to_numpy(
- nodes[b"text_decoder.layers.0.self_attn.k (step=%d)" % t]
- )
- assert gk_cache.shape == (2, t + 1, 1024)
- gk_cache = gk_cache.reshape(2, t + 1, 16, 64).transpose(0, 2, 1, 3)
- assert gk_cache.shape == (2, 16, t + 1, 64)
- y_exp = attn(xq, None, xq, None, xq, state_bag=state_bag).numpy()
- assert y_exp.shape == (2, 1, 1024)
- state = state_bag.get_state(attn, fairseq2.nn.transformer.AttentionState)
- state_bag.increment_step_nr()
- assert state is not None
- k_cache = state.get()[0].numpy()
- assert k_cache.shape == (2, 16, t + 1, 64)
- assert np.allclose(gk_cache, k_cache, atol=1e-3)
- y = ggml.to_numpy(gy)
- assert np.allclose(y, y_exp, atol=1e-2)
- def test_MultiheadAttention_forward_cross_attn_with_cache(
- ctx: Ctx, g_model: c_void_p
- ) -> None:
- pt_model = load_pt_model()
- attn = pt_model.text_decoder.layers[0].encoder_decoder_attn
- x = torch.empty((2, 21, 1024))
- torch.random.manual_seed(0)
- torch.nn.init.uniform_(x, -1, 1)
- state_bag = fairseq2.nn.IncrementalStateBag(100)
- with ggml.fairseq2_kv_cache_alloc(g_model, 16 * MB, 2, 21):
- # Incremental decoding, the keys come from the encoder, and don't change during decoding
- xk = x[:, :11]
- gxk = ggml.from_numpy(ctx, xk.contiguous(), name=b"xk")
- for t in range(3):
- xq = x[:, t : t + 1]
- gxq = ggml.from_numpy(ctx, xq.contiguous())
- ggml.ggml_set_name(gxq, b"xq")
- gy = ggml.forward(
- "MultiheadAttention",
- g_model,
- "text_decoder.layers.0.encoder_decoder_attn",
- gxq,
- gxk,
- gxk,
- None, # type: ignore
- )
- gf = ggml.build_and_compute(
- ctx,
- gy,
- dump=f"dot/test_MultiheadAttention_forward_cross_attn_with_cache_{t}.dot",
- )
- y = ggml.to_numpy(gy)
- nodes = ggml.nodes(gf)
- leaves = ggml.leafs(gf)
- if t > 0:
- # the cache only appear in the graph during the second call
- state = state_bag.get_state(
- attn, fairseq2.nn.transformer.AttentionState
- )
- assert state is not None
- assert np.allclose(
- state.get()[0].transpose(1, 2).numpy(),
- ggml.to_numpy(
- nodes[
- b"text_decoder.layers.0.encoder_decoder_attn.k_cache (view)"
- ]
- ),
- atol=1e-3,
- )
- state_bag.increment_step_nr()
- y_exp = attn(xq, None, xk, None, xk, state_bag=state_bag).numpy()
- assert y_exp.shape == (2, 1, 1024)
- assert np.allclose(y, y_exp, atol=1e-2)
- def test_StandardTransformerEncoderLayer_forward(ctx: Ctx, g_model: c_void_p) -> None:
- x = torch.empty((2, 21, 1024))
- torch.random.manual_seed(0)
- torch.nn.init.uniform_(x, -1, 1)
- pt_model = load_pt_model()
- layer = pt_model.text_encoder.layers[0]
- gx = ggml.from_numpy(ctx, x)
- ggml.ggml_set_name(gx, b"x")
- gy = ggml.forward(
- "StandardTransformerEncoderLayer",
- g_model,
- "text_encoder.layers.0",
- gx,
- None, # TODO support padding mask
- )
- gf = ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- y_exp, _ = layer(x, padding_mask=None)
- y_exp = y_exp.numpy()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=1e-4 if UNITY_FLASH_ATTN else 1e-2)
- def test_StandardConformerEncoderLayer_forward(ctx: Ctx, g_model: c_void_p) -> None:
- pt_model = load_pt_model()
- x = torch.rand(1, 137, 1024)
- layer = pt_model.speech_encoder.inner.layers[0]
- gx = ggml.from_numpy(ctx, x[0])
- ggml.ggml_set_name(gx, b"x")
- gy = ggml.forward(
- "StandardConformerEncoderLayer",
- g_model,
- "speech_encoder.inner.layers.0",
- gx,
- None, # TODO support padding mask
- )
- gf = ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- y_exp, _ = layer(x, padding_mask=None)
- y_exp = y_exp.squeeze(0).numpy()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=2e-3)
- def test_StandardConformerEncoderAdaptorLayer_forward(
- ctx: Ctx, g_model: c_void_p
- ) -> None:
- pt_model = load_pt_model()
- torch.random.manual_seed(0)
- x = torch.rand(1, 137, 1024)
- layer = pt_model.speech_encoder.adaptor_layers[0]
- gx = ggml.from_numpy(ctx, x[0])
- ggml.ggml_set_name(gx, b"x")
- gy = ggml.forward(
- "StandardConformerEncoderAdaptorLayer",
- g_model,
- "speech_encoder.adaptor_layers.0",
- gx,
- None, # TODO support padding mask
- )
- gf = ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- y_exp, _ = layer(x, None)
- y_exp = y_exp.numpy()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=2e-3)
- def test_StandardTransformerEncoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
- x = torch.empty((2, 21, 1024))
- padding_mask = fairseq2.nn.padding.PaddingMask(torch.tensor([21, 21]), 21)
- torch.random.manual_seed(0)
- torch.nn.init.uniform_(x, -1, 1)
- gx = ggml.from_numpy(ctx, x)
- ggml.ggml_set_name(gx, b"x")
- gpad = ggml.from_numpy(ctx, padding_mask.materialize())
- ggml.ggml_set_name(gpad, b"padding_mask")
- gy = ggml.forward(
- "StandardTransformerEncoder",
- g_model,
- "text_encoder",
- gx,
- None, # TODO support padding mask
- )
- gf = ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- pt_model = load_pt_model()
- y_exp, _ = pt_model.text_encoder(x, padding_mask)
- y_exp = y_exp.numpy()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=5e-3)
- def test_StandardConformerEncoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
- pt_model = load_pt_model()
- if not LOCAL_AUDIO_SAMPLE_PATH.exists():
- download_sample_audio()
- wav, _ = torchaudio.load(LOCAL_AUDIO_SAMPLE_PATH)
- gx = ggml.from_numpy(ctx, wav * 2**15) # Apply scale before sending into ggml!
- ggml.ggml_set_name(gx, b"x")
- gy = ggml.forward(
- "StandardConformerEncoder",
- g_model,
- "speech_encoder",
- gx,
- None, # TODO support padding mask
- )
- gf = ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- cache = DATA / "test_StandardConformerEncoder_forward.npy"
- if not cache.exists():
- converter = WaveformToFbankConverter(
- num_mel_bins=80,
- waveform_scale=2**15,
- channel_last=True,
- standardize=True,
- )
- converter_input = {
- "waveform": wav.transpose(0, 1),
- "sample_rate": 16000.0,
- "format": -1,
- }
- pt_model = load_pt_model()
- speech_encoder_input = pt_model.speech_encoder_frontend(
- converter(converter_input)["fbank"].unsqueeze(0), None
- )[0]
- y_exp, _ = pt_model.speech_encoder(speech_encoder_input, None)
- y_exp = y_exp.numpy()
- np.save(cache, y_exp)
- else:
- y_exp = np.load(cache)
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=1e-2)
- def test_WaveformToFbank_forward(ctx: Ctx, g_model: c_void_p) -> None:
- converter = WaveformToFbankConverter(
- num_mel_bins=80,
- waveform_scale=2**15,
- channel_last=True,
- standardize=True,
- )
- extractor = Wav2Vec2FbankFeatureExtractor(80, stride=2, sample_every_k=1)
- if not LOCAL_AUDIO_SAMPLE_PATH.exists():
- download_sample_audio()
- wav, _ = torchaudio.load(LOCAL_AUDIO_SAMPLE_PATH)
- gx = ggml.from_numpy(ctx, wav * 2**15) # Apply scale before sending into ggml!
- ggml.ggml_set_name(gx, b"x")
- gy = ggml.forward("WaveformToFbank", g_model, "", gx)
- gf = ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- converter_input = {
- "waveform": wav.transpose(0, 1),
- "sample_rate": 16000.0,
- "format": -1,
- }
- y_exp, _ = extractor(converter(converter_input)["fbank"].unsqueeze(0), None)
- y_exp = y_exp.squeeze(0).numpy()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=4e-3) # reduce? error is from standardization
- def test_PositionalEmbedding_forward(ctx: Ctx, g_model: c_void_p) -> None:
- seq = torch.zeros((4, 20, 1024), dtype=torch.float32)
- pos_encoder = fairseq2.nn.SinusoidalPositionEncoder(1024, 55, _legacy_pad_idx=1)
- y_exp = pos_encoder(seq, None)[0].numpy()
- gseq = ggml.from_numpy(ctx, seq[0].clone().numpy())
- ggml.ggml_set_name(gseq, b"seq")
- gy = ggml.forward(
- "PositionalEmbedding", g_model, "text_decoder_frontend.pos_encoder", gseq
- )
- gf = ggml.build_and_compute(ctx, gy, dump=True)
- y = ggml.to_numpy(gy)
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=1e-6)
- def test_PositionalEmbedding_forward_with_cache(ctx: Ctx, g_model: c_void_p) -> None:
- seq = torch.zeros((4, 20, 1024), dtype=torch.float32)
- pos_encoder = fairseq2.nn.SinusoidalPositionEncoder(1024, 55, _legacy_pad_idx=1)
- pos_encoder.eval()
- state_bag = fairseq2.nn.IncrementalStateBag(100)
- with ggml.fairseq2_kv_cache_alloc(g_model, 16 * MB, 2, 21):
- # Incremental decoding
- for t in range(20):
- gseq = ggml.from_numpy(ctx, seq[:, t : t + 1, :].numpy())
- ggml.ggml_set_name(gseq, b"seq")
- gy = ggml.forward(
- "PositionalEmbedding",
- g_model,
- "text_decoder_frontend.pos_encoder",
- gseq,
- )
- gf = ggml.build_and_compute(ctx, gy, dump=t == 1)
- y = ggml.to_numpy(gy)
- y_exp = pos_encoder(seq[:, t : t + 1, :], None, state_bag=state_bag).numpy()
- state_bag.increment_step_nr()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=1e-6)
- def test_TransformerEmbeddingFrontend_forward(ctx: Ctx, g_model: c_void_p) -> None:
- seq = torch.arange(2 * 20).reshape(2, 20)
- seq[1, 15:] = 0 # padding for second sentence
- seq_len = torch.tensor([20, 15])
- gseq = ggml.from_numpy(ctx, seq.numpy().astype(np.int32))
- ggml.ggml_set_name(gseq, b"seq")
- gy = ggml.forward(
- "TransformerEmbeddingFrontend", g_model, "text_decoder_frontend", gseq
- )
- ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- pt_model = load_pt_model()
- y_exp, _ = pt_model.text_decoder_frontend(seq, seq_len)
- y_exp = y_exp.numpy()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=1e-6)
- def test_StandardTransformerDecoderLayer_forward(ctx: Ctx, g_model: c_void_p) -> None:
- x = torch.empty((2, 13, 1024))
- encoder_out = torch.empty((2, 21, 1024))
- torch.random.manual_seed(0)
- torch.nn.init.uniform_(x, -1, 1)
- torch.nn.init.uniform_(encoder_out, -1, 1)
- self_attn_mask = fairseq2.nn.transformer.CausalAttentionMaskFactory()(x, x)
- gx = ggml.from_numpy(ctx, x)
- ggml.ggml_set_name(gx, b"x")
- gself_attn_mask = ggml.from_numpy(ctx, self_attn_mask.materialize().numpy())
- ggml.ggml_set_name(gself_attn_mask, b"self_attn_mask")
- genc = ggml.from_numpy(ctx, encoder_out)
- ggml.ggml_set_name(genc, b"encoder_out")
- gy = ggml.forward(
- "StandardTransformerDecoderLayer",
- g_model,
- "text_decoder.layers.0",
- gx,
- gself_attn_mask,
- genc,
- NULLPTR, # TODO support padding mask,
- )
- ggml.build_and_compute(ctx, gy, dump=True)
- y = ggml.to_numpy(gy)
- pt_model = load_pt_model()
- y_exp, _ = pt_model.text_decoder.layers[0](x, None, encoder_output=encoder_out, self_attn_mask=self_attn_mask)
- y_exp = y_exp.numpy()
- assert y.shape == y_exp.shape
- # We still have some numerical imprecision
- assert np.allclose(y_exp, y, atol=0.1)
- assert np.sum(np.abs(y_exp-y) > 1e-2) < 20
- def test_StandardTransformerDecoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
- x = torch.empty((2, 13, 1024))
- encoder_out = torch.empty((2, 21, 1024))
- padding_mask = fairseq2.nn.padding.PaddingMask(torch.tensor([13, 13]), 13)
- torch.random.manual_seed(0)
- torch.nn.init.uniform_(x, -1, 1)
- torch.nn.init.uniform_(encoder_out, -1, 1)
- gx = ggml.from_numpy(ctx, x)
- ggml.ggml_set_name(gx, b"x")
- gpad = ggml.from_numpy(ctx, padding_mask.materialize())
- ggml.ggml_set_name(gpad, b"padding_mask")
- genc = ggml.from_numpy(ctx, encoder_out)
- gy = ggml.forward(
- "StandardTransformerDecoder",
- g_model,
- "text_decoder",
- gx,
- None, # TODO support padding mask,
- genc,
- None,
- )
- ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- pt_model = load_pt_model()
- y_exp, _ = pt_model.text_decoder(x, padding_mask, encoder_out, None)
- y_exp = y_exp.numpy()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=1e-3) # TODO: those tests are failing now
- def test_s2tt(ctx: Ctx, g_model: c_void_p):
- if not LOCAL_AUDIO_SAMPLE_PATH.exists():
- download_sample_audio()
- src_audio_wav, _ = torchaudio.load(LOCAL_AUDIO_SAMPLE_PATH)
- sample_file = DATA / "LJ037-0171_sr16k.wav.trans"
- translator = load_translator()
- if not sample_file.exists():
- decoded_audio = {
- "waveform": src_audio_wav.t(),
- "sample_rate": 16000.0,
- "format": -1,
- }
- src = translator.collate(translator.convert_to_fbank(decoded_audio))["fbank"]
- text_out, _ = translator.get_prediction(
- translator.model,
- translator.text_tokenizer,
- translator.unit_tokenizer,
- src["seqs"],
- padding_mask=None,
- input_modality=Modality.SPEECH,
- output_modality=Modality.TEXT,
- tgt_lang="cmn",
- text_generation_opts=SequenceGeneratorOptions(),
- unit_generation_opts=None,
- )
- tgt_text = str(text_out[0])
- assert tgt_text == "专家的检查和证据使该委员会得出了结论,可能有五次枪击."
- with open(sample_file, "w") as f:
- f.write(tgt_text)
- with open(sample_file, "r") as exp:
- exp_tgt_text = exp.readlines()[0].strip()
- # Apply scale before sending into ggml!
- gx = ggml.from_numpy(ctx, src_audio_wav * 2**15)
- ggml.ggml_set_name(gx, b"x")
- encoder_out = ggml.forward(
- "StandardConformerEncoder",
- g_model,
- "speech_encoder",
- gx,
- NULLPTR, # TODO support padding mask
- )
- gf = ggml.build_and_compute(ctx, encoder_out)
- beam_size = 5
- opts = ggml.SequenceGeneratorOptions(
- beam_size=beam_size,
- soft_max_seq_len_a=1,
- soft_max_seq_len_b=200,
- hard_max_seq_len=500,
- )
- job = ggml.SequenceGeneratorJob(
- opts=opts,
- prefix_seq=ggml.from_numpy(ctx, np.array([3, 256200]).astype(np.int32)),
- pad_idx=0,
- unk_idx=1,
- bos_idx=2,
- eos_idx=3,
- )
- result_ptr = ggml.generate_sequence(g_model, Ptr(job), encoder_out, NULLPTR, ctx)
- results = [result_ptr[i] for i in range(beam_size) if result_ptr[i].seq != None]
- tokens = [
- translator.text_tokenizer.model.index_to_token(id)
- for id in ggml.to_numpy(results[0].seq).tolist()
- ][2:-1]
- tokens = "".join(tokens).replace("▁", " ")[1:]
- assert tokens == exp_tgt_text
|