fairseq2.cpp 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284
  1. #include <math.h>
  2. #include "kaldi-native-fbank/csrc/feature-fbank.h"
  3. #include "kaldi-native-fbank/csrc/feature-window.h"
  4. #include "ggml.h"
  5. #include "fairseq2.h"
  6. #include <unordered_map>
  7. #include <algorithm>
  8. #include <iostream>
  9. /// allocate the fairseq2 model and hyperparameters
  10. extern "C" fairseq2_model* fairseq2_model_alloc() {
  11. // pre-allocate some memory to write hyperparameters and tensors pointers
  12. auto* model = new fairseq2_model;
  13. model->tensors_ctx = nullptr;
  14. return model;
  15. }
  16. inline double model_layer_config_d(const fairseq2_model& model, std::string name) {
  17. const std::int64_t* data = &model.layer_config.at(name);
  18. return *(double*)data;
  19. }
  20. extern "C" double fairseq2_model_layer_config_double(const fairseq2_model& model, const char* name) {
  21. return model_layer_config_d(model, std::string(name));
  22. }
  23. extern "C" std::int64_t fairseq2_model_layer_config_int(const fairseq2_model& model, const char* name) {
  24. return model.layer_config.at(std::string(name));
  25. }
  26. extern "C" void fairseq2_model_free(fairseq2_model* model) {
  27. if (model->tensors_ctx) ggml_free(model->tensors_ctx);
  28. delete model;
  29. }
  30. extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
  31. model->ctx = ctx;
  32. }
  33. extern "C" std::string* std_string_alloc(char* c_str) {
  34. return new std::string(c_str);
  35. }
  36. extern "C" void std_string_free(std::string* str) {
  37. delete str;
  38. }
  39. bool has_layer(fairseq2_model& model, const std::string& name) {
  40. return model.tensors.find(name) != model.tensors.end();
  41. }
  42. extern "C" ggml_tensor* Linear_forward(
  43. fairseq2_model& model,
  44. const std::string &prefix,
  45. ggml_tensor* input // (d_in)
  46. ) {
  47. // Note: for now we assumed un-batched input
  48. ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
  49. GGML_ASSERT(weight != nullptr);
  50. ggml_tensor* out = ggml_mul_mat(model.ctx, weight, input); // (d_out)
  51. ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
  52. if (bias == nullptr) return out;
  53. return ggml_add_inplace(model.ctx, out, bias);
  54. }
  55. extern "C" ggml_tensor* LayerNorm_forward(
  56. fairseq2_model& model,
  57. const std::string &prefix,
  58. ggml_tensor* input
  59. ) {
  60. ggml_tensor* weight = model.tensors[prefix + ".weight"];
  61. GGML_ASSERT(weight != nullptr);
  62. ggml_tensor* bias = model.tensors[prefix + ".bias"];
  63. GGML_ASSERT(bias != nullptr);
  64. auto ctx = model.ctx;
  65. double eps = model_layer_config_d(model, prefix + ".eps");
  66. input = ggml_norm(ctx, input, /*eps*/eps);
  67. return ggml_add_inplace(
  68. ctx,
  69. ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),
  70. ggml_repeat(ctx, bias, input)
  71. );
  72. }
  73. extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
  74. fairseq2_model& model,
  75. const std::string& prefix,
  76. ggml_tensor* seqs
  77. ) {
  78. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  79. // inner_activation = ReLu // TODO: allow other activation
  80. seqs = ggml_relu_inplace(model.ctx, seqs);
  81. if (has_layer(model, prefix + ".inner_layer_norm")) {
  82. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  83. }
  84. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  85. return seqs;
  86. }
  87. extern "C" ggml_tensor* SiluFeedForwardNetwork_forward(
  88. fairseq2_model& model,
  89. const std::string& prefix,
  90. ggml_tensor* seqs
  91. ) {
  92. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  93. seqs = ggml_silu(model.ctx, seqs);
  94. if (has_layer(model, prefix + ".inner_layer_norm")) {
  95. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  96. }
  97. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  98. return seqs;
  99. }
  100. ggml_tensor* ggml_flatten_1d(ggml_context* ctx, ggml_tensor* x, int dim) {
  101. int n_dims = x->n_dims;
  102. GGML_ASSERT(dim >= 0);
  103. GGML_ASSERT(dim < n_dims);
  104. GGML_ASSERT(ggml_is_contiguous(x));
  105. // Nothing to do
  106. if (dim == n_dims - 1) return x;
  107. if (n_dims == 2) {
  108. return ggml_reshape_1d(ctx, x, x->ne[0] * x->ne[1]);
  109. } else if (n_dims == 3) {
  110. if (dim == 0) {
  111. return ggml_reshape_2d(ctx, x, x->ne[0] * x->ne[1], x->ne[2]);
  112. } else { // dim == 1
  113. return ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2]);
  114. }
  115. } else { // n_dims == 4
  116. if (dim == 0) {
  117. return ggml_reshape_3d(ctx, x, x->ne[0] * x->ne[1], x->ne[2], x->ne[3]);
  118. } else if (dim == 1) {
  119. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1] * x->ne[2], x->ne[3]);
  120. } else { // dim == 2
  121. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2] * x->ne[3]);
  122. }
  123. }
  124. }
  125. ggml_tensor* ggml_unflatten_1d(ggml_context* ctx, ggml_tensor* x, int dim, int num_el) {
  126. int n_dims = x->n_dims;
  127. GGML_ASSERT(dim >= 0);
  128. GGML_ASSERT(dim < n_dims);
  129. GGML_ASSERT(n_dims < 4);
  130. if (n_dims == 1) {
  131. return ggml_reshape_2d(ctx, x, num_el, x->ne[0] / num_el);
  132. } else if (n_dims == 2) {
  133. if (dim == 0) {
  134. return ggml_reshape_3d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1]);
  135. } else { // dim == 1
  136. return ggml_reshape_3d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el);
  137. }
  138. } else { // (n_dims == 3)
  139. if (dim == 0) {
  140. return ggml_reshape_4d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->ne[2]);
  141. } else if (dim == 1) {
  142. return ggml_reshape_4d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->ne[2]);
  143. } else { // dim == 2
  144. return ggml_reshape_4d(ctx, x, x->ne[0], x->ne[1], num_el, x->ne[2] / num_el);
  145. }
  146. }
  147. }
  148. ggml_tensor* _reshape_num_head(ggml_context* ctx, ggml_tensor* x, int head_dim) {
  149. // (B, S, dim) -> (B, S, H, H_dim)
  150. x = ggml_unflatten_1d(ctx, x, 0, head_dim);
  151. x = ggml_permute(ctx, x, 0, 2, 1, 3); // (B, H, S, H_dim)
  152. x = ggml_cont(ctx, x);
  153. x = ggml_flatten_1d(ctx, x, 2); // (B * H, S, H_dim)
  154. return x;
  155. }
  156. /// (B, Sk, dim) -> // (B?, H, H_dim, Sk)
  157. ggml_tensor* _reshape_num_head_values(ggml_context* ctx, ggml_tensor* v, int head_dim ) {
  158. // (B, Sk, dim) -> (B, Sk, H, H_dim)
  159. v = ggml_unflatten_1d(ctx, v, 0, head_dim);
  160. v = ggml_permute(ctx, v, 1, 2, 0, 3); // (B?, H, H_dim, Sk)
  161. v = ggml_cont(ctx, v);
  162. v = ggml_flatten_1d(ctx, v, 2); // (B * H, S, H_dim)
  163. return v;
  164. }
  165. // flash_attn doesn't work for cross attention because it assumes Q <= K
  166. // and it seems to yield slightly different scores than expected, and thus a different beam search
  167. # define UNITY_FLASH_ATTN 0
  168. extern "C" ggml_tensor* MultiheadAttention_forward(
  169. fairseq2_model& model,
  170. const std::string &prefix,
  171. ggml_tensor* queries, // (slen, d_in)
  172. ggml_tensor* keys, // (klen, d_in)
  173. ggml_tensor* values, // (klen, d_out)
  174. ggml_tensor* attn_mask // (klen, slen)
  175. ) {
  176. int model_dim = queries->ne[0];
  177. int num_heads = model.layer_config.at(prefix + ".num_heads");
  178. int head_dim = model_dim / num_heads;
  179. GGML_ASSERT(model_dim % num_heads == 0);
  180. ggml_context* ctx = model.ctx;
  181. ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries); // (B, S, H * H_dim)
  182. ggml_set_name(q, "q");
  183. q = _reshape_num_head(ctx, q, head_dim); // (B * H, S, H_dim)
  184. ggml_tensor* k = Linear_forward(model, prefix + ".k_proj", keys);
  185. ggml_set_name(k, "k");
  186. k = _reshape_num_head(ctx, k, head_dim); // (B * H, Sk, H_dim)
  187. ggml_tensor* v = Linear_forward(model, prefix + ".v_proj", values);
  188. ggml_set_name(v, "v");
  189. v = _reshape_num_head_values(ctx, v, head_dim); // (B * H, H_dim, Sk)
  190. v = ggml_cont(ctx, v);
  191. #if UNITY_FLASH_ATTN
  192. // For flash_attn, we assume either no masks, or triangular masks.
  193. ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/attn_mask != nullptr); // (B * H, S, H_dim)
  194. ggml_set_name(attn, "attn");
  195. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  196. attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (B, S, H, H_dim)
  197. #else
  198. // (B * H, Sk, H_dim) x (B * H, S, H_dim) -> (B * H, S, Sk)
  199. ggml_tensor* qk = ggml_mul_mat(ctx, k, q);
  200. ggml_set_name(qk, "qk");
  201. ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);
  202. ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
  203. qk = ggml_scale(ctx, qk, qk_scale);
  204. ggml_set_name(qk, "qk_scaled");
  205. // TODO: Should we replace this by ggml_diag_mask_inf ?
  206. if (attn_mask) qk = ggml_add(ctx, qk, attn_mask);
  207. // TODO: upgrade qk to float32 if needed
  208. ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (B * H, S, Sk)
  209. ggml_set_name(attn_weights, "attn_weights");
  210. // (B * H, S, Sk) x (B * H, H_dim, Sk) -> (B * H, H_dim, S)
  211. ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);
  212. ggml_set_name(attn, "attn");
  213. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  214. attn = ggml_permute(ctx, attn, 2, 0, 1, 3); // (B, S, H, H_dim)
  215. #endif // UNITY_FLASH_ATTN
  216. attn = ggml_cont(ctx, attn);
  217. attn = ggml_flatten_1d(ctx, attn, 0); // (B, S, H * H_dim)
  218. // out -> (B, S, d_out)
  219. ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
  220. ggml_set_name(out, "out");
  221. return out;
  222. }
  223. extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
  224. fairseq2_model& model,
  225. const std::string& prefix,
  226. ggml_tensor* seqs,
  227. ggml_tensor* padding_mask
  228. ) {
  229. ggml_context* ctx = model.ctx;
  230. auto norm_order = model.layer_config.at(prefix + ".norm_order");
  231. // _forward_self_attn(seqs, padding_mask)
  232. auto residual = seqs;
  233. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  234. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  235. // TODO: add padding_mask to MultiheadAttention_forward
  236. GGML_ASSERT(padding_mask == nullptr);
  237. seqs = MultiheadAttention_forward(
  238. model,
  239. prefix + ".self_attn",
  240. seqs,
  241. seqs,
  242. seqs,
  243. /*attn_mask=*/nullptr
  244. );
  245. if (has_layer(model, prefix + ".self_attn_norm"))
  246. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  247. seqs = ggml_add(ctx, seqs, residual);
  248. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  249. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  250. // _forward_ffn(seqs)
  251. residual = seqs;
  252. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  253. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  254. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  255. // TODO: if self.residual_scale is not None:
  256. // residual = self.residual_scale * residual
  257. seqs = ggml_add(ctx, seqs, residual);
  258. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  259. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  260. return seqs;
  261. }
  262. extern "C" ggml_tensor* WaveformToFbank_forward(
  263. fairseq2_model& model,
  264. const std::string &prefix,
  265. ggml_tensor* waveform
  266. ) {
  267. // Hardcoding: num_bins 80, sample rate 16k, always standardize
  268. ggml_context* ctx = model.ctx;
  269. knf::MelBanksOptions mel_opts{};
  270. mel_opts.num_bins = 80;
  271. knf::FrameExtractionOptions frame_opts{};
  272. frame_opts.samp_freq = 16000;
  273. knf::FbankOptions opts{};
  274. opts.frame_opts = frame_opts;
  275. opts.mel_opts = mel_opts;
  276. std::vector<float_t> signal_frame{};
  277. std::int32_t num_frames = knf::NumFrames(/*num_samples=*/waveform->ne[0], frame_opts);
  278. struct ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 80, num_frames);
  279. knf::FbankComputer native_(opts);
  280. knf::FeatureWindowFunction window_fn_(native_.GetFrameOptions());
  281. for (std::int32_t frame_nr = 0; frame_nr < num_frames; ++frame_nr) {
  282. signal_frame.resize(0);
  283. // Extract the frame from the waveform tensor.
  284. knf::ExtractWindow(
  285. /*sample_offset=*/0,
  286. (float *)(waveform->data),
  287. waveform->ne[0],
  288. frame_nr,
  289. frame_opts,
  290. window_fn_,
  291. &signal_frame);
  292. native_.Compute(
  293. /*signal_raw_log_energy=*/0, /*vtln_warp=*/1.0, &signal_frame, ((float *)(output->data) + frame_nr * 80));
  294. }
  295. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  296. output = ggml_norm(ctx, output, 1e-5);
  297. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  298. if (output->ne[1] % 2 == 1) {
  299. struct ggml_tensor * remove_last = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, output->ne[1]-1);
  300. for (int i = 0; i < output->ne[1]-1; ++i) {
  301. ((int32_t *) remove_last->data)[i] = i;
  302. }
  303. output = ggml_get_rows(ctx, output, remove_last);
  304. }
  305. output = ggml_reshape_2d(ctx, output, output->ne[0] * 2, output->ne[1] / 2);
  306. return output;
  307. }
  308. // TODO: Check if it's possible to merge with standard MHA
  309. extern "C" ggml_tensor* RelativePositionMHA_forward(
  310. fairseq2_model& model,
  311. const std::string& prefix,
  312. ggml_tensor* seqs
  313. ) {
  314. ggml_context* ctx = model.ctx;
  315. ggml_tensor* residual = seqs;
  316. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  317. // self_attn: qkv
  318. struct ggml_tensor * Qcur = Linear_forward(model, prefix + ".q_proj", seqs);
  319. struct ggml_tensor * Kcur = Linear_forward(model, prefix + ".k_proj", seqs);
  320. struct ggml_tensor * Vcur = Linear_forward(model, prefix + ".v_proj", seqs);
  321. // self_attn: rel_pos SDPA
  322. int32_t S = seqs->ne[1];
  323. int32_t H = 16; // TODO: Make this configurable
  324. int32_t n_ctx = 4096;
  325. int32_t K_h = seqs->ne[0] / H;
  326. int32_t start_index = n_ctx - S;
  327. int32_t end_index = n_ctx + S - 1;
  328. int num_indices = end_index - start_index;
  329. struct ggml_tensor *rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, num_indices);
  330. rows->data = malloc(ggml_nbytes(rows));
  331. for (int i = 0; i < num_indices; i++) {
  332. ((int32_t *)rows->data)[i] = start_index + i;
  333. }
  334. // self_attn: load pos_enc weights & compute_r
  335. // In fairseq2 pos_enc weights are calculated on the fly, since some more custom operators might be needed to enable this,
  336. // we store the results (fixed) in checkpoint as model.audio_enc_pos_enc_w and load directly.
  337. struct ggml_tensor * r = ggml_get_rows(ctx, model.tensors["speech_encoder.pos_enc"], rows);
  338. r = ggml_mul_mat(ctx, model.tensors[prefix + ".sdpa.r_proj.weight"], r);
  339. r = ggml_dup(ctx, ggml_permute(ctx,
  340. ggml_cpy(ctx,
  341. r,
  342. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S*2-1)),
  343. 0, 2, 1, 3));
  344. struct ggml_tensor * u_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.u_bias"], K_h, 1, H);
  345. struct ggml_tensor * v_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.v_bias"], K_h, 1, H);
  346. // self_attn: Permute QKV
  347. struct ggml_tensor * Q =
  348. ggml_dup(ctx, ggml_permute(ctx,
  349. ggml_cpy(ctx,
  350. Qcur,
  351. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  352. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  353. struct ggml_tensor * K =
  354. ggml_dup(ctx, ggml_permute(ctx,
  355. ggml_cpy(ctx,
  356. Kcur,
  357. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  358. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  359. struct ggml_tensor * V =
  360. ggml_dup(ctx, ggml_permute(ctx,
  361. ggml_cpy(ctx,
  362. Vcur,
  363. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  364. 1, 2, 0, 3)); // (H * K_h, S) -> (K_h, H, S) -> (H, S, K_h)
  365. struct ggml_tensor * q_with_u_bias = ggml_add(ctx, Q, u_bias); // (K_h, S, H)
  366. struct ggml_tensor * q_with_v_bias = ggml_add(ctx, Q, v_bias); // (K_h, S, H)
  367. struct ggml_tensor * ac = ggml_mul_mat(ctx, K, q_with_u_bias);
  368. struct ggml_tensor * bd = ggml_mul_mat(ctx, r, q_with_v_bias);
  369. // self_attn: shift_bd. Logic follows https://github.com/facebookresearch/fairseq2/blob/main/src/fairseq2/nn/transformer/relative_attention.py#L161
  370. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // H, S, 2S-1
  371. struct ggml_tensor * pad = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, H, S, 1);
  372. pad->data = malloc(ggml_nbytes(pad));
  373. pad = ggml_set_f32(pad, 0.0);
  374. bd = ggml_concat(ctx, pad, bd); // bd[i][j][0] == 0, (H, S, 2S)
  375. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // (2S, S, H)
  376. bd = ggml_dup(ctx, ggml_reshape_3d(ctx, bd, S, 2*S, H)); // (S, 2S, H)
  377. bd = ggml_remove_head_row(ctx, bd); // A custom operator introduced to reduce 1st row (in the 2nd dim)
  378. bd = ggml_reshape_3d(ctx, bd, 2*S-1, S, H);
  379. bd = ggml_get_first_cols_by_rows(ctx, bd); // A custom operator introduced to get first #rows cols.
  380. // self_attn: compute attn / weights
  381. struct ggml_tensor * attn_weights = ggml_add(ctx, ac, bd);
  382. struct ggml_tensor * attn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  383. attn_scale->data = malloc(ggml_nbytes(attn_scale));
  384. ggml_set_f32(attn_scale, 1.0 / pow(K_h, 0.5));
  385. attn_weights = ggml_mul(ctx, ggml_repeat(ctx, attn_scale, attn_weights), attn_weights);
  386. attn_weights = ggml_soft_max(ctx, attn_weights);
  387. struct ggml_tensor * attn = ggml_mul_mat(ctx, V, attn_weights); // K_h, S, H
  388. attn = ggml_dup(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3));
  389. struct ggml_tensor * attn_2d = ggml_reshape_2d(ctx, attn, K_h * H, S);
  390. struct ggml_tensor * attn_out = ggml_mul_mat(ctx, model.tensors[prefix + ".output_proj.weight"], attn_2d);
  391. attn_out = ggml_add(ctx,
  392. ggml_repeat(ctx,
  393. model.tensors[prefix + ".output_proj.bias"],
  394. attn_out),
  395. attn_out);
  396. attn_out = ggml_add(ctx, residual, attn_out);
  397. return attn_out;
  398. }
  399. extern "C" ggml_tensor* ConvModule_forward(
  400. fairseq2_model& model,
  401. const std::string& prefix,
  402. ggml_tensor* seqs
  403. ) {
  404. ggml_context* ctx = model.ctx;
  405. ggml_tensor* residual = seqs;
  406. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  407. // conv: Use matmul for pointwise conv 1 - kernel_size=1, no padding case
  408. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv1.weight"], seqs);
  409. // conv: GLU
  410. seqs = ggml_glu(ctx, seqs);
  411. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  412. // S x C -> (S+K-1) x C -> K x S x C -> S x C
  413. seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".depthwise_conv.weight"], seqs, 1, 15, 1);
  414. // conv: Custom implementation of batch norm
  415. seqs = ggml_batch_norm(ctx, seqs, model.tensors[prefix + ".batch_norm.weight"], model.tensors[prefix + ".batch_norm.bias"], model.tensors[prefix + ".batch_norm.running_mean"], model.tensors[prefix + ".batch_norm.running_var"], 1e-5);
  416. // conv: SiLU actvation
  417. seqs = ggml_silu(ctx, seqs);
  418. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  419. // conv: Use matmul for pointwise conv 2 - kernel_size=1, no padding case
  420. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv2.weight"], seqs);
  421. // conv: + residual
  422. seqs = ggml_add(ctx, seqs, residual);
  423. return seqs;
  424. }
  425. extern "C" ggml_tensor* StandardConformerEncoderLayer_forward(
  426. fairseq2_model& model,
  427. const std::string& prefix,
  428. ggml_tensor* seqs,
  429. ggml_tensor* padding_mask
  430. ) {
  431. ggml_context* ctx = model.ctx;
  432. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  433. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  434. ggml_set_f32(ffn_scale, 0.5f);
  435. struct ggml_tensor * residual = seqs;
  436. seqs = LayerNorm_forward(model, prefix + ".ffn1_layer_norm", seqs);
  437. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn1", seqs);
  438. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  439. seqs = ggml_add(ctx, seqs, residual);
  440. seqs = RelativePositionMHA_forward(model, prefix + ".self_attn", seqs);
  441. seqs = ConvModule_forward(model, prefix + ".conv", seqs);
  442. residual = seqs;
  443. seqs = LayerNorm_forward(model, prefix + ".ffn2_layer_norm", seqs);
  444. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn2", seqs);
  445. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  446. seqs = ggml_add(ctx, seqs, residual);
  447. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  448. return seqs;
  449. }
  450. extern "C" ggml_tensor* StandardConformerEncoder_forward(
  451. fairseq2_model& model,
  452. const std::string& prefix,
  453. ggml_tensor* seqs,
  454. ggml_tensor* padding_mask
  455. ) { // TODO: Implement this!
  456. ggml_context* ctx = model.ctx;
  457. seqs = WaveformToFbank_forward(model, prefix, seqs);
  458. seqs = LayerNorm_forward(model, prefix + "_frontend.post_extract_layer_norm", seqs);
  459. seqs = Linear_forward(model, prefix + "_frontend.model_dim_proj", seqs);
  460. int layer_idx = 0;
  461. std::string layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  462. while (has_layer(model, layer_name)) {
  463. seqs = StandardConformerEncoderLayer_forward(
  464. model, layer_name, seqs, padding_mask
  465. );
  466. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  467. layer_idx += 1;
  468. layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  469. }
  470. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  471. ggml_tensor* residual = seqs;
  472. seqs = Linear_forward(model, prefix + ".proj1", seqs);
  473. seqs = ggml_relu_inplace(ctx, seqs);
  474. seqs = Linear_forward(model, prefix + ".proj2", seqs);
  475. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  476. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  477. ggml_set_f32(ffn_scale, 0.5f);
  478. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  479. seqs = ggml_add(ctx, seqs, residual);
  480. layer_idx = 0;
  481. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  482. while (has_layer(model, layer_name)) {
  483. seqs = StandardConformerEncoderAdaptorLayer_forward(
  484. model, layer_name, seqs, padding_mask
  485. );
  486. ggml_set_name(seqs, ("x_ada_" + std::to_string(layer_idx)).c_str());
  487. layer_idx += 1;
  488. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  489. }
  490. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  491. return seqs;
  492. }
  493. extern "C" ggml_tensor* StandardConformerEncoderAdaptorLayer_forward(
  494. fairseq2_model& model,
  495. const std::string& prefix,
  496. ggml_tensor* seqs,
  497. ggml_tensor* padding_mask
  498. ) {
  499. ggml_context* ctx = model.ctx;
  500. struct ggml_tensor * residual = seqs;
  501. residual = LayerNorm_forward(model, prefix + ".residual_layer_norm", residual);
  502. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  503. residual = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".residual_conv.weight"], residual, 8, 4, 1);
  504. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  505. residual = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".residual_conv.bias"], residual), residual);
  506. residual = ggml_glu(ctx, residual);
  507. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  508. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  509. seqs = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".self_attn_conv.weight"], seqs, 8, 4, 1);
  510. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  511. seqs = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".self_attn_conv.bias"], seqs), seqs);
  512. seqs = ggml_glu(ctx, seqs);
  513. seqs = MultiheadAttention_forward(
  514. model,
  515. prefix + ".self_attn",
  516. seqs,
  517. seqs,
  518. seqs,
  519. /*attention masks=*/nullptr
  520. );
  521. seqs = ggml_add(ctx, seqs, residual);
  522. residual = seqs;
  523. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  524. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  525. seqs = ggml_add(ctx, seqs, residual);
  526. return seqs;
  527. }
  528. /// ggml_slice(X, -1, start, end) is equivalent to X[start:end]
  529. /// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]
  530. struct ggml_tensor * ggml_slice(
  531. struct ggml_context * ctx,
  532. struct ggml_tensor * a,
  533. int axis,
  534. int64_t start,
  535. int64_t end
  536. ) {
  537. int64_t ne[4];
  538. std::copy(a->ne, a->ne + 4, ne);
  539. if (axis < 0) axis = a->n_dims + axis;
  540. if (start < 0) start = ne[axis] + start;
  541. if (end < 0) end = ne[axis] + end;
  542. GGML_ASSERT(0 <= start);
  543. GGML_ASSERT(start <= end);
  544. GGML_ASSERT(end <= ne[axis]);
  545. ne[axis] = end - start;
  546. size_t offset = a->nb[axis] * start;
  547. size_t* nb = a->nb;
  548. ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
  549. result->n_dims = a->n_dims;
  550. return result;
  551. }
  552. extern "C" ggml_tensor* PositionalEmbedding_forward(
  553. fairseq2_model& model,
  554. const std::string& prefix,
  555. ggml_tensor* embeds
  556. ) {
  557. // This only work with the simple pos encoders
  558. int seq_len = embeds->ne[1];
  559. ggml_tensor* full_pos_embeds = model.tensors[prefix];
  560. ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, 0, seq_len);
  561. return ggml_add(model.ctx, embeds, pos_embeds);
  562. }
  563. extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
  564. fairseq2_model& model,
  565. const std::string& prefix,
  566. ggml_tensor* seqs
  567. // TODO: state_bag
  568. ) {
  569. GGML_ASSERT(seqs->n_dims < GGML_MAX_DIMS);
  570. ggml_context* ctx = model.ctx;
  571. ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
  572. GGML_ASSERT(embed_weights != nullptr);
  573. ggml_tensor* embeds;
  574. if (seqs->n_dims == 1) {
  575. embeds = ggml_get_rows(ctx, embed_weights, seqs);
  576. } else {
  577. // ggml_get_rows isn't very flexible, we have to handle the reshape ourselves.
  578. ggml_tensor* flat_seqs = seqs;
  579. if (!ggml_is_contiguous(seqs)) {
  580. flat_seqs->type = GGML_TYPE_F32;
  581. flat_seqs = ggml_cont(ctx, flat_seqs);
  582. }
  583. flat_seqs = ggml_reshape_1d(ctx, flat_seqs, ggml_nelements(seqs));
  584. flat_seqs->type = GGML_TYPE_I32;
  585. embeds = ggml_get_rows(ctx, embed_weights, flat_seqs);
  586. embeds = ggml_reshape_4d(ctx, embeds, embed_weights->ne[0], seqs->ne[0], seqs->ne[1], seqs->ne[2]);
  587. embeds->n_dims = seqs->n_dims + 1;
  588. }
  589. // padding mask ?
  590. // padding_mask = to_padding_mask(embeds, seq_lens)
  591. if (has_layer(model, prefix + ".pos_encoder")) {
  592. embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);
  593. }
  594. if (has_layer(model, prefix + ".layer_norm")) {
  595. embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
  596. }
  597. return embeds;
  598. }
  599. extern "C" ggml_tensor* StandardTransformerEncoder_forward(
  600. fairseq2_model& model,
  601. const std::string& prefix,
  602. ggml_tensor* seqs,
  603. ggml_tensor* padding_mask
  604. ) {
  605. int layer_idx = 0;
  606. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  607. while (has_layer(model, layer_name)) {
  608. seqs = StandardTransformerEncoderLayer_forward(
  609. model, layer_name, seqs, padding_mask
  610. );
  611. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  612. layer_idx += 1;
  613. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  614. }
  615. if (has_layer(model, prefix + ".layer_norm"))
  616. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  617. return seqs;
  618. }
  619. extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
  620. fairseq2_model& model,
  621. const std::string& prefix,
  622. ggml_tensor* seqs,
  623. ggml_tensor* self_attn_mask,
  624. ggml_tensor* encoder_output,
  625. ggml_tensor* encoder_padding_mask
  626. ) {
  627. ggml_context* ctx = model.ctx;
  628. auto norm_order = model.layer_config.at(prefix + ".norm_order");
  629. // _forward_self_attn(seqs, padding_mask)
  630. auto residual = seqs;
  631. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  632. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  633. seqs = MultiheadAttention_forward(
  634. model,
  635. prefix + ".self_attn",
  636. seqs,
  637. seqs,
  638. seqs,
  639. /*attn_mask=*/self_attn_mask
  640. );
  641. if (has_layer(model, prefix + ".self_attn_norm"))
  642. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  643. seqs = ggml_add(ctx, seqs, residual);
  644. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  645. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  646. // _forward_encoder_decoder_attn
  647. if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
  648. // `encoder_output` must be `None` for decoder-only attention.
  649. GGML_ASSERT(encoder_output == nullptr);
  650. return seqs;
  651. }
  652. // `encoder_output` must not be `None` for encoder-decoder attention.
  653. GGML_ASSERT(encoder_output != nullptr);
  654. residual = seqs;
  655. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  656. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  657. seqs = MultiheadAttention_forward(
  658. model,
  659. prefix + ".encoder_decoder_attn",
  660. seqs,
  661. encoder_output,
  662. encoder_output,
  663. /*attention masks=*/encoder_padding_mask
  664. );
  665. seqs = ggml_add(ctx, seqs, residual);
  666. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  667. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  668. // _forward_ffn(seqs)
  669. residual = seqs;
  670. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  671. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  672. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  673. // TODO:
  674. // if self.residual_scale is not None:
  675. // residual = self.residual_scale * residual
  676. seqs = ggml_add(ctx, seqs, residual);
  677. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  678. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  679. return seqs;
  680. }
  681. extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
  682. auto seq_len = seqs->ne[1];
  683. // TODO: allow other ggml_type
  684. ggml_tensor* mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
  685. return ggml_diag_mask_inf(ctx, mask, 0);
  686. }
  687. extern "C" ggml_tensor* StandardTransformerDecoder_forward(
  688. fairseq2_model& model,
  689. const std::string& prefix,
  690. ggml_tensor* seqs,
  691. ggml_tensor* padding_mask,
  692. ggml_tensor* encoder_output,
  693. ggml_tensor* encoder_padding_mask
  694. ) {
  695. int layer_idx = 0;
  696. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  697. ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
  698. while (has_layer(model, layer_name)) {
  699. seqs = StandardTransformerDecoderLayer_forward(
  700. model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
  701. );
  702. ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
  703. layer_idx += 1;
  704. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  705. }
  706. if (has_layer(model, prefix + ".layer_norm"))
  707. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  708. return seqs;
  709. }
  710. using IncrementalStateBag = std::unordered_map<ggml_tensor*, ggml_tensor*>*;
  711. int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
  712. auto opts = job.opts;
  713. int max_seq_len = -1;
  714. if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
  715. max_seq_len = opts.hard_max_seq_len;
  716. } else {
  717. max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len) + opts.soft_max_seq_len_b);
  718. }
  719. if (opts.min_seq_len > max_seq_len) {
  720. printf(
  721. "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
  722. opts.min_seq_len,
  723. max_seq_len
  724. );
  725. GGML_ASSERT(opts.min_seq_len <= max_seq_len);
  726. }
  727. int prefix_seq_len = job.prefix_seq->ne[0];
  728. if (prefix_seq_len >= max_seq_len) {
  729. printf(
  730. "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
  731. prefix_seq_len,
  732. max_seq_len
  733. );
  734. GGML_ASSERT(prefix_seq_len < max_seq_len);
  735. }
  736. return max_seq_len;
  737. }
  738. void _fan_out_encoder_output(
  739. ggml_context* ctx,
  740. ggml_tensor** encoder_output_out,
  741. ggml_tensor** encoder_padding_mask_out,
  742. int beam_size
  743. ) {
  744. // (S_enc, M)
  745. ggml_tensor* encoder_output = *encoder_output_out;
  746. ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
  747. // (B, S_enc, M)
  748. ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
  749. // (S_enc, M) -> (B, S_enc, M)
  750. *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
  751. // (S_enc) -> (B, S_enc)
  752. if (encoder_padding_mask != nullptr) {
  753. ggml_tensor* shape_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], 1, beam_size);
  754. *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
  755. }
  756. }
  757. ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
  758. // TODO: this isn't the most precise way of doing this
  759. return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));
  760. }
  761. ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {
  762. ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);
  763. ggml_type true_type = x->type;
  764. x->type = GGML_TYPE_F32;
  765. ggml_tensor* y = ggml_repeat(ctx, x, shape);
  766. y->type = true_type;
  767. return y;
  768. }
  769. void _bootstrap_seqs_and_scores(
  770. fairseq2_model& model,
  771. const SequenceGeneratorJob& job,
  772. ggml_tensor* full_seqs,
  773. ggml_tensor* scores,
  774. ggml_tensor* encoder_output,
  775. ggml_tensor* encoder_padding_mask,
  776. IncrementalStateBag state_bag
  777. ) {
  778. int prefix_seq_len = job.prefix_seq->ne[0];
  779. int max_seq_len = scores->ne[0];
  780. int beam_size = scores->ne[1];
  781. GGML_ASSERT(prefix_seq_len > 0);
  782. if (prefix_seq_len == 1)
  783. return;
  784. ggml_context* ctx = model.ctx;
  785. // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
  786. full_seqs->type = GGML_TYPE_F32;
  787. job.prefix_seq->type = GGML_TYPE_F32;
  788. ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
  789. seqs = ggml_cpy(ctx, ggml_repeat(ctx, job.prefix_seq, seqs), seqs);
  790. // We have to bootstrap the model with the already fanned-out encoder
  791. // output to correctly initialize its incremental state.
  792. // Note: we don't start decoding the last prefix token just yet.
  793. seqs = ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1);
  794. seqs->type = GGML_TYPE_I32;
  795. // Bootstrap the model state with prefix sequence.
  796. seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
  797. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  798. model,
  799. "text_decoder",
  800. seqs,
  801. /*padding_mask*/ nullptr,
  802. encoder_output,
  803. encoder_padding_mask
  804. // TODO: state_bag
  805. );
  806. // TODO state_bag.increment_step(prefix_seq_len - 1)
  807. // logits, lprobs: (N, S_pfx - 1, V)
  808. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
  809. int vocab_size = logits->ne[0];
  810. ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
  811. ggml_cgraph gf = ggml_build_forward(lprobs);
  812. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  813. full_seqs->type = GGML_TYPE_I32;
  814. job.prefix_seq->type = GGML_TYPE_I32;
  815. // Fetch scores of next steps from "lprobs"
  816. float p_score = 0;
  817. for (int i = 1; i < prefix_seq_len; ++i) {
  818. int p = ggml_get_i32_1d(job.prefix_seq, i);
  819. p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
  820. for (int b = 0; b < beam_size; ++b) {
  821. // scores: (N, S)
  822. // Note: First step (e.g. BOS)'s score is always 0.
  823. ggml_set_f32_1d(scores, b * max_seq_len + i, p_score);
  824. }
  825. }
  826. }
  827. /// Finds the topk indices, and write the winning indices in "candidate_indices" array.
  828. int topk(
  829. ggml_tensor* lprobs, // (B, V)
  830. std::int64_t k,
  831. ggml_tensor* candidate_indices
  832. ) {
  833. // Take the best 2 x `beam_size` predictions. We'll choose the first
  834. // `beam_size` of these which don't predict EOS to continue with.
  835. // (N, 2 x B)
  836. // `vocab_size` - 1 to never select PAD.
  837. std::int64_t K = std::min(k, ggml_nelements(lprobs));
  838. auto comp = [lprobs](std::int32_t a, std::int32_t b) {
  839. return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);
  840. };
  841. GGML_ASSERT(ggml_nelements(candidate_indices) >= k);
  842. auto cand = (std::int32_t*)candidate_indices->data;
  843. std::partial_sort(cand, cand + K, cand + ggml_nelements(lprobs), comp);
  844. return K;
  845. }
  846. void ggml_detach(ggml_tensor* a) {
  847. a->op = GGML_OP_NONE;
  848. a->src[0] = nullptr;
  849. }
  850. /// Copies the sequence and scores of a given candidate beam.
  851. void _finalize_hypothesis(
  852. const SequenceGeneratorJob& job,
  853. ggml_context* ctx,
  854. int step_nr,
  855. std::int32_t beam,
  856. std::int32_t token,
  857. float eos_score,
  858. ggml_tensor* seqs, // (beam_size, seq_len)
  859. ggml_tensor* scores, // (beam_size, seq_len)
  860. Hypothesis* hypothesis
  861. ) {
  862. ggml_tensor* seq = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
  863. hypothesis->seq = seq;
  864. ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
  865. hypothesis->step_scores = step_scores;
  866. auto tok = (std::int32_t*)seq->data;
  867. for (int i = 0; i < step_nr + 1; ++i) {
  868. tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
  869. }
  870. tok[step_nr + 1] = token;
  871. // Convert from cumulative to per-step scores.
  872. auto sc = (float*)step_scores->data;
  873. float last_score = eos_score;
  874. for (int i = step_nr; i >= 0; --i) {
  875. float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);
  876. sc[i + 1] = last_score - sc0;
  877. last_score = sc0;
  878. }
  879. sc[0] = 0;
  880. if (job.opts.normalize_scores)
  881. // Skip first EOS since it is always 0 and skews normalization.
  882. eos_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
  883. hypothesis->score = eos_score;
  884. }
  885. // Uses ggml_context to store any object.
  886. #define GGML_CTX_ALLOC(ctx, Type, n) \
  887. (Type*)(ggml_new_tensor_1d(ctx, GGML_TYPE_I8, sizeof(Type) * n)->data);
  888. /// Generates a translation for a single sequence
  889. // TODO: add IncrementalStateBag support to avoid a O(N^3) generation.
  890. // TODO: clean ups
  891. // * replace manual tensor tweaking with ggml_set_*d (a ggml_set_slice could be useful)
  892. extern "C" Hypothesis* generate_sequence(
  893. fairseq2_model& model,
  894. const SequenceGeneratorJob& job,
  895. ggml_tensor* encoder_output,
  896. ggml_tensor* encoder_padding_mask,
  897. ggml_context* result_ctx
  898. ) {
  899. ggml_context* ctx = model.ctx;
  900. size_t eos_idx = job.eos_idx;
  901. auto pad_idx = job.pad_idx;
  902. ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
  903. size_t vocab_size = embed->ne[1];
  904. std::size_t beam_size = job.opts.beam_size;
  905. int source_seq_len = encoder_output->ne[1];
  906. int max_seq_len = _determine_max_seq_len(job, source_seq_len);
  907. // (S_enc, M) -> (B, S_enc, M)
  908. _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);
  909. // Allocate results in the context provided by the caller.
  910. Hypothesis* finished_searches_begin = GGML_CTX_ALLOC(result_ctx, Hypothesis, beam_size);
  911. Hypothesis* finished_searches = finished_searches_begin;
  912. for (std::size_t i = 0; i < beam_size; ++i) finished_searches[i] = {nullptr, -INFINITY, nullptr};
  913. Hypothesis* finished_searches_end = finished_searches + beam_size;
  914. // Initialize buffers. (B, S)
  915. ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);
  916. ggml_set_i32(seqs, 0);
  917. ggml_set_name(seqs, "seqs_0");
  918. ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);
  919. ggml_set_name(scores, "scores_0");
  920. ggml_set_f32(scores, 0.0);
  921. IncrementalStateBag state_bag = {};
  922. _bootstrap_seqs_and_scores(
  923. model, job, seqs, scores, encoder_output, encoder_padding_mask, state_bag
  924. );
  925. int prefix_seq_len = job.prefix_seq->ne[0];
  926. int start_step = prefix_seq_len - 1;
  927. // Holds the indices of beams (a beam can occur more than once) that we
  928. // should continue with in the next step.
  929. ggml_tensor* beam_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  930. ggml_tensor* next_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  931. ggml_tensor* next_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, beam_size);
  932. // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore
  933. ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);
  934. for (std::size_t i = 0; i < vocab_size * beam_size; ++i)
  935. ((int32_t *)(candidate_indices->data))[i] = i;
  936. // TODO: memory management, there should be a per-step ggml_context for intermediary results
  937. for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
  938. // because of no IncrementalStateBag we pass input from the start
  939. // decoder_input = seqs[:, 0 : step_nr + 1]
  940. ggml_tensor* decoder_input = ggml_slice(ctx, seqs, 0, 0, step_nr + 1);
  941. decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", decoder_input);
  942. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  943. model,
  944. "text_decoder",
  945. decoder_input,
  946. nullptr, // We never generate PAD.
  947. encoder_output,
  948. encoder_padding_mask
  949. // state_bag=state_bag,
  950. ); // (B, S, D)
  951. // state_bag.increment_step()
  952. // Because of no IncrementalStateBag decoder_output here is of shape (B, S, D)
  953. // Just look at the last token.
  954. decoder_output = ggml_slice(ctx, decoder_output, 1, step_nr, step_nr+1);
  955. decoder_output = ggml_cont(ctx, decoder_output);
  956. decoder_output = ggml_flatten_1d(ctx, decoder_output, 0); // (B, model_dim)
  957. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output); // (B, vocab_size)
  958. ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);
  959. // Compute lprobs here so we can modify it in place in the lprob tweaking phase
  960. // TODO: use ggml properly compute the tweaks
  961. ggml_cgraph gf = ggml_build_forward(lprobs);
  962. printf("beam search step %d. Graph.n_nodes: %d\n", step_nr, gf.n_nodes);
  963. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  964. ggml_detach(lprobs);
  965. // // Do not allow EOS before reaching the minimum sequence length.
  966. if (step_nr < job.opts.min_seq_len) {
  967. // lprobs[:, :, self.eos_idx] = -INFINITY;
  968. for (size_t i = 0; i < beam_size; ++i)
  969. ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);
  970. }
  971. // If we have reached the maximum length, force the last step to be EOS.
  972. if (step_nr == max_seq_len - 2) {
  973. // lprobs[:, :, : self.eos_idx] = -torch.inf
  974. // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
  975. for (size_t b = 0; b < beam_size; ++b) {
  976. size_t t = 0;
  977. for (t = 0; t < eos_idx; ++t)
  978. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  979. for (t = eos_idx + 1; t < vocab_size; ++t)
  980. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  981. }
  982. }
  983. // Never allow PAD.
  984. for (size_t i = 0; i < beam_size; ++i)
  985. ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);
  986. // Apply UNK penalty.
  987. if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {
  988. // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
  989. auto lprobs_raw = ggml_get_data_f32(lprobs);
  990. for (size_t i = 0; i < beam_size; ++i)
  991. lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;
  992. }
  993. ggml_tensor* last_scores = ggml_slice(ctx, scores, 0, step_nr, step_nr+1);
  994. if (step_nr == start_step) {
  995. // At the initial step, all hypotheses are equally likely, so we use
  996. // only the first beam.
  997. lprobs = ggml_slice(ctx, lprobs, 1, 0, 1);
  998. lprobs = ggml_cont(ctx, lprobs);
  999. // The first step always indicates the beginning of the sequence and has no score.
  1000. if (step_nr > 0) {
  1001. last_scores = ggml_slice(ctx, last_scores, 1, 0, 1);
  1002. lprobs = ggml_add_inplace(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1003. }
  1004. } else {
  1005. // Make probabilities contain cumulative scores for each hypothesis.
  1006. lprobs = ggml_add(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1007. }
  1008. gf = ggml_build_forward(lprobs);
  1009. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1010. // Determine (beam, token) candidates for the next step.
  1011. // (N, 2 x B)
  1012. std::int64_t K = topk(
  1013. lprobs, std::min(2 * beam_size, vocab_size - 1), candidate_indices
  1014. );
  1015. std::size_t ongoing_beams = 0;
  1016. for (std::int32_t i = 0; i < K; ++i) {
  1017. int c = ggml_get_f32_1d(candidate_indices, i);
  1018. std::int32_t beam = c / vocab_size;
  1019. std::int32_t token = c % vocab_size;
  1020. float tok_score = ggml_get_f32_1d(lprobs, c);
  1021. // Detect beams that reached the minimum length and that end with an EOS.
  1022. bool eos = token == job.eos_idx;
  1023. eos &= tok_score != -INFINITY;
  1024. if (eos) {
  1025. _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, finished_searches++);
  1026. if (finished_searches == finished_searches_end)
  1027. goto end_of_beam_search;
  1028. continue;
  1029. }
  1030. ggml_set_f32_1d(beam_indices, ongoing_beams, beam);
  1031. ggml_set_f32_1d(next_tokens, ongoing_beams, token);
  1032. ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);
  1033. ongoing_beams += 1;
  1034. if (ongoing_beams >= beam_size) break;
  1035. }
  1036. // Reorder beams in the `seq` and `score` buffers. The same beam can
  1037. // be selected more than once.
  1038. ggml_tensor* new_seqs = seqs;
  1039. ggml_tensor* new_scores = scores;
  1040. if (step_nr > start_step) {
  1041. // (B, S), (B) -> (B, S)
  1042. // ggml_get_rows and ggml_set only work with floats ...
  1043. new_seqs->type = GGML_TYPE_F32;
  1044. new_seqs = ggml_get_rows(ctx, seqs, beam_indices);
  1045. new_scores = ggml_get_rows(ctx, scores, beam_indices);
  1046. gf = ggml_build_forward(new_seqs);
  1047. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1048. ggml_detach(new_seqs);
  1049. new_seqs->type = GGML_TYPE_I32;
  1050. gf = ggml_build_forward(new_scores);
  1051. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1052. ggml_detach(new_scores);
  1053. }
  1054. // new_seqs[:, step_nr + 1] = next_tokens
  1055. // new_scores[:, step_nr + 1] = next_scores
  1056. for (std::size_t i = 0; i < beam_size; ++i) {
  1057. ((std::int32_t*)new_seqs->data)[step_nr + 1 + i * max_seq_len] = ggml_get_i32_1d(next_tokens, i);
  1058. ((float*)new_scores->data)[step_nr + 1 + i * max_seq_len] = ggml_get_f32_1d(next_scores, i);
  1059. }
  1060. // TODO the old seqs and score buffers could be reused for next step
  1061. seqs = new_seqs;
  1062. scores = new_scores;
  1063. }
  1064. end_of_beam_search:
  1065. // Ensure that hypotheses are sorted by decreasing scores before returning.
  1066. std::sort(
  1067. finished_searches_begin,
  1068. finished_searches_end,
  1069. [](Hypothesis a, Hypothesis b) { return a.score > b.score; }
  1070. );
  1071. return finished_searches_begin;
  1072. }
  1073. extern "C" Hypothesis* _testing_return_hypothesis_ptr(ggml_context* ctx) {
  1074. Hypothesis* result = GGML_CTX_ALLOC(ctx, struct Hypothesis, 2);
  1075. result[0] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 3.14f, (ggml_tensor*)result};
  1076. ggml_set_i32_1d(result[0].seq, 0, 314);
  1077. result[1] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 4.21f, nullptr};
  1078. ggml_set_i32_1d(result[1].seq, 0, 421);
  1079. return result;
  1080. }