| 12345678910111213141516171819202122232425 | from ggml import lib, ffifrom ggml.utils import init, copy, numpyimport numpy as npctx = init(mem_size=12*1024*1024) # automatically freed when pointer is GC'dn = 256n_threads = 4a = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_Q5_K, n)b = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_F32, n) # can't both be quantizedsum = lib.ggml_add(ctx, a, b) # all zeroes for now. Will be quantized too!# See cffi's doc on how to allocate native memory: it's very simple!# https://cffi.readthedocs.io/en/latest/ref.html#ffi-interfacegf = ffi.new('struct ggml_cgraph*')lib.ggml_build_forward_expand(gf, sum)copy(np.array([i for i in range(n)], np.float32), a)copy(np.array([i*100 for i in range(n)], np.float32), b)lib.ggml_graph_compute_with_ctx(ctx, gf, n_threads)print(numpy(a, allow_copy=True))print(numpy(b))print(numpy(sum, allow_copy=True))
 |