| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127 | #include "ggml/ggml.h"#include "common.h"#include "common-ggml.h"#include <cassert>#include <cmath>#include <cstdio>#include <cstring>#include <fstream>#include <map>#include <string>#include <vector>#if !defined(_WIN32)// mmap#include <sys/types.h>#include <sys/mman.h>#include <unistd.h>#include <fcntl.h>#else#define NOMINMAX#include <Windows.h>#endif#ifdef GGML_USE_CUBLAS#include "ggml-cuda.h"#endif#ifdef GGML_USE_CLBLAST#include "ggml-opencl.h"#endif// default hparams (GPT-2 117M)// https://huggingface.co/bigcode/gpt_bigcode-santacoder/blob/main/config.jsonstruct starcoder_hparams {    int32_t n_vocab = 49280;    int32_t n_ctx   = 2048;    int32_t n_embd  = 2048;    int32_t n_head  = 16;    int32_t n_layer = 24;    int32_t ftype   = 1;    float   eps     = 1e-5f;};struct starcoder_layer {    // normalization    struct ggml_tensor * ln_1_g;    struct ggml_tensor * ln_1_b;    struct ggml_tensor * ln_2_g;    struct ggml_tensor * ln_2_b;    // attention    struct ggml_tensor * c_attn_attn_w;    struct ggml_tensor * c_attn_attn_b;    struct ggml_tensor * c_attn_proj_w;    struct ggml_tensor * c_attn_proj_b;    // mlp    struct ggml_tensor * c_mlp_fc_w;    struct ggml_tensor * c_mlp_fc_b;    struct ggml_tensor * c_mlp_proj_w;    struct ggml_tensor * c_mlp_proj_b;};struct llama_buffer {    uint8_t * addr = NULL;    size_t size = 0;    llama_buffer() = default;    void resize(size_t len) {#ifdef GGML_USE_METAL        free(addr);        int result = posix_memalign((void **) &addr, getpagesize(), len);        if (result == 0) {            memset(addr, 0, len);        }        else {            addr = NULL;        }#else        delete[] addr;        addr = new uint8_t[len];#endif        size = len;    }    ~llama_buffer() {#ifdef GGML_USE_METAL        free(addr);#else        delete[] addr;#endif        addr = NULL;    }    // disable copy and move    llama_buffer(const llama_buffer&) = delete;    llama_buffer(llama_buffer&&) = delete;    llama_buffer& operator=(const llama_buffer&) = delete;    llama_buffer& operator=(llama_buffer&&) = delete;};struct kv_cache {    struct ggml_tensor * k;    struct ggml_tensor * v;    struct ggml_context * ctx = NULL;    //std::vector<uint8_t> buf;    llama_buffer buf;    int n;};struct starcoder_model {    starcoder_hparams hparams;    // normalization    struct ggml_tensor * ln_f_g;    struct ggml_tensor * ln_f_b;    struct ggml_tensor * wte;     // position embedding    struct ggml_tensor * wpe;     //    token embedding    struct ggml_tensor * lm_head; // language model head    std::vector<starcoder_layer> layers;    // key + value memory    //struct ggml_tensor * memory_k;    //struct ggml_tensor * memory_v;    struct kv_cache cache;    // model memory mapped file    void * mm_addr = NULL;    uint64_t mm_length = 0;    //    struct ggml_context * ctx;    std::map<std::string, struct ggml_tensor *> tensors;};// From PR #613 (https://github.com/ggerganov/llama.cpp/pull/613)static void *mmap_file(const char *fname, uint64_t *mm_length) {#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)    HANDLE hFile = CreateFileA(fname,                               GENERIC_READ,                               FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,                               NULL,                               OPEN_EXISTING,                               FILE_ATTRIBUTE_NORMAL | FILE_ATTRIBUTE_NOT_CONTENT_INDEXED,                               NULL);    if (hFile == INVALID_HANDLE_VALUE) return 0;    LARGE_INTEGER fileSize;    fileSize.QuadPart = -1;    GetFileSizeEx(hFile, &fileSize);    int64_t length = fileSize.QuadPart;    HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);    CloseHandle(hFile);    if (!hMapping) return 0;    void *addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);    CloseHandle(hMapping);    if (!addr) return 0;#else    int fd = open(fname, O_RDONLY);    if (fd == -1) return 0;    int64_t length = lseek(fd, 0, SEEK_END);    void *addr = mmap(NULL, length, PROT_READ, MAP_SHARED, fd, 0);    close(fd);    if (addr == MAP_FAILED) return 0;#endif    *mm_length = length;    return addr;}static void munmap_file(void * addr, size_t length) {#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)    UnmapViewOfFile(addr);#else    munmap(addr, length);#endif}// load the model's weights from a filebool starcoder_model_load(const std::string & fname, starcoder_model & model, gpt_vocab & vocab, int32_t n_gpu_layers) {    printf("%s: loading model from '%s'\n", __func__, fname.c_str());    auto fin = std::ifstream(fname, std::ios::binary);    if (!fin) {        fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());        return false;    }    std::vector<char> f_buf(1024*1024);    fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());    // verify magic    {        uint32_t magic;        fin.read((char *) &magic, sizeof(magic));        //if (magic != 0x67676a74) {        if (magic != 0x67676d6c) {            fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());            return false;        }    }    // load hparams    {        auto & hparams = model.hparams;        fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));        fin.read((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));        fin.read((char *) &hparams.n_embd,  sizeof(hparams.n_embd));        fin.read((char *) &hparams.n_head,  sizeof(hparams.n_head));        fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));        fin.read((char *) &hparams.ftype,   sizeof(hparams.ftype));        const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;        printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);        printf("%s: n_ctx   = %d\n", __func__, hparams.n_ctx);        printf("%s: n_embd  = %d\n", __func__, hparams.n_embd);        printf("%s: n_head  = %d\n", __func__, hparams.n_head);        printf("%s: n_layer = %d\n", __func__, hparams.n_layer);        printf("%s: ftype   = %d\n", __func__, hparams.ftype);        printf("%s: qntvr   = %d\n", __func__, qntvr);        hparams.ftype %= GGML_QNT_VERSION_FACTOR;    }    // load vocab    {        int32_t n_vocab = 0;        fin.read((char *) &n_vocab, sizeof(n_vocab));        if (n_vocab != model.hparams.n_vocab) {            fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",                    __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);            return false;        }        std::string word;        std::vector<char> buf(128);        for (int i = 0; i < n_vocab; i++) {            uint32_t len;            fin.read((char *) &len, sizeof(len));            buf.resize(len);            fin.read((char *) buf.data(), len);            word.assign(buf.data(), len);            vocab.token_to_id[word] = i;            vocab.id_to_token[i] = word;            // if (i < 10) fprintf(stderr, "%.s: vocab[%d] = '%s'\n", __func__, i, word.c_str());        }        // Add StarChat special tokens.        for (std::string token : {                "<|system|>",                "<|user|>",                "<|assistant|>",                "<|end|>",                }) {            if (vocab.token_to_id.find(token) != vocab.token_to_id.end()) {                vocab.add_special_token(token);            }        }    }    char *mm_addr = NULL;    model.mm_addr = mmap_file(fname.c_str(), &model.mm_length);    if (model.mm_addr == NULL) {        fprintf(stderr, "%s: failed to mmap '%s'\n", __func__, fname.c_str());        return false;    }    mm_addr = (char *)model.mm_addr;    fprintf(stderr, "%s: ggml map size = %6.2f MB\n", __func__, model.mm_length/(1024.0*1024.0));    // for the big tensors, we have the option to store the data in 16-bit floats or quantized    // in order to save memory and also to speed up the computation    ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));    if (wtype == GGML_TYPE_COUNT) {        fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",                __func__, fname.c_str(), model.hparams.ftype);        return false;    }    auto & ctx = model.ctx;    size_t ctx_size = 0;    {        const auto & hparams = model.hparams;        const int n_layer = hparams.n_layer;        /*        const int n_embd  = hparams.n_embd;        const int n_layer = hparams.n_layer;        const int n_ctx   = hparams.n_ctx;        const int n_vocab = hparams.n_vocab;        const int head_dim = n_embd / hparams.n_head;        const int kv_heads = hparams.n_head; // 1 if MQA else hparams.n_head        const int kv_dim   = kv_heads * head_dim;        ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g        ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b        ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype);         // wte        ctx_size +=   n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe        ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype);         // lm_head        ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g        ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b        ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g        ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b        ctx_size += n_layer*((n_embd + 2*kv_dim)*n_embd*ggml_type_sizef(wtype));         // c_attn_attn_w // TODO:        ctx_size += n_layer*(       (n_embd + 2*kv_dim)*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype));           // c_attn_proj_w        ctx_size += n_layer*(       n_embd*ggml_type_sizef(GGML_TYPE_F32));   // c_attn_proj_b        ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype));         // c_mlp_fc_w        ctx_size += n_layer*(       4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b        ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype));         // c_mlp_proj_w        ctx_size += n_layer*(         n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b        ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k        ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v        */        ctx_size += (6 + 12*n_layer)*512; // object overhead        printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));    }    // create the ggml context    {        struct ggml_init_params params = {            /*.mem_size   =*/ ctx_size,            /*.mem_buffer =*/ NULL,            /*.no_alloc   =*/ true,        };        model.ctx = ggml_init(params);        if (!model.ctx) {            fprintf(stderr, "%s: ggml_init() failed\n", __func__);            return false;        }    }    // prepare memory for the weights    {        const auto & hparams = model.hparams;        const int n_embd  = hparams.n_embd;        const int n_layer = hparams.n_layer;        const int n_ctx   = hparams.n_ctx;        const int n_vocab = hparams.n_vocab;        const int head_dim = n_embd / hparams.n_head;        const int kv_heads = hparams.n_head; // 1 if MQA else hparams.n_head        const int kv_dim   = kv_heads * head_dim;        model.layers.resize(n_layer);        model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);        model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);        model.wte     = ggml_new_tensor_2d(ctx, wtype,         n_embd, n_vocab);        model.wpe     = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);        model.lm_head = ggml_new_tensor_2d(ctx, wtype,         n_embd, n_vocab);        // map by name        model.tensors["model/ln_f/g"] = model.ln_f_g;        model.tensors["model/ln_f/b"] = model.ln_f_b;        model.tensors["model/wte"]     = model.wte;        model.tensors["model/wpe"]     = model.wpe;        model.tensors["model/lm_head"] = model.lm_head;        for (int i = 0; i < n_layer; ++i) {            auto & layer = model.layers[i];            layer.ln_1_g        = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);            layer.ln_1_b        = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);            layer.ln_2_g        = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);            layer.ln_2_b        = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);            layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype,           n_embd, n_embd + 2*kv_dim);            layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd + 2*kv_dim);            layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype,           n_embd, n_embd);            layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);            layer.c_mlp_fc_w    = ggml_new_tensor_2d(ctx, wtype,           n_embd, 4*n_embd); //TODO: 4*n_embd = config.n_inner            layer.c_mlp_fc_b    = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);            layer.c_mlp_proj_w  = ggml_new_tensor_2d(ctx, wtype,         4*n_embd, n_embd);            layer.c_mlp_proj_b  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);            // map by name            model.tensors["model/h" + std::to_string(i) + "/ln_1/g"]        = layer.ln_1_g;            model.tensors["model/h" + std::to_string(i) + "/ln_1/b"]        = layer.ln_1_b;            model.tensors["model/h" + std::to_string(i) + "/ln_2/g"]        = layer.ln_2_g;            model.tensors["model/h" + std::to_string(i) + "/ln_2/b"]        = layer.ln_2_b;            model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;            model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;            model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;            model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;            model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"]    = layer.c_mlp_fc_w;            model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"]    = layer.c_mlp_fc_b;            model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"]  = layer.c_mlp_proj_w;            model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"]  = layer.c_mlp_proj_b;        }    }    // key + value memory    {        const auto & hparams = model.hparams;        const int n_embd  = hparams.n_embd;        const int n_layer = hparams.n_layer;        const int n_ctx   = hparams.n_ctx;        const int n_mem      = n_layer*n_ctx;        const int n_elements = n_embd*n_mem;        model.cache.buf.resize(2u*n_elements*ggml_type_size(GGML_TYPE_F16) + 2u*1024*1024);        struct ggml_init_params c_params;        c_params.mem_size   = model.cache.buf.size;        c_params.mem_buffer = model.cache.buf.addr;        c_params.no_alloc   = false;        model.cache.ctx = ggml_init(c_params);        if (!model.cache.ctx) {            fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);            return false;        }        model.cache.k = ggml_new_tensor_1d(model.cache.ctx, GGML_TYPE_F16, n_elements);        model.cache.v = ggml_new_tensor_1d(model.cache.ctx, GGML_TYPE_F16, n_elements);        const size_t memory_size = ggml_nbytes(model.cache.k) + ggml_nbytes(model.cache.v);        printf("%s: kv_cache memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);    }    // load weights    {        size_t total_size = 0;        bool has_lm_head = false;        while (true) {            int32_t n_dims;            int32_t length;            int32_t ttype;            fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));            fin.read(reinterpret_cast<char *>(&length), sizeof(length));            fin.read(reinterpret_cast<char *>(&ttype),  sizeof(ttype));            if (fin.eof()) {                break;            }            int32_t nelements = 1;            int32_t ne[2] = { 1, 1 };            for (int i = 0; i < n_dims; ++i) {                fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));                nelements *= ne[i];            }            std::string name(length, 0);            fin.read(&name[0], length);            if (model.tensors.find(name.data()) == model.tensors.end()) {                fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());                return false;            }            auto tensor = model.tensors[name.data()];            if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {                fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",                        __func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);                return false;            }            if (ggml_nelements(tensor) != nelements) {                fprintf(stderr, "%s: tensor '%s' has wrong size in model file. got %d, expected %d\n",                        __func__, name.data(), (int) ggml_nelements(tensor), nelements);                return false;            }            // for debugging            if (0) {                printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));            }            const size_t bpe = ggml_type_size(ggml_type(ttype));            if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {                fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",                        __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);                return false;            }            // mmap            size_t offset = fin.tellg();            size_t tensor_data_size = ggml_nbytes(tensor);            //offset = (offset + 31) & -32;            tensor->data = mm_addr + offset;            fin.seekg(offset + tensor_data_size);            total_size += tensor_data_size;            // GPT-2 models share the WTE tensor as the LM head            if (name == "model/wte" && has_lm_head == false) {                // Dont know if this is required, test models have an lm_head                model.lm_head->data = tensor->data;            }            if (name == "model/lm_head") {                has_lm_head = true;            }        }        printf("%s: model size  = %8.2f MB\n", __func__, total_size/1024.0/1024.0);    }    fin.close();#ifdef GGML_USE_CUBLAS    {        const auto & hparams = model.hparams;        const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));        fprintf(stderr, "%s: [cublas] offloading %d layers to GPU\n", __func__, n_gpu);        size_t vram_total = 0;        for (int i = 0; i < n_gpu; ++i) {            const auto & layer = model.layers[i];            layer.c_attn_attn_w->backend = GGML_BACKEND_GPU;            ggml_cuda_transform_tensor((uint8_t *)layer.c_attn_attn_w->data, layer.c_attn_attn_w); vram_total += ggml_nbytes(layer.c_attn_attn_w);            layer.c_attn_proj_w->backend = GGML_BACKEND_GPU;            ggml_cuda_transform_tensor((uint8_t *)layer.c_attn_proj_w->data, layer.c_attn_proj_w); vram_total += ggml_nbytes(layer.c_attn_proj_w);            layer.c_mlp_fc_w->backend = GGML_BACKEND_GPU;            ggml_cuda_transform_tensor((uint8_t *)layer.c_mlp_fc_w->data, layer.c_mlp_fc_w); vram_total += ggml_nbytes(layer.c_mlp_fc_w);            layer.c_mlp_proj_w->backend = GGML_BACKEND_GPU;            ggml_cuda_transform_tensor((uint8_t *)layer.c_mlp_proj_w->data, layer.c_mlp_proj_w); vram_total += ggml_nbytes(layer.c_mlp_proj_w);        }        ggml_cuda_set_scratch_size(0); // disable scratch        //if (n_gpu_layers > (int) hparams.n_layer) {        //    fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__);        //    ggml_cuda_transform_tensor(model.output); vram_total += ggml_nbytes(model.output);        //}        fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);    }#elif defined(GGML_USE_CLBLAST)    //From koboldcpp    {        const auto & hparams = model.hparams;        size_t vram_total = 0;        const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));        fprintf(stderr, "%s: [opencl] offloading %d layers to GPU\n", __func__, n_gpu);        for (int i = 0; i < n_gpu; ++i) {            const auto & layer = model.layers[i];            layer.c_attn_attn_w->backend = GGML_BACKEND_GPU;            layer.c_attn_proj_w->backend = GGML_BACKEND_GPU;            layer.c_mlp_fc_w->backend = GGML_BACKEND_GPU;            layer.c_mlp_proj_w->backend = GGML_BACKEND_GPU;            ggml_cl_transform_tensor(layer.c_attn_attn_w->data,layer.c_attn_attn_w); vram_total += ggml_nbytes(layer.c_attn_attn_w);            ggml_cl_transform_tensor(layer.c_attn_proj_w->data,layer.c_attn_proj_w); vram_total += ggml_nbytes(layer.c_attn_proj_w);            ggml_cl_transform_tensor(layer.c_mlp_fc_w->data,layer.c_mlp_fc_w); vram_total += ggml_nbytes(layer.c_mlp_fc_w);            ggml_cl_transform_tensor(layer.c_mlp_proj_w->data,layer.c_mlp_proj_w); vram_total += ggml_nbytes(layer.c_mlp_proj_w);        }        fprintf(stderr, "%s: [opencl] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);    }    #endif    return true;}// evaluate the transformer////   - model:     the model//   - n_threads: number of threads to use//   - n_past:    the context size so far//   - embd_inp:  the embeddings of the tokens in the context//   - embd_w:    the predicted logits for the next token//bool starcoder_eval(        const starcoder_model & model,        const int n_threads,        const int n_past,        const std::vector<gpt_vocab::id> & embd_inp,              std::vector<float>         & embd_w,              size_t                     & mem_per_token) {    const int N = int(embd_inp.size());    const auto & hparams = model.hparams;    auto & cache = model.cache;    const int n_embd  = hparams.n_embd;    const int n_layer = hparams.n_layer;    const int n_ctx   = hparams.n_ctx;    const int n_head  = hparams.n_head;    const int n_vocab = hparams.n_vocab;    // Scratch is too small for large n_batch (256)    //static size_t buf_size = 256u*1024*1024;    static size_t buf_size = 256u*1024*1024*2;    static void * buf = malloc(buf_size);    // use 2 scratch buffers    // TODO: very hacky solution - reimplement in a more elegant way    static size_t scratch0_size = 256u*1024*1024*2;    static void * scratch0 = malloc(scratch0_size);    static size_t scratch1_size = 256u*1024*1024*2;    static void * scratch1 = malloc(scratch1_size);    if (mem_per_token > 0 && mem_per_token*N > buf_size) {        const size_t buf_size_new = size_t(1.1*(mem_per_token*N)); // add 10% to account for ggml object overhead        printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);        // reallocate        buf_size = buf_size_new;        buf = realloc(buf, buf_size);        if (buf == nullptr) {            fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);            return false;        }    }    struct ggml_init_params params = {        /*.mem_size   =*/ buf_size,        /*.mem_buffer =*/ buf,        /*.no_alloc   =*/ false,    };    struct ggml_context * ctx0 = ggml_init(params);    struct ggml_cgraph gf = {};    struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);    memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));    struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);    for (int i = 0; i < N; ++i) {        ((int32_t *) position->data)[i] = n_past + i;    }    // wte + wpe    struct ggml_tensor * inpL =        ggml_add(ctx0,                ggml_get_rows(ctx0, model.wte, embd),                ggml_get_rows(ctx0, model.wpe, position));    for (int il = 0; il < n_layer; ++il) {        struct ggml_tensor * cur;        ggml_set_scratch(ctx0, { 0, scratch0_size, scratch0, });        // norm        {            // [ 768, N]            cur = ggml_norm(ctx0, inpL, hparams.eps);            // cur = ln_1_g*cur + ln_1_b            // [ 768, N]            cur = ggml_add(ctx0,                    ggml_mul(ctx0,                        ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),                        cur),                    ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));        }        // attn        // [2304, 768] - model.layers[il].c_attn_attn_w        // [2304,   1] - model.layers[il].c_attn_attn_b        // [ 768,   N] - cur (in)        // [2304,   N] - cur (out)        //        // cur = attn_w*cur + attn_b        // [2304, N]        {            cur = ggml_mul_mat(ctx0,                    model.layers[il].c_attn_attn_w,                    cur);            cur = ggml_add(ctx0,                    ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),                    cur);        }        // self-attention        {            struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);            struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd);            struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd);            // store key and value to memory            if (N >= 1) {                struct ggml_tensor * k = ggml_view_1d(ctx0, cache.k, N*n_embd, (ggml_element_size(cache.k)*n_embd)*(il*n_ctx + n_past));                struct ggml_tensor * v = ggml_view_1d(ctx0, cache.v, N*n_embd, (ggml_element_size(cache.v)*n_embd)*(il*n_ctx + n_past));                ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));                ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));            }            // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)            // [64, N, 12]            struct ggml_tensor * Q =                ggml_permute(ctx0,                        ggml_cpy(ctx0,                            Qcur,                            ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),                        0, 2, 1, 3);            // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)            // [64, n_past + N, 12]            struct ggml_tensor * K =                ggml_permute(ctx0,                        ggml_reshape_3d(ctx0,                            ggml_view_1d(ctx0, cache.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(cache.k)*n_embd),                            n_embd/n_head, n_head, n_past + N),                        0, 2, 1, 3); //TODO: need to be tiled            // GG: flash attention            //struct ggml_tensor * V =            //    ggml_cpy(ctx0,            //            ggml_permute(ctx0,            //                ggml_reshape_3d(ctx0,            //                    ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),            //                    n_embd/n_head, n_head, n_past + N),            //                1, 2, 0, 3),            //            ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head));            //struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true);            // K * Q            // [n_past + N, N, 12]            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); //TODO: check if it broadcasts            // KQ_scaled = KQ / sqrt(n_embd/n_head)            // [n_past + N, N, 12]            struct ggml_tensor * KQ_scaled =                ggml_scale_inplace(ctx0,                        KQ,                        ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))                        );            // KQ_masked = mask_past(KQ_scaled)            // [n_past + N, N, 12]            struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);            // KQ = soft_max(KQ_masked)            // [n_past + N, N, 12]            struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);            // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()            // [n_past + N, 64, 12]            struct ggml_tensor * V_trans =                ggml_cpy(ctx0,                        ggml_permute(ctx0,                            ggml_reshape_3d(ctx0,                                ggml_view_1d(ctx0, cache.v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(cache.v)*n_embd),                                n_embd/n_head, n_head, n_past + N),                            1, 2, 0, 3),                        ggml_new_tensor_3d(ctx0, cache.v->type, n_past + N, n_embd/n_head, n_head));            // KQV = transpose(V) * KQ_soft_max            // [64, N, 12]            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);            // KQV_merged = KQV.permute(0, 2, 1, 3)            // [64, 12, N]            struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);            // cur = KQV_merged.contiguous().view(n_embd, N)            // [768, N]            cur = ggml_cpy(ctx0,                    KQV_merged,                    ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));        }        // projection        // [ 768, 768] - model.layers[il].c_attn_proj_w        // [ 768,   1] - model.layers[il].c_attn_proj_b        // [ 768,   N] - cur (in)        // [ 768,   N] - cur (out)        //        // cur = proj_w*cur + proj_b        // [768, N]        {            cur = ggml_mul_mat(ctx0,                    model.layers[il].c_attn_proj_w,                    cur);            cur = ggml_add(ctx0,                    ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur),                    cur);        }        // add the input        cur = ggml_add(ctx0, cur, inpL);        struct ggml_tensor * inpFF = cur;        ggml_set_scratch(ctx0, { 0, scratch1_size, scratch1, });        // feed-forward network        {            // norm            {                cur = ggml_norm(ctx0, inpFF, hparams.eps);                // cur = ln_2_g*cur + ln_2_b                // [ 768, N]                cur = ggml_add(ctx0,                        ggml_mul(ctx0,                            ggml_repeat(ctx0, model.layers[il].ln_2_g, cur),                            cur),                        ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));            }            // fully connected            // [3072, 768] - model.layers[il].c_mlp_fc_w            // [3072,   1] - model.layers[il].c_mlp_fc_b            // [ 768,   N] - cur (in)            // [3072,   N] - cur (out)            //            // cur = fc_w*cur + fc_b            // [3072, N]            cur = ggml_mul_mat(ctx0,                    model.layers[il].c_mlp_fc_w,                    cur);            cur = ggml_add(ctx0,                    ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),                    cur);            // GELU activation            // [3072, N]            cur = ggml_gelu(ctx0, cur);            // projection            // [ 768, 3072] - model.layers[il].c_mlp_proj_w            // [ 768,    1] - model.layers[il].c_mlp_proj_b            // [3072,    N] - cur (in)            // [ 768,    N] - cur (out)            //            // cur = proj_w*cur + proj_b            // [768, N]            cur = ggml_mul_mat(ctx0,                    model.layers[il].c_mlp_proj_w,                    cur);            cur = ggml_add(ctx0,                    ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),                    cur);        }        // input for next layer        inpL = ggml_add(ctx0, cur, inpFF);    }    ggml_set_scratch(ctx0, { 0, scratch0_size, scratch0, });    // norm    {        // [ 768, N]        inpL = ggml_norm(ctx0, inpL, hparams.eps);        // inpL = ln_f_g*inpL + ln_f_b        // [ 768, N]        inpL = ggml_add(ctx0,                ggml_mul(ctx0,                    ggml_repeat(ctx0, model.ln_f_g, inpL),                    inpL),                ggml_repeat(ctx0, model.ln_f_b, inpL));    }    ggml_set_scratch(ctx0, { 0, 0, nullptr, });    // inpL = WTE * inpL    // [ 768, 50257] - model.lm_head    // [ 768, N]     - inpL    inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);    // logits -> probs    //inpL = ggml_soft_max_inplace(ctx0, inpL);    // run the computation    ggml_build_forward_expand(&gf, inpL);    ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);    //if (n_past%100 == 0) {    //    ggml_graph_print   (&gf);    //    ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");    //}    //embd_w.resize(n_vocab*N);    //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);    // return result just for the last token    embd_w.resize(n_vocab);    memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);    if (mem_per_token == 0) {        mem_per_token = ggml_used_mem(ctx0)/N;    }    //printf("used_mem = %zu MB\n", ggml_used_mem(ctx0)/(1024*1024));    ggml_free(ctx0);    return true;}int main(int argc, char ** argv) {    ggml_time_init();    const int64_t t_main_start_us = ggml_time_us();    gpt_params params;    params.model = "models/gpt-2-117M/ggml-model.bin";    if (gpt_params_parse(argc, argv, params) == false) {        return 1;    }    if (params.seed < 0) {        params.seed = int(time(NULL));    }    printf("%s: seed = %d\n", __func__, params.seed);    std::mt19937 rng(params.seed);    if (params.prompt.empty()) {        params.prompt = gpt_random_prompt(rng);    }    int64_t t_load_us = 0;    gpt_vocab vocab;    starcoder_model model;    // load the model    {        const int64_t t_start_us = ggml_time_us();        if (!starcoder_model_load(params.model, model, vocab, params.n_gpu_layers)) {            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());            return 1;        }        t_load_us = ggml_time_us() - t_start_us;        test_gpt_tokenizer(vocab, params.token_test);    }    int n_past = 0;    int64_t t_sample_us  = 0;    int64_t t_predict_us = 0;    std::vector<float> logits;    // tokenize the prompt    std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);    params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());    printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str());    printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());    for (size_t i = 0; i < embd_inp.size(); i++) {        printf("%s: token[%zu] = %6d, %s\n", __func__, i, embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());    }    printf("\n\n");    // Handle StarChat "<|end|>" token.    gpt_vocab::id starchat_end_token = -1;    {        const auto it = vocab.token_to_id.find("<|end|>");        if (it != vocab.token_to_id.end()) {            starchat_end_token = it->second;        }    }    // submit the input prompt token-by-token    // this reduces the memory usage during inference, at the cost of a bit of speed at the beginning    std::vector<gpt_vocab::id> embd;    // determine the required inference memory per token:    size_t mem_per_token = 0;    printf("Calling starcoder_eval\n");    starcoder_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);    for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {        // predict        if (embd.size() > 0) {            const int64_t t_start_us = ggml_time_us();            if (!starcoder_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {                printf("Failed to predict\n");                return 1;            }            // Should input processing count towards t_predict?            if (i > embd_inp.size()) {                t_predict_us += ggml_time_us() - t_start_us;            }        }        n_past += int(embd.size());        embd.clear();        if (i >= embd_inp.size()) {            // sample next token            const int   top_k = params.top_k;            const float top_p = params.top_p;            const float temp  = params.temp;            const int n_vocab = model.hparams.n_vocab;            gpt_vocab::id id = 0;            {                const int64_t t_start_sample_us = ggml_time_us();                id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng);                t_sample_us += ggml_time_us() - t_start_sample_us;            }            // add it to the context            embd.push_back(id);        } else {            // if here, it means we are still processing the input prompt            for (size_t k = i; k < embd_inp.size(); k++) {                embd.push_back(embd_inp[k]);                if (int32_t(embd.size()) >= params.n_batch) {                    break;                }            }            i += int(embd.size()) - 1;        }        // display text        for (auto id : embd) {            printf("%s", vocab.id_to_token[id].c_str());        }        fflush(stdout);        // check if model is santacoder        if (model.hparams.n_layer <= 30 && embd.back() == 49152) {            break;        }        // check if model is starcoder        else if (embd.back() == 0) { //TODO: this is only for starcoder            break;        }        // Handle StarChat "<|end|>" token.        else if (embd.back() == starchat_end_token) {            //break;        }    }    // report timing    {        const int64_t t_main_end_us = ggml_time_us();        printf("\n\n");        printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);        printf("%s:     load time = %8.2f ms\n", __func__, t_load_us/1000.0f);        printf("%s:   sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);        //Shouldnt the input prompt be subracted?        printf("%s:  predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/(n_past - embd_inp.size()));        //printf("%s:  predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);        printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);    }    ggml_free(model.ctx);    if (model.mm_addr) {	    munmap_file(model.mm_addr, model.mm_length);    }    return 0;}
 |