| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 | 
							- #include "ggml/ggml.h"
 
- #include "common.h"
 
- #include <cmath>
 
- #include <cstdio>
 
- #include <cstring>
 
- #include <ctime>
 
- #include <fstream>
 
- #include <string>
 
- #include <vector>
 
- #include <algorithm>
 
- #if defined(_MSC_VER)
 
- #pragma warning(disable: 4244 4267) // possible loss of data
 
- #endif
 
- struct mnist_model {
 
-     struct ggml_tensor * conv2d_1_kernel;
 
-     struct ggml_tensor * conv2d_1_bias;
 
-     struct ggml_tensor * conv2d_2_kernel;
 
-     struct ggml_tensor * conv2d_2_bias;
 
-     struct ggml_tensor * dense_weight;
 
-     struct ggml_tensor * dense_bias;
 
-     struct ggml_context * ctx;
 
- };
 
- bool mnist_model_load(const std::string & fname, mnist_model & model) {
 
-     struct gguf_init_params params = {
 
-         /*.no_alloc   =*/ false,
 
-         /*.ctx        =*/ &model.ctx,
 
-     };
 
-     gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
 
-     if (!ctx) {
 
-         fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
 
-         return false;
 
-     }
 
-     model.conv2d_1_kernel = ggml_get_tensor(model.ctx, "kernel1");
 
-     model.conv2d_1_bias = ggml_get_tensor(model.ctx, "bias1");
 
-     model.conv2d_2_kernel = ggml_get_tensor(model.ctx, "kernel2");
 
-     model.conv2d_2_bias = ggml_get_tensor(model.ctx, "bias2");
 
-     model.dense_weight = ggml_get_tensor(model.ctx, "dense_w");
 
-     model.dense_bias = ggml_get_tensor(model.ctx, "dense_b");
 
-     return true;
 
- }
 
- int mnist_eval(
 
-         const mnist_model & model,
 
-         const int n_threads,
 
-         std::vector<float> digit,
 
-         const char * fname_cgraph
 
-         )
 
- {
 
-     static size_t buf_size = 100000 * sizeof(float) * 4;
 
-     static void * buf = malloc(buf_size);
 
-     struct ggml_init_params params = {
 
-         /*.mem_size   =*/ buf_size,
 
-         /*.mem_buffer =*/ buf,
 
-         /*.no_alloc   =*/ false,
 
-     };
 
-     struct ggml_context * ctx0 = ggml_init(params);
 
-     struct ggml_cgraph gf = {};
 
-     struct ggml_tensor * input = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, 28, 28, 1, 1);
 
-     memcpy(input->data, digit.data(), ggml_nbytes(input));
 
-     ggml_set_name(input, "input");
 
-     ggml_tensor * cur = ggml_conv_2d(ctx0, model.conv2d_1_kernel, input, 1, 1, 0, 0, 1, 1);
 
-     cur = ggml_add(ctx0, cur, model.conv2d_1_bias);
 
-     cur = ggml_relu(ctx0, cur);
 
-     // Output shape after Conv2D: (26 26 32 1)
 
-     cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
 
-     // Output shape after MaxPooling2D: (13 13 32 1)
 
-     cur = ggml_conv_2d(ctx0, model.conv2d_2_kernel, cur, 1, 1, 0, 0, 1, 1);
 
-     cur = ggml_add(ctx0, cur, model.conv2d_2_bias);
 
-     cur = ggml_relu(ctx0, cur);
 
-     // Output shape after Conv2D: (11 11 64 1)
 
-     cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
 
-     // Output shape after MaxPooling2D: (5 5 64 1)
 
-     cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 2, 0, 3));
 
-     // Output shape after permute: (64 5 5 1)
 
-     cur = ggml_reshape_2d(ctx0, cur, 1600, 1);
 
-     // Final Dense layer
 
-     cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.dense_weight, cur), model.dense_bias);
 
-     ggml_tensor * probs = ggml_soft_max(ctx0, cur);
 
-     ggml_set_name(probs, "probs");
 
-     ggml_build_forward_expand(&gf, probs);
 
-     ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
 
-     //ggml_graph_print(&gf);
 
-     ggml_graph_dump_dot(&gf, NULL, "mnist-cnn.dot");
 
-     if (fname_cgraph) {
 
-         // export the compute graph for later use
 
-         // see the "mnist-cpu" example
 
-         ggml_graph_export(&gf, fname_cgraph);
 
-         fprintf(stderr, "%s: exported compute graph to '%s'\n", __func__, fname_cgraph);
 
-     }
 
-     const float * probs_data = ggml_get_data_f32(probs);
 
-     const int prediction = std::max_element(probs_data, probs_data + 10) - probs_data;
 
-     ggml_free(ctx0);
 
-     return prediction;
 
- }
 
- int main(int argc, char ** argv) {
 
-     srand(time(NULL));
 
-     ggml_time_init();
 
-     if (argc != 3) {
 
-         fprintf(stderr, "Usage: %s models/mnist/mnist-cnn.gguf models/mnist/t10k-images.idx3-ubyte\n", argv[0]);
 
-         exit(0);
 
-     }
 
-     uint8_t buf[784];
 
-     mnist_model model;
 
-     std::vector<float> digit;
 
-     // load the model
 
-     {
 
-         const int64_t t_start_us = ggml_time_us();
 
-         if (!mnist_model_load(argv[1], model)) {
 
-             fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, argv[1]);
 
-             return 1;
 
-         }
 
-         const int64_t t_load_us = ggml_time_us() - t_start_us;
 
-         fprintf(stdout, "%s: loaded model in %8.2f ms\n", __func__, t_load_us / 1000.0f);
 
-     }
 
-     // read a random digit from the test set
 
-     {
 
-         std::ifstream fin(argv[2], std::ios::binary);
 
-         if (!fin) {
 
-             fprintf(stderr, "%s: failed to open '%s'\n", __func__, argv[2]);
 
-             return 1;
 
-         }
 
-         // seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000)
 
-         fin.seekg(16 + 784 * (rand() % 10000));
 
-         fin.read((char *) &buf, sizeof(buf));
 
-     }
 
-     // render the digit in ASCII
 
-     {
 
-         digit.resize(sizeof(buf));
 
-         for (int row = 0; row < 28; row++) {
 
-             for (int col = 0; col < 28; col++) {
 
-                 fprintf(stderr, "%c ", (float)buf[row*28 + col] > 230 ? '*' : '_');
 
-                 digit[row*28 + col] = ((float)buf[row*28 + col] / 255.0f);
 
-             }
 
-             fprintf(stderr, "\n");
 
-         }
 
-         fprintf(stderr, "\n");
 
-     }
 
-     const int prediction = mnist_eval(model, 1, digit, nullptr);
 
-     fprintf(stdout, "%s: predicted digit is %d\n", __func__, prediction);
 
-     ggml_free(model.ctx);
 
-     return 0;
 
- }
 
 
  |