| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795 | 
							- #include "ggml/ggml.h"
 
- #include "common-ggml.h"
 
- #include "common.h"
 
- #include <cassert>
 
- #include <cmath>
 
- #include <cinttypes>
 
- #include <cstddef>
 
- #include <cstdio>
 
- #include <cstring>
 
- #include <fstream>
 
- #include <iostream>
 
- #include <map>
 
- #include <stdint.h>
 
- #include <string>
 
- #include <unordered_map>
 
- #include <utility>
 
- #include <vector>
 
- #if defined(_WIN32)
 
- #define NOMINMAX
 
- #include <Windows.h>
 
- bool is_stdin_terminal() {
 
-     auto in = GetStdHandle(STD_INPUT_HANDLE);
 
-     return GetFileType(in) == FILE_TYPE_CHAR;
 
- }
 
- #else
 
- #include <unistd.h>
 
- bool is_stdin_terminal() {
 
-     return isatty(STDIN_FILENO);
 
- }
 
- #endif
 
- #if defined(_MSC_VER)
 
- #pragma warning(disable: 4244 4267) // possible loss of data
 
- #endif
 
- using piece_t = std::pair<std::size_t, float>;
 
- using piece_map_t = std::unordered_map<std::string, piece_t>;
 
- struct replit_tokenizer {
 
-     gpt_vocab raw_vocab;
 
-     piece_map_t piece_map;
 
-     std::vector<std::string> vocab;
 
- };
 
- std::pair<std::vector<std::size_t>, float> encode_word(const std::string & word, const piece_map_t & model) {
 
-     std::vector<int> best_segmentations_starts(word.length() + 1, -1);
 
-     best_segmentations_starts[0] = 0;
 
-     std::vector<float> best_segmentations_scores(word.length() + 1, -std::numeric_limits<float>::infinity());
 
-     best_segmentations_scores[0] = 1.0;
 
-     for (size_t start_idx = 0; start_idx < word.length(); ++start_idx) {
 
-         float best_score_at_start = best_segmentations_scores[start_idx];
 
-         for (size_t end_idx = start_idx + 1; end_idx <= word.length(); ++end_idx) {
 
-             std::string token = word.substr(start_idx, end_idx - start_idx);
 
-             if (model.count(token) && best_score_at_start != -std::numeric_limits<float>::infinity()) {
 
-                 float token_score = model.at(token).second;
 
-                 float score = token_score + best_score_at_start;
 
-                 if (best_segmentations_scores[end_idx] == -std::numeric_limits<float>::infinity() ||
 
-                     best_segmentations_scores[end_idx] > score) {
 
-                     best_segmentations_starts[end_idx] = start_idx;
 
-                     best_segmentations_scores[end_idx] = score;
 
-                 }
 
-             }
 
-         }
 
-     }
 
-     if (best_segmentations_scores.back() == -std::numeric_limits<float>::infinity()) {
 
-         return std::make_pair(std::vector<std::size_t>{0}, 0.0f);
 
-     }
 
-     float score = best_segmentations_scores.back();
 
-     int start = best_segmentations_starts.back();
 
-     int end = word.length();
 
-     std::vector<std::size_t> tokens;
 
-     while (start != 0) {
 
-         const auto token_id = model.at(word.substr(start, end - start)).first;
 
-         tokens.insert(tokens.begin(), token_id);
 
-         int next_start = best_segmentations_starts[start];
 
-         end = start;
 
-         start = next_start;
 
-     }
 
-     const auto token_id = model.at(word.substr(start, end - start)).first;
 
-     tokens.insert(tokens.begin(), token_id);
 
-     return std::make_pair(tokens, score);
 
- }
 
- bool replit_tokenizer_load(replit_tokenizer & tokenizer, std::istream & fin, int max_vocab_size) {
 
-     std::string word;
 
-     std::vector<char> buf(128);
 
-     for (int i = 0; i < max_vocab_size; i++) {
 
-         uint32_t len;
 
-         fin.read((char *)&len, sizeof(len));
 
-         buf.resize(len);
 
-         fin.read((char *)buf.data(), len);
 
-         word.assign(buf.data(), len);
 
-         float score;
 
-         fin.read((char *)&score, sizeof(score));
 
-         tokenizer.piece_map[word] = std::make_pair(i, -score);
 
-         tokenizer.raw_vocab.id_to_token[i] = word;
 
-     }
 
-     return true;
 
- }
 
- std::string replace_all(const std::string & str,    // where to work
 
-                         const std::string & find,   // substitute 'find'
 
-                         const std::string & replace //      by 'replace'
 
- ) {
 
-     using namespace std;
 
-     string result;
 
-     size_t find_len = find.size();
 
-     size_t pos, from = 0;
 
-     while (string::npos != (pos = str.find(find, from))) {
 
-         result.append(str, from, pos - from);
 
-         result.append(replace);
 
-         from = pos + find_len;
 
-     }
 
-     result.append(str, from, string::npos);
 
-     return result;
 
- }
 
- std::string ws_symbol = "\342\226\201";
 
- std::vector<std::size_t> replit_tokenizer_tokenize(replit_tokenizer & tokenizer, const std::string & text) {
 
-     std::vector<std::size_t> tokens;
 
-     auto normalized_text = replace_all(text, " ", ws_symbol);
 
-     auto tokenized = encode_word(normalized_text, tokenizer.piece_map);
 
-     return tokenized.first;
 
- }
 
- std::string replit_tokenizer_detokenize(replit_tokenizer & tokenizer, const std::vector<std::size_t> & tokens) {
 
-     std::string text;
 
-     for (auto token : tokens) {
 
-         text += tokenizer.raw_vocab.id_to_token[token];
 
-     }
 
-     auto denormalized_text = replace_all(text, ws_symbol, " ");
 
-     return denormalized_text;
 
- }
 
- // no defaults for now
 
- struct replit_hparams {
 
-     int32_t d_model = 0;
 
-     int32_t max_seq_len = 0;
 
-     int32_t n_heads = 0;
 
-     int32_t n_layers = 0;
 
-     int32_t n_vocab = 0;
 
-     int32_t ftype = 0;
 
- };
 
- struct replit_layer {
 
-     // pre normalization
 
-     struct ggml_tensor * norm_1_weight;
 
-     // attention
 
-     struct ggml_tensor * c_attn_wqkv_weight;
 
-     struct ggml_tensor * c_attn_out_proj_weight;
 
-     // post normalization
 
-     struct ggml_tensor * norm_2_weight;
 
-     // ff
 
-     struct ggml_tensor * ffn_up_proj;
 
-     struct ggml_tensor * ffn_down_proj;
 
- };
 
- struct replit_model {
 
-     replit_hparams hparams;
 
-     struct ggml_tensor * wte_weight;    // position embedding
 
-     struct ggml_tensor * norm_f_weight; // language model head
 
-     std::vector<replit_layer> layers;
 
-     // key + value memory
 
-     struct ggml_tensor * memory_k;
 
-     struct ggml_tensor * memory_v;
 
-     struct ggml_context * ctx;
 
-     std::map<std::string, struct ggml_tensor *> tensors;
 
- };
 
- // load the model's weights from a file
 
- bool replit_model_load(const std::string & fname, replit_model & model, replit_tokenizer & vocab) {
 
-     printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
 
-     auto fin = std::ifstream(fname, std::ios::binary);
 
-     if (!fin) {
 
-         fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
 
-         return false;
 
-     }
 
-     // verify magic
 
-     {
 
-         uint32_t magic;
 
-         fin.read((char *)&magic, sizeof(magic));
 
-         if (magic != GGML_FILE_MAGIC) {
 
-             fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
 
-             return false;
 
-         }
 
-     }
 
-     // load hparams
 
-     {
 
-         auto & hparams = model.hparams;
 
-         fin.read((char *)&hparams.d_model, sizeof(hparams.d_model));
 
-         fin.read((char *)&hparams.max_seq_len, sizeof(hparams.max_seq_len));
 
-         fin.read((char *)&hparams.n_heads, sizeof(hparams.n_heads));
 
-         fin.read((char *)&hparams.n_layers, sizeof(hparams.n_layers));
 
-         fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab));
 
-         fin.read((char *)&hparams.ftype, sizeof(hparams.ftype));
 
-         const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
 
-         printf("%s: d_model      = %d\n", __func__, hparams.d_model);
 
-         printf("%s: max_seq_len  = %d\n", __func__, hparams.max_seq_len);
 
-         printf("%s: n_heads      = %d\n", __func__, hparams.n_heads);
 
-         printf("%s: n_layers     = %d\n", __func__, hparams.n_layers);
 
-         printf("%s: n_vocab      = %d\n", __func__, hparams.n_vocab);
 
-         printf("%s: ftype        = %d\n", __func__, hparams.ftype);
 
-         printf("%s: qntvr        = %d\n", __func__, qntvr);
 
-         hparams.ftype %= GGML_QNT_VERSION_FACTOR;
 
-     }
 
-     // load vocab
 
-     replit_tokenizer_load(vocab, fin, model.hparams.n_vocab);
 
-     // for the big tensors, we have the option to store the data in 16-bit
 
-     // floats or quantized in order to save memory and also to speed up the
 
-     // computation
 
-     ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype));
 
-     if (wtype == GGML_TYPE_COUNT) {
 
-         fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(),
 
-                 model.hparams.ftype);
 
-         return false;
 
-     }
 
-     auto & ctx = model.ctx;
 
-     size_t ctx_size = 0;
 
-     {
 
-         const auto & hparams = model.hparams;
 
-         const int n_embd = hparams.d_model;
 
-         const int n_layer = hparams.n_layers;
 
-         const int n_ctx = hparams.max_seq_len;
 
-         const int n_vocab = hparams.n_vocab;
 
-         ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // wte_weight
 
-         ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32);   // ln_f_weight
 
-         ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32));      // ln_1_weight
 
-         ctx_size += n_layer * (3 * n_embd * n_embd * ggml_type_sizef(wtype)); // attn_Wqkv_weight
 
-         ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype));     // attn_out_proj_weight
 
-         ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32));      // ln_2_weight
 
-         ctx_size += n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); // mlp_mlp_up_weight
 
-         ctx_size += n_layer * (n_embd * n_embd * 4 * ggml_type_sizef(wtype)); // mlp_mlp_down_weight
 
-         ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_k
 
-         ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_v
 
-         ctx_size += (1 + 6 * n_layer) * 512; // object overhead
 
-         printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0));
 
-     }
 
-     // create the ggml context
 
-     {
 
-         struct ggml_init_params params = {
 
-             /*.mem_size   =*/ ctx_size,
 
-             /*.mem_buffer =*/ NULL,
 
-             /*.no_alloc   =*/ false,
 
-         };
 
-         model.ctx = ggml_init(params);
 
-         if (!model.ctx) {
 
-             fprintf(stderr, "%s: ggml_init() failed\n", __func__);
 
-             return false;
 
-         }
 
-     }
 
-     // prepare memory for the weights
 
-     {
 
-         const auto & hparams = model.hparams;
 
-         const size_t n_embd = hparams.d_model;
 
-         const size_t n_layer = hparams.n_layers;
 
-         const size_t n_vocab = hparams.n_vocab;
 
-         model.layers.resize(n_layer);
 
-         model.wte_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
 
-         model.norm_f_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 
-         // map by name
 
-         model.tensors["transformer.wte.weight"] = model.wte_weight;
 
-         model.tensors["transformer.norm_f.weight"] = model.norm_f_weight;
 
-         for (int i = 0; i < (int)n_layer; ++i) {
 
-             auto & layer = model.layers[i];
 
-             layer.norm_1_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 
-             layer.c_attn_wqkv_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd);
 
-             layer.c_attn_out_proj_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
 
-             layer.norm_2_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 
-             layer.ffn_up_proj = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd);
 
-             layer.ffn_down_proj = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd);
 
-             // map by name
 
-             model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"] = layer.norm_1_weight;
 
-             model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight;
 
-             model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] =
 
-                 layer.c_attn_out_proj_weight;
 
-             model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"] = layer.norm_2_weight;
 
-             model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"] = layer.ffn_up_proj;
 
-             model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj;
 
-         }
 
-     }
 
-     // key + value memory
 
-     {
 
-         const auto & hparams = model.hparams;
 
-         const int n_embd = hparams.d_model;
 
-         const int n_layer = hparams.n_layers;
 
-         const int n_ctx = hparams.max_seq_len;
 
-         const int64_t n_mem = n_layer * n_ctx;
 
-         const int64_t n_elements = n_embd * n_mem;
 
-         model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
 
-         model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
 
-         const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
 
-         printf("%s: memory_size = %8.2f MB, n_mem = %" PRIu64 "\n", __func__, memory_size / 1024.0 / 1024.0, n_mem);
 
-     }
 
-     // load weights
 
-     {
 
-         int n_tensors = 0;
 
-         size_t total_size = 0;
 
-         printf("%s: ", __func__);
 
-         while (true) {
 
-             int32_t n_dims;
 
-             int32_t length;
 
-             int32_t ttype;
 
-             fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
 
-             fin.read(reinterpret_cast<char *>(&length), sizeof(length));
 
-             fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
 
-             if (fin.eof()) {
 
-                 break;
 
-             }
 
-             int32_t nelements = 1;
 
-             int32_t ne[2] = {1, 1};
 
-             for (int i = 0; i < n_dims; ++i) {
 
-                 fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
 
-                 nelements *= ne[i];
 
-             }
 
-             std::string name(length, 0);
 
-             fin.read(&name[0], length);
 
-             if (model.tensors.find(name) == model.tensors.end()) {
 
-                 fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
 
-                 return false;
 
-             }
 
-             auto tensor = model.tensors[name];
 
-             if (ggml_nelements(tensor) != nelements) {
 
-                 fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
 
-                 return false;
 
-             }
 
-             if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
 
-                 fprintf(stderr,
 
-                         "%s: tensor '%s' has wrong shape in model file: got [%5d, "
 
-                         "%5d], expected [%5d, %5d]\n",
 
-                         __func__, name.c_str(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]);
 
-                 return false;
 
-             }
 
-             // for debugging
 
-             if (0) {
 
-                 printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1],
 
-                        ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
 
-             }
 
-             const size_t bpe = ggml_type_size(ggml_type(ttype));
 
-             if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
 
-                 fprintf(stderr,
 
-                         "%s: tensor '%s' has wrong size in model file: got %zu, "
 
-                         "expected %zu\n",
 
-                         __func__, name.c_str(), ggml_nbytes(tensor), nelements * bpe);
 
-                 return false;
 
-             }
 
-             fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
 
-             total_size += ggml_nbytes(tensor);
 
-             if (++n_tensors % 8 == 0) {
 
-                 printf(".");
 
-                 fflush(stdout);
 
-             }
 
-         }
 
-         printf(" done\n");
 
-         printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors);
 
-     }
 
-     fin.close();
 
-     return true;
 
- }
 
- // evaluate the transformer
 
- //
 
- //   - model:     the model
 
- //   - n_threads: number of threads to use
 
- //   - n_past:    the context size so far
 
- //   - embd_inp:  the embeddings of the tokens in the context
 
- //   - embd_w:    the predicted logits for the next token
 
- //
 
- bool replit_eval(const replit_model & model, const int n_threads, const int n_past,
 
-                  const std::vector<gpt_vocab::id> & embd_inp, std::vector<float> & embd_w, bool logits_all,
 
-                  size_t & mem_per_token) {
 
-     const int N = embd_inp.size();
 
-     const auto & hparams = model.hparams;
 
-     const int n_embd = hparams.d_model;
 
-     const int n_layer = hparams.n_layers;
 
-     const int n_head = hparams.n_heads;
 
-     const int n_vocab = hparams.n_vocab;
 
-     const int n_ctx = hparams.max_seq_len;
 
-     const float eps = 1e-5f;
 
-     static size_t buf_size = 256u * 1024 * 1024;
 
-     static void * buf = malloc(buf_size);
 
-     if (mem_per_token > 0 && mem_per_token * N > buf_size) {
 
-         const size_t buf_size_new = 1.1 * (mem_per_token * N); // add 10% to account for ggml object overhead
 
-         // printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__,
 
-         // buf_size, buf_size_new);
 
-         // reallocate
 
-         buf_size = buf_size_new;
 
-         buf = realloc(buf, buf_size);
 
-         if (buf == nullptr) {
 
-             fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
 
-             return false;
 
-         }
 
-     }
 
-     struct ggml_init_params params = {
 
-         /*.mem_size   =*/ buf_size,
 
-         /*.mem_buffer =*/ buf,
 
-         /*.no_alloc   =*/ false,
 
-     };
 
-     struct ggml_context * ctx0 = ggml_init(params);
 
-     struct ggml_cgraph gf = {};
 
-     struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 
-     memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd));
 
-     struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte_weight, embd);
 
-     for (int il = 0; il < n_layer; ++il) {
 
-         struct ggml_tensor * cur;
 
-         // a = self.ln_1(x)
 
-         {
 
-             cur = ggml_norm(ctx0, inpL, eps);
 
-             cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_1_weight, cur), cur);
 
-         }
 
-         // self-attention
 
-         //  b, _, past_key_value = self.attn(a, past_key_value=past_key_value,
 
-         //  attn_bias=attn_bias, attention_mask=attention_mask,
 
-         //  is_causal=is_causal)
 
-         {
 
-             // compute QKV
 
-             cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur);
 
-             struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd);
 
-             struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd);
 
-             struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd);
 
-             // store key and value to memory
 
-             {
 
-                 struct ggml_tensor * k =
 
-                     ggml_view_1d(ctx0, model.memory_k, N * n_embd,
 
-                                  (ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past));
 
-                 struct ggml_tensor * v =
 
-                     ggml_view_1d(ctx0, model.memory_v, N * n_embd,
 
-                                  (ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past));
 
-                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
 
-                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
 
-             }
 
-             // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0,
 
-             // 2, 1, 3) [64, N, 12]
 
-             struct ggml_tensor * Q = ggml_permute(
 
-                 ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2,
 
-                 1, 3);
 
-             // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1,
 
-             // 3) [64, n_past + N, 12]
 
-             struct ggml_tensor * K =
 
-                 ggml_permute(ctx0,
 
-                              ggml_reshape_3d(ctx0,
 
-                                              ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd,
 
-                                                           il * n_ctx * ggml_element_size(model.memory_k) * n_embd),
 
-                                              n_embd / n_head, n_head, n_past + N),
 
-                              0, 2, 1, 3);
 
-             // K * Q
 
-             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 
-             // KQ_scaled = KQ / sqrt(n_embd/n_head)
 
-             struct ggml_tensor * KQ_scaled =
 
-                 ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head)));
 
-             struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, n_past, n_head, 8.0f);
 
-             // KQ_masked = mask_past(KQ_scaled)
 
-             struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
 
-             // KQ = soft_max(KQ_masked)
 
-             struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
 
-             // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1,
 
-             // 2, 0, 3).contiguous() [n_past + N, 64, 12]
 
-             struct ggml_tensor * V_trans = ggml_cpy(
 
-                 ctx0,
 
-                 ggml_permute(ctx0,
 
-                              ggml_reshape_3d(ctx0,
 
-                                              ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd,
 
-                                                           il * n_ctx * ggml_element_size(model.memory_v) * n_embd),
 
-                                              n_embd / n_head, n_head, n_past + N),
 
-                              1, 2, 0, 3),
 
-                 ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd / n_head, n_head));
 
-             // KQV = transpose(V) * KQ_soft_max
 
-             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
 
-             // KQV_merged = KQV.permute(0, 2, 1, 3)
 
-             struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 
-             // cur = KQV_merged.contiguous().view(n_embd, N)
 
-             cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
 
-             // projection
 
-             { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); }
 
-         }
 
-         inpL = ggml_add(ctx0, inpL, cur);
 
-         // m = self.ln_2(x)
 
-         {
 
-             cur = ggml_norm(ctx0, inpL, eps);
 
-             cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_2_weight, cur), cur);
 
-         }
 
-         // n = self.mlp(m)
 
-         {
 
-             cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up_proj, cur);
 
-             // GELU activation
 
-             cur = ggml_gelu(ctx0, cur);
 
-             // projection
 
-             // cur = proj_w*cur + proj_b
 
-             cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down_proj, cur);
 
-         }
 
-         // x = x + n
 
-         inpL = ggml_add(ctx0, inpL, cur);
 
-     }
 
-     // norm
 
-     {
 
-         inpL = ggml_norm(ctx0, inpL, eps);
 
-         // inpL = ln_f_g*inpL
 
-         inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm_f_weight, inpL), inpL);
 
-     }
 
-     // output embedding weight tied to input embedding
 
-     inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL);
 
-     // logits -> probs
 
-     // inpL = ggml_soft_max(ctx0, inpL);
 
-     // run the computation
 
-     ggml_build_forward_expand(&gf, inpL);
 
-     ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
 
-     // std::cout << "Qcur" << std::endl;
 
-     // print_tensor(Qcur);
 
-     // if (n_past%100 == 0) {
 
-     // ggml_graph_print(&gf);
 
-     // ggml_graph_dump_dot(&gf, NULL, "mpt-model.dot");
 
-     // }
 
-     if (logits_all) {
 
-         // return result for all tokens
 
-         embd_w.resize(n_vocab * N);
 
-         memcpy(embd_w.data(), (float *)ggml_get_data(inpL), sizeof(float) * n_vocab * N);
 
-     } else {
 
-         // return result for just the last token
 
-         embd_w.resize(n_vocab);
 
-         memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab);
 
-     }
 
-     if (mem_per_token == 0) {
 
-         mem_per_token = ggml_used_mem(ctx0) / N;
 
-     }
 
-     // printf("used_mem = %zu\n", ggml_used_mem(ctx0));
 
-     ggml_free(ctx0);
 
-     return true;
 
- }
 
- int main(int argc, char ** argv) {
 
-     const int64_t t_main_start_us = ggml_time_us();
 
-     gpt_params params;
 
-     params.model = "";
 
-     if (gpt_params_parse(argc, argv, params) == false) {
 
-         return 1;
 
-     }
 
-     if (params.seed < 0) {
 
-         params.seed = time(NULL);
 
-     }
 
-     printf("%s: seed = %d\n", __func__, params.seed);
 
-     std::mt19937 rng(params.seed);
 
-     if (params.prompt.empty()) {
 
-         if (!is_stdin_terminal()) {
 
-             std::string line;
 
-             while (std::getline(std::cin, line)) {
 
-                 params.prompt = params.prompt + "\n" + line;
 
-             }
 
-         } else {
 
-             params.prompt = gpt_random_prompt(rng);
 
-         }
 
-     }
 
-     int64_t t_load_us = 0;
 
-     replit_tokenizer vocab;
 
-     replit_model model;
 
-     // load the model
 
-     {
 
-         const int64_t t_start_us = ggml_time_us();
 
-         if (!replit_model_load(params.model, model, vocab)) {
 
-             fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
 
-             return 1;
 
-         }
 
-         t_load_us = ggml_time_us() - t_start_us;
 
-     }
 
-     int n_past = 0;
 
-     int64_t t_sample_us = 0;
 
-     int64_t t_predict_us = 0;
 
-     std::vector<float> logits;
 
-     // tokenize the prompt
 
-     std::vector<std::size_t> embd_inp = replit_tokenizer_tokenize(vocab, params.prompt);
 
-     printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
 
-     for (size_t i = 0; i < embd_inp.size(); i++) {
 
-         printf("%s: token[%zu] = %6zu\n", __func__, i, embd_inp[i]);
 
-         // vocab.id_to_token.at(embd_inp[i]).c_str()
 
-     }
 
-     printf("\n");
 
-     params.n_predict = std::min(params.n_predict, model.hparams.max_seq_len - (int)embd_inp.size());
 
-     std::vector<gpt_vocab::id> embd;
 
-     // determine the required inference memory per token:
 
-     size_t mem_per_token = 0;
 
-     replit_eval(model, params.n_threads, 0, {0, 1, 2, 3}, logits, false, mem_per_token);
 
-     for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
 
-         // predict
 
-         if (embd.size() > 0) {
 
-             const int64_t t_start_us = ggml_time_us();
 
-             if (!replit_eval(model, params.n_threads, n_past, embd, logits, false, mem_per_token)) {
 
-                 printf("Failed to predict\n");
 
-                 return 1;
 
-             }
 
-             t_predict_us += ggml_time_us() - t_start_us;
 
-         }
 
-         n_past += embd.size();
 
-         embd.clear();
 
-         if (i >= embd_inp.size()) {
 
-             // sample next token
 
-             const int top_k = params.top_k;
 
-             const float top_p = params.top_p;
 
-             const float temp = params.temp;
 
-             const int n_vocab = model.hparams.n_vocab;
 
-             gpt_vocab::id id = 0;
 
-             {
 
-                 const int64_t t_start_sample_us = ggml_time_us();
 
-                 id = gpt_sample_top_k_top_p(vocab.raw_vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p,
 
-                                             temp, rng);
 
-                 t_sample_us += ggml_time_us() - t_start_sample_us;
 
-             }
 
-             // add it to the context
 
-             embd.push_back(id);
 
-         } else {
 
-             // if here, it means we are still processing the input prompt
 
-             for (size_t k = i; k < embd_inp.size(); k++) {
 
-                 embd.push_back(embd_inp[k]);
 
-                 if (int32_t(embd.size()) > params.n_batch) {
 
-                     break;
 
-                 }
 
-             }
 
-             i += embd.size() - 1;
 
-         }
 
-         // display text
 
-         for (auto id : embd) {
 
-             printf("%s", replit_tokenizer_detokenize(vocab, {static_cast<std::size_t>(id)}).c_str());
 
-         }
 
-         fflush(stdout);
 
-         // end of text token
 
-         if (embd.back() == 0) {
 
-             break;
 
-         }
 
-     }
 
-     // report timing
 
-     {
 
-         const int64_t t_main_end_us = ggml_time_us();
 
-         printf("\n\n");
 
-         printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
 
-         printf("%s:     load time = %8.2f ms\n", __func__, t_load_us / 1000.0f);
 
-         printf("%s:   sample time = %8.2f ms\n", __func__, t_sample_us / 1000.0f);
 
-         printf("%s:  predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us / 1000.0f,
 
-                t_predict_us / 1000.0f / n_past);
 
-         printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);
 
-     }
 
-     ggml_free(model.ctx);
 
-     return 0;
 
- }
 
 
  |