| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927 | 
							- #include "ggml/ggml.h"
 
- #include "common.h"
 
- #include "common-ggml.h"
 
- #include <cassert>
 
- #include <cmath>
 
- #include <cstdio>
 
- #include <cstring>
 
- #include <fstream>
 
- #include <map>
 
- #include <string>
 
- #include <vector>
 
- #if defined(_MSC_VER)
 
- #pragma warning(disable: 4244 4267) // possible loss of data
 
- #endif
 
- // default hparams (GPT-2 117M)
 
- // https://huggingface.co/bigcode/gpt_bigcode-santacoder/blob/main/config.json
 
- struct starcoder_hparams {
 
-     int32_t n_vocab = 49280;
 
-     int32_t n_ctx   = 2048;
 
-     int32_t n_embd  = 2048;
 
-     int32_t n_head  = 16;
 
-     int32_t n_layer = 24;
 
-     int32_t ftype   = 1;
 
-     float   eps     = 1e-5f;
 
- };
 
- struct starcoder_layer {
 
-     // normalization
 
-     struct ggml_tensor * ln_1_g;
 
-     struct ggml_tensor * ln_1_b;
 
-     struct ggml_tensor * ln_2_g;
 
-     struct ggml_tensor * ln_2_b;
 
-     // attention
 
-     struct ggml_tensor * c_attn_attn_w;
 
-     struct ggml_tensor * c_attn_attn_b;
 
-     struct ggml_tensor * c_attn_proj_w;
 
-     struct ggml_tensor * c_attn_proj_b;
 
-     // mlp
 
-     struct ggml_tensor * c_mlp_fc_w;
 
-     struct ggml_tensor * c_mlp_fc_b;
 
-     struct ggml_tensor * c_mlp_proj_w;
 
-     struct ggml_tensor * c_mlp_proj_b;
 
- };
 
- struct starcoder_model {
 
-     starcoder_hparams hparams;
 
-     // normalization
 
-     struct ggml_tensor * ln_f_g;
 
-     struct ggml_tensor * ln_f_b;
 
-     struct ggml_tensor * wte;     // position embedding
 
-     struct ggml_tensor * wpe;     //    token embedding
 
-     struct ggml_tensor * lm_head; // language model head
 
-     std::vector<starcoder_layer> layers;
 
-     // key + value memory
 
-     struct ggml_tensor * memory_k;
 
-     struct ggml_tensor * memory_v;
 
-     //
 
-     struct ggml_context * ctx;
 
-     std::map<std::string, struct ggml_tensor *> tensors;
 
- };
 
- // load the model's weights from a file
 
- bool starcoder_model_load(const std::string & fname, starcoder_model & model, gpt_vocab & vocab) {
 
-     printf("%s: loading model from '%s'\n", __func__, fname.c_str());
 
-     auto fin = std::ifstream(fname, std::ios::binary);
 
-     if (!fin) {
 
-         fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
 
-         return false;
 
-     }
 
-     // verify magic
 
-     {
 
-         uint32_t magic;
 
-         fin.read((char *) &magic, sizeof(magic));
 
-         if (magic != GGML_FILE_MAGIC) {
 
-             fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
 
-             return false;
 
-         }
 
-     }
 
-     // load hparams
 
-     {
 
-         auto & hparams = model.hparams;
 
-         fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
 
-         fin.read((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
 
-         fin.read((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
 
-         fin.read((char *) &hparams.n_head,  sizeof(hparams.n_head));
 
-         fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
 
-         fin.read((char *) &hparams.ftype,   sizeof(hparams.ftype));
 
-         const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
 
-         printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
 
-         printf("%s: n_ctx   = %d\n", __func__, hparams.n_ctx);
 
-         printf("%s: n_embd  = %d\n", __func__, hparams.n_embd);
 
-         printf("%s: n_head  = %d\n", __func__, hparams.n_head);
 
-         printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
 
-         printf("%s: ftype   = %d\n", __func__, hparams.ftype);
 
-         printf("%s: qntvr   = %d\n", __func__, qntvr);
 
-         hparams.ftype %= GGML_QNT_VERSION_FACTOR;
 
-     }
 
-     // load vocab
 
-     {
 
-         int32_t n_vocab = 0;
 
-         fin.read((char *) &n_vocab, sizeof(n_vocab));
 
-         if (n_vocab != model.hparams.n_vocab) {
 
-             fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
 
-                     __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
 
-             return false;
 
-         }
 
-         std::string word;
 
-         std::vector<char> buf(128);
 
-         for (int i = 0; i < n_vocab; i++) {
 
-             uint32_t len;
 
-             fin.read((char *) &len, sizeof(len));
 
-             buf.resize(len);
 
-             fin.read((char *) buf.data(), len);
 
-             word.assign(buf.data(), len);
 
-             vocab.token_to_id[word] = i;
 
-             vocab.id_to_token[i] = word;
 
-             // if (i < 10) fprintf(stderr, "%.s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
 
-         }
 
-         // Add StarChat special tokens.
 
-         for (std::string token : {
 
-                 "<|system|>",
 
-                 "<|user|>",
 
-                 "<|assistant|>",
 
-                 "<|end|>",
 
-                 "<fim-prefix>",
 
-                 "<fim-middle>",
 
-                 "<fim-suffix>",
 
-                 "<fim-pad>",
 
-                 "<|end_of_turn|>"
 
-             }) {
 
-             if (vocab.token_to_id.find(token) != vocab.token_to_id.end()) {
 
-                 vocab.add_special_token(token);
 
-             }
 
-         }
 
-     }
 
-     // for the big tensors, we have the option to store the data in 16-bit floats or quantized
 
-     // in order to save memory and also to speed up the computation
 
-     ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
 
-     if (wtype == GGML_TYPE_COUNT) {
 
-         fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
 
-                 __func__, fname.c_str(), model.hparams.ftype);
 
-         return false;
 
-     }
 
-     auto & ctx = model.ctx;
 
-     size_t ctx_size = 0;
 
-     {
 
-         const auto & hparams = model.hparams;
 
-         const int n_embd  = hparams.n_embd;
 
-         const int n_layer = hparams.n_layer;
 
-         const int n_ctx   = hparams.n_ctx;
 
-         const int n_vocab = hparams.n_vocab;
 
-         const int head_dim = n_embd / hparams.n_head;
 
-         const int kv_heads = hparams.n_head; // 1 if MQA else hparams.n_head
 
-         const int kv_dim   = kv_heads * head_dim;
 
-         ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
 
-         ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
 
-         ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype);         // wte
 
-         ctx_size +=   n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe
 
-         ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype);         // lm_head
 
-         ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
 
-         ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
 
-         ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
 
-         ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
 
-         ctx_size += n_layer*((n_embd + 2*kv_dim)*n_embd*ggml_type_sizef(wtype));         // c_attn_attn_w // TODO:
 
-         ctx_size += n_layer*(       (n_embd + 2*kv_dim)*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
 
-         ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype));           // c_attn_proj_w
 
-         ctx_size += n_layer*(       n_embd*ggml_type_sizef(GGML_TYPE_F32));   // c_attn_proj_b
 
-         ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype));         // c_mlp_fc_w
 
-         ctx_size += n_layer*(       4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
 
-         ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype));         // c_mlp_proj_w
 
-         ctx_size += n_layer*(         n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
 
-         ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
 
-         ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
 
-         ctx_size += (6 + 12*n_layer)*512; // object overhead
 
-         printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
 
-     }
 
-     // create the ggml context
 
-     {
 
-         struct ggml_init_params params = {
 
-             /*.mem_size   =*/ ctx_size,
 
-             /*.mem_buffer =*/ NULL,
 
-             /*.no_alloc   =*/ false,
 
-         };
 
-         model.ctx = ggml_init(params);
 
-         if (!model.ctx) {
 
-             fprintf(stderr, "%s: ggml_init() failed\n", __func__);
 
-             return false;
 
-         }
 
-     }
 
-     // prepare memory for the weights
 
-     {
 
-         const auto & hparams = model.hparams;
 
-         const int n_embd  = hparams.n_embd;
 
-         const int n_layer = hparams.n_layer;
 
-         const int n_ctx   = hparams.n_ctx;
 
-         const int n_vocab = hparams.n_vocab;
 
-         const int head_dim = n_embd / hparams.n_head;
 
-         const int kv_heads = hparams.n_head; // 1 if MQA else hparams.n_head
 
-         const int kv_dim   = kv_heads * head_dim;
 
-         model.layers.resize(n_layer);
 
-         model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 
-         model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 
-         model.wte     = ggml_new_tensor_2d(ctx, wtype,         n_embd, n_vocab);
 
-         model.wpe     = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
 
-         model.lm_head = ggml_new_tensor_2d(ctx, wtype,         n_embd, n_vocab);
 
-         // map by name
 
-         model.tensors["model/ln_f/g"] = model.ln_f_g;
 
-         model.tensors["model/ln_f/b"] = model.ln_f_b;
 
-         model.tensors["model/wte"]     = model.wte;
 
-         model.tensors["model/wpe"]     = model.wpe;
 
-         model.tensors["model/lm_head"] = model.lm_head;
 
-         for (int i = 0; i < n_layer; ++i) {
 
-             auto & layer = model.layers[i];
 
-             layer.ln_1_g        = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);
 
-             layer.ln_1_b        = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);
 
-             layer.ln_2_g        = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);
 
-             layer.ln_2_b        = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);
 
-             layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype,           n_embd, n_embd + 2*kv_dim);
 
-             layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd + 2*kv_dim);
 
-             layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype,           n_embd, n_embd);
 
-             layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);
 
-             layer.c_mlp_fc_w    = ggml_new_tensor_2d(ctx, wtype,           n_embd, 4*n_embd); //TODO: 4*n_embd = config.n_inner
 
-             layer.c_mlp_fc_b    = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
 
-             layer.c_mlp_proj_w  = ggml_new_tensor_2d(ctx, wtype,         4*n_embd, n_embd);
 
-             layer.c_mlp_proj_b  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);
 
-             // map by name
 
-             model.tensors["model/h" + std::to_string(i) + "/ln_1/g"]        = layer.ln_1_g;
 
-             model.tensors["model/h" + std::to_string(i) + "/ln_1/b"]        = layer.ln_1_b;
 
-             model.tensors["model/h" + std::to_string(i) + "/ln_2/g"]        = layer.ln_2_g;
 
-             model.tensors["model/h" + std::to_string(i) + "/ln_2/b"]        = layer.ln_2_b;
 
-             model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
 
-             model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
 
-             model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;
 
-             model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;
 
-             model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"]    = layer.c_mlp_fc_w;
 
-             model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"]    = layer.c_mlp_fc_b;
 
-             model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"]  = layer.c_mlp_proj_w;
 
-             model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"]  = layer.c_mlp_proj_b;
 
-         }
 
-     }
 
-     // key + value memory
 
-     {
 
-         const auto & hparams = model.hparams;
 
-         const int n_embd  = hparams.n_embd;
 
-         const int n_layer = hparams.n_layer;
 
-         const int n_ctx   = hparams.n_ctx;
 
-         const int n_mem      = n_layer*n_ctx;
 
-         const int n_elements = n_embd*n_mem;
 
-         model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
 
-         model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
 
-         const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
 
-         printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
 
-     }
 
-     // load weights
 
-     {
 
-         size_t total_size = 0;
 
-         bool has_lm_head = false;
 
-         while (true) {
 
-             int32_t n_dims;
 
-             int32_t length;
 
-             int32_t ttype;
 
-             fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
 
-             fin.read(reinterpret_cast<char *>(&length), sizeof(length));
 
-             fin.read(reinterpret_cast<char *>(&ttype),  sizeof(ttype));
 
-             if (fin.eof()) {
 
-                 break;
 
-             }
 
-             int32_t nelements = 1;
 
-             int32_t ne[2] = { 1, 1 };
 
-             for (int i = 0; i < n_dims; ++i) {
 
-                 fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
 
-                 nelements *= ne[i];
 
-             }
 
-             std::string name(length, 0);
 
-             fin.read(&name[0], length);
 
-             if (model.tensors.find(name) == model.tensors.end()) {
 
-                 fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
 
-                 return false;
 
-             }
 
-             auto tensor = model.tensors[name];
 
-             if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
 
-                 fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
 
-                         __func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
 
-                 return false;
 
-             }
 
-             if (ggml_nelements(tensor) != nelements) {
 
-                 fprintf(stderr, "%s: tensor '%s' has wrong size in model file. got %d, expected %d\n",
 
-                         __func__, name.c_str(), (int) ggml_nelements(tensor), nelements);
 
-                 return false;
 
-             }
 
-             // for debugging
 
-             if (0) {
 
-                 printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
 
-             }
 
-             const size_t bpe = ggml_type_size(ggml_type(ttype));
 
-             if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
 
-                 fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
 
-                         __func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe);
 
-                 return false;
 
-             }
 
-             fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
 
-             // GPT-2 models share the WTE tensor as the LM head
 
-             if (name == "model/wte" && has_lm_head == false) {
 
-                 memcpy(model.lm_head->data, tensor->data, ggml_nbytes(tensor));
 
-             }
 
-             if (name == "model/lm_head") {
 
-                 has_lm_head = true;
 
-             }
 
-             total_size += ggml_nbytes(tensor);
 
-         }
 
-         printf("%s: model size  = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
 
-     }
 
-     fin.close();
 
-     return true;
 
- }
 
- // evaluate the transformer
 
- //
 
- //   - model:     the model
 
- //   - n_threads: number of threads to use
 
- //   - n_past:    the context size so far
 
- //   - embd_inp:  the embeddings of the tokens in the context
 
- //   - embd_w:    the predicted logits for the next token
 
- //
 
- bool starcoder_eval(
 
-         const starcoder_model & model,
 
-         const int n_threads,
 
-         const int n_past,
 
-         const std::vector<gpt_vocab::id> & embd_inp,
 
-               std::vector<float>         & embd_w,
 
-               size_t                     & mem_per_token) {
 
-     const int N = embd_inp.size();
 
-     const auto & hparams = model.hparams;
 
-     const int n_embd  = hparams.n_embd;
 
-     const int n_layer = hparams.n_layer;
 
-     const int n_ctx   = hparams.n_ctx;
 
-     const int n_head  = hparams.n_head;
 
-     const int n_vocab = hparams.n_vocab;
 
-     static size_t buf_size = 256u*1024*1024;
 
-     static void * buf = malloc(buf_size);
 
-     // use 2 scratch buffers
 
-     // TODO: very hacky solution - reimplement in a more elegant way
 
-     static size_t scr0_size = 256u*1024*1024;
 
-     static void * scr0 = malloc(scr0_size);
 
-     static size_t scr1_size = 256u*1024*1024;
 
-     static void * scr1 = malloc(scr1_size);
 
-     if (mem_per_token > 0 && mem_per_token*N > buf_size) {
 
-         const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
 
-         //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
 
-         // reallocate
 
-         buf_size = buf_size_new;
 
-         buf = realloc(buf, buf_size);
 
-         if (buf == nullptr) {
 
-             fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
 
-             return false;
 
-         }
 
-     }
 
-     struct ggml_init_params params = {
 
-         /*.mem_size   =*/ buf_size,
 
-         /*.mem_buffer =*/ buf,
 
-         /*.no_alloc   =*/ false,
 
-     };
 
-     struct ggml_context * ctx0 = ggml_init(params);
 
-     struct ggml_cgraph gf = {};
 
-     struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 
-     memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
 
-     struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 
-     for (int i = 0; i < N; ++i) {
 
-         ((int32_t *) position->data)[i] = n_past + i;
 
-     }
 
-     // wte + wpe
 
-     struct ggml_tensor * inpL =
 
-         ggml_add(ctx0,
 
-                 ggml_get_rows(ctx0, model.wte, embd),
 
-                 ggml_get_rows(ctx0, model.wpe, position));
 
-     for (int il = 0; il < n_layer; ++il) {
 
-         struct ggml_tensor * cur;
 
-         ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
 
-         // norm
 
-         {
 
-             // [ 768, N]
 
-             cur = ggml_norm(ctx0, inpL, hparams.eps);
 
-             // cur = ln_1_g*cur + ln_1_b
 
-             // [ 768, N]
 
-             cur = ggml_add(ctx0,
 
-                     ggml_mul(ctx0,
 
-                         ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
 
-                         cur),
 
-                     ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
 
-         }
 
-         // attn
 
-         // [2304, 768] - model.layers[il].c_attn_attn_w
 
-         // [2304,   1] - model.layers[il].c_attn_attn_b
 
-         // [ 768,   N] - cur (in)
 
-         // [2304,   N] - cur (out)
 
-         //
 
-         // cur = attn_w*cur + attn_b
 
-         // [2304, N]
 
-         {
 
-             cur = ggml_mul_mat(ctx0,
 
-                     model.layers[il].c_attn_attn_w,
 
-                     cur);
 
-             cur = ggml_add(ctx0,
 
-                     ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
 
-                     cur);
 
-         }
 
-         // self-attention
 
-         {
 
-             struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
 
-             struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd);
 
-             struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd);
 
-             // store key and value to memory
 
-             if (N >= 1) {
 
-                 struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
 
-                 struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
 
-                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
 
-                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
 
-             }
 
-             // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
 
-             // [64, N, 12]
 
-             struct ggml_tensor * Q =
 
-                 ggml_permute(ctx0,
 
-                         ggml_cpy(ctx0,
 
-                             Qcur,
 
-                             ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
 
-                         0, 2, 1, 3);
 
-             // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
 
-             // [64, n_past + N, 12]
 
-             struct ggml_tensor * K =
 
-                 ggml_permute(ctx0,
 
-                         ggml_reshape_3d(ctx0,
 
-                             ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
 
-                             n_embd/n_head, n_head, n_past + N),
 
-                         0, 2, 1, 3); //TODO: need to be tiled
 
-             // GG: flash attention
 
-             //struct ggml_tensor * V =
 
-             //    ggml_cpy(ctx0,
 
-             //            ggml_permute(ctx0,
 
-             //                ggml_reshape_3d(ctx0,
 
-             //                    ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
 
-             //                    n_embd/n_head, n_head, n_past + N),
 
-             //                1, 2, 0, 3),
 
-             //            ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head));
 
-             //struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true);
 
-             // K * Q
 
-             // [n_past + N, N, 12]
 
-             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); //TODO: check if it broadcasts
 
-             // KQ_scaled = KQ / sqrt(n_embd/n_head)
 
-             // [n_past + N, N, 12]
 
-             struct ggml_tensor * KQ_scaled =
 
-                 ggml_scale_inplace(ctx0,
 
-                         KQ,
 
-                         ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
 
-                         );
 
-             // KQ_masked = mask_past(KQ_scaled)
 
-             // [n_past + N, N, 12]
 
-             struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
 
-             // KQ = soft_max(KQ_masked)
 
-             // [n_past + N, N, 12]
 
-             struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
 
-             // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
 
-             // [n_past + N, 64, 12]
 
-             struct ggml_tensor * V_trans =
 
-                 ggml_cpy(ctx0,
 
-                         ggml_permute(ctx0,
 
-                             ggml_reshape_3d(ctx0,
 
-                                 ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
 
-                                 n_embd/n_head, n_head, n_past + N),
 
-                             1, 2, 0, 3),
 
-                         ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd/n_head, n_head));
 
-             // KQV = transpose(V) * KQ_soft_max
 
-             // [64, N, 12]
 
-             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
 
-             // KQV_merged = KQV.permute(0, 2, 1, 3)
 
-             // [64, 12, N]
 
-             struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 
-             // cur = KQV_merged.contiguous().view(n_embd, N)
 
-             // [768, N]
 
-             cur = ggml_cpy(ctx0,
 
-                     KQV_merged,
 
-                     ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
 
-         }
 
-         // projection
 
-         // [ 768, 768] - model.layers[il].c_attn_proj_w
 
-         // [ 768,   1] - model.layers[il].c_attn_proj_b
 
-         // [ 768,   N] - cur (in)
 
-         // [ 768,   N] - cur (out)
 
-         //
 
-         // cur = proj_w*cur + proj_b
 
-         // [768, N]
 
-         {
 
-             cur = ggml_mul_mat(ctx0,
 
-                     model.layers[il].c_attn_proj_w,
 
-                     cur);
 
-             cur = ggml_add(ctx0,
 
-                     ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur),
 
-                     cur);
 
-         }
 
-         // add the input
 
-         cur = ggml_add(ctx0, cur, inpL);
 
-         struct ggml_tensor * inpFF = cur;
 
-         ggml_set_scratch(ctx0, { 0, scr1_size, scr1, });
 
-         // feed-forward network
 
-         {
 
-             // norm
 
-             {
 
-                 cur = ggml_norm(ctx0, inpFF, hparams.eps);
 
-                 // cur = ln_2_g*cur + ln_2_b
 
-                 // [ 768, N]
 
-                 cur = ggml_add(ctx0,
 
-                         ggml_mul(ctx0,
 
-                             ggml_repeat(ctx0, model.layers[il].ln_2_g, cur),
 
-                             cur),
 
-                         ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
 
-             }
 
-             // fully connected
 
-             // [3072, 768] - model.layers[il].c_mlp_fc_w
 
-             // [3072,   1] - model.layers[il].c_mlp_fc_b
 
-             // [ 768,   N] - cur (in)
 
-             // [3072,   N] - cur (out)
 
-             //
 
-             // cur = fc_w*cur + fc_b
 
-             // [3072, N]
 
-             cur = ggml_mul_mat(ctx0,
 
-                     model.layers[il].c_mlp_fc_w,
 
-                     cur);
 
-             cur = ggml_add(ctx0,
 
-                     ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
 
-                     cur);
 
-             // GELU activation
 
-             // [3072, N]
 
-             cur = ggml_gelu(ctx0, cur);
 
-             // projection
 
-             // [ 768, 3072] - model.layers[il].c_mlp_proj_w
 
-             // [ 768,    1] - model.layers[il].c_mlp_proj_b
 
-             // [3072,    N] - cur (in)
 
-             // [ 768,    N] - cur (out)
 
-             //
 
-             // cur = proj_w*cur + proj_b
 
-             // [768, N]
 
-             cur = ggml_mul_mat(ctx0,
 
-                     model.layers[il].c_mlp_proj_w,
 
-                     cur);
 
-             cur = ggml_add(ctx0,
 
-                     ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
 
-                     cur);
 
-         }
 
-         // input for next layer
 
-         inpL = ggml_add(ctx0, cur, inpFF);
 
-     }
 
-     ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
 
-     // norm
 
-     {
 
-         // [ 768, N]
 
-         inpL = ggml_norm(ctx0, inpL, hparams.eps);
 
-         // inpL = ln_f_g*inpL + ln_f_b
 
-         // [ 768, N]
 
-         inpL = ggml_add(ctx0,
 
-                 ggml_mul(ctx0,
 
-                     ggml_repeat(ctx0, model.ln_f_g, inpL),
 
-                     inpL),
 
-                 ggml_repeat(ctx0, model.ln_f_b, inpL));
 
-     }
 
-     ggml_set_scratch(ctx0, { 0, 0, nullptr, });
 
-     // inpL = WTE * inpL
 
-     // [ 768, 50257] - model.lm_head
 
-     // [ 768, N]     - inpL
 
-     inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);
 
-     // logits -> probs
 
-     //inpL = ggml_soft_max_inplace(ctx0, inpL);
 
-     // run the computation
 
-     ggml_build_forward_expand(&gf, inpL);
 
-     ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
 
-     //if (n_past%100 == 0) {
 
-     //    ggml_graph_print   (&gf);
 
-     //    ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
 
-     //}
 
-     //embd_w.resize(n_vocab*N);
 
-     //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
 
-     // return result just for the last token
 
-     embd_w.resize(n_vocab);
 
-     memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
 
-     if (mem_per_token == 0) {
 
-         mem_per_token = ggml_used_mem(ctx0)/N;
 
-     }
 
-     //printf("used_mem = %zu MB\n", ggml_used_mem(ctx0)/(1024*1024));
 
-     ggml_free(ctx0);
 
-     return true;
 
- }
 
- int main(int argc, char ** argv) {
 
-     ggml_time_init();
 
-     const int64_t t_main_start_us = ggml_time_us();
 
-     gpt_params params;
 
-     if (gpt_params_parse(argc, argv, params) == false) {
 
-         return 1;
 
-     }
 
-     if (params.seed < 0) {
 
-         params.seed = time(NULL);
 
-     }
 
-     printf("%s: seed = %d\n", __func__, params.seed);
 
-     std::mt19937 rng(params.seed);
 
-     if (params.prompt.empty()) {
 
-         params.prompt = gpt_random_prompt(rng);
 
-     }
 
-     int64_t t_load_us = 0;
 
-     gpt_vocab vocab;
 
-     starcoder_model model;
 
-     // load the model
 
-     {
 
-         const int64_t t_start_us = ggml_time_us();
 
-         if (!starcoder_model_load(params.model, model, vocab)) {
 
-             fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
 
-             return 1;
 
-         }
 
-         t_load_us = ggml_time_us() - t_start_us;
 
-         test_gpt_tokenizer(vocab, params.token_test);
 
-     }
 
-     if (params.repeat_last_n == -1) {
 
-         params.repeat_last_n = model.hparams.n_ctx;
 
-     }
 
-     printf("\n");
 
-     printf("%s: temp           = %.3f\n", __func__, params.temp);
 
-     printf("%s: top_k          = %d\n",   __func__, params.top_k);
 
-     printf("%s: top_p          = %.3f\n", __func__, params.top_p);
 
-     printf("%s: repeat_last_n  = %d\n",   __func__, params.repeat_last_n);
 
-     printf("%s: repeat_penalty = %.3f\n", __func__, params.repeat_penalty);
 
-     int n_past = 0;
 
-     int64_t t_sample_us  = 0;
 
-     int64_t t_predict_us = 0;
 
-     std::vector<float> logits;
 
-     std::vector<int32_t> last_n_tokens(model.hparams.n_ctx);
 
-     std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
 
-     // tokenize the prompt
 
-     std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);
 
-     params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
 
-     printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
 
-     printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
 
-     for (size_t i = 0; i < embd_inp.size(); i++) {
 
-         printf("%s: token[%zu] = %6d, %s\n", __func__, i, embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
 
-     }
 
-     printf("\n\n");
 
-     // Handle StarChat "<|end|>" and OpenCoder "<|end_of_turn>" tokens.
 
-     gpt_vocab::id starchat_end_token = -1;
 
-     {
 
-         const auto it = vocab.token_to_id.find("<|end|>");
 
-         if (it != vocab.token_to_id.end()) {
 
-             starchat_end_token = it->second;
 
-         } else {
 
-             const auto eot_token_id = vocab.token_to_id.find("<|end_of_turn|>");
 
-             if (eot_token_id != vocab.token_to_id.end()) {
 
-               starchat_end_token = eot_token_id->second;
 
-             }
 
-         }
 
-     }
 
-     // submit the input prompt token-by-token
 
-     // this reduces the memory usage during inference, at the cost of a bit of speed at the beginning
 
-     std::vector<gpt_vocab::id> embd;
 
-     // determine the required inference memory per token:
 
-     size_t mem_per_token = 0;
 
-     starcoder_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
 
-     for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
 
-         // predict
 
-         if (embd.size() > 0) {
 
-             const int64_t t_start_us = ggml_time_us();
 
-             if (!starcoder_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
 
-                 printf("Failed to predict\n");
 
-                 return 1;
 
-             }
 
-             t_predict_us += ggml_time_us() - t_start_us;
 
-         }
 
-         n_past += embd.size();
 
-         embd.clear();
 
-         if (i >= embd_inp.size()) {
 
-             // sample next token
 
-             const int   top_k = params.top_k;
 
-             const float top_p = params.top_p;
 
-             const float temp  = params.temp;
 
-             const int n_vocab = model.hparams.n_vocab;
 
-             gpt_vocab::id id = 0;
 
-             {
 
-                 const int64_t t_start_sample_us = ggml_time_us();
 
-                 id = gpt_sample_top_k_top_p_repeat(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, params.repeat_last_n, params.repeat_penalty, rng);
 
-                 t_sample_us += ggml_time_us() - t_start_sample_us;
 
-             }
 
-             // add it to the context
 
-             embd.push_back(id);
 
-             last_n_tokens.erase(last_n_tokens.begin());
 
-             last_n_tokens.push_back(id);
 
-         } else {
 
-             // if here, it means we are still processing the input prompt
 
-             for (size_t k = i; k < embd_inp.size(); k++) {
 
-                 embd.push_back(embd_inp[k]);
 
-                 last_n_tokens.erase(last_n_tokens.begin());
 
-                 last_n_tokens.push_back(embd_inp[k]);
 
-                 if (int32_t(embd.size()) >= params.n_batch) {
 
-                     break;
 
-                 }
 
-             }
 
-             i += embd.size() - 1;
 
-         }
 
-         // display text
 
-         for (auto id : embd) {
 
-             printf("%s", vocab.id_to_token[id].c_str());
 
-         }
 
-         fflush(stdout);
 
-         // check if model is santacoder
 
-         if (model.hparams.n_layer <= 30 && embd.back() == 49152) {
 
-             break;
 
-         }
 
-         // check if model is starcoder
 
-         else if (embd.back() == 0) { //TODO: this is only for starcoder
 
-             break;
 
-         }
 
-         // Handle StarChat "<|end|>" token.
 
-         else if (embd.back() == starchat_end_token && i >= embd_inp.size()) {
 
-             break;
 
-         }
 
-     }
 
-     // report timing
 
-     {
 
-         const int64_t t_main_end_us = ggml_time_us();
 
-         printf("\n\n");
 
-         printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
 
-         printf("%s:     load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
 
-         printf("%s:   sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
 
-         printf("%s:  predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
 
-         printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
 
-     }
 
-     ggml_free(model.ctx);
 
-     return 0;
 
- }
 
 
  |