unity.cpp 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717
  1. #include "ggml/ggml.h"
  2. #include "ggml/ggml-alloc.h"
  3. #include "common.h"
  4. #include "common-ggml.h"
  5. #include <cassert>
  6. #include <cmath>
  7. #include <cstdio>
  8. #include <cstring>
  9. #include <fstream>
  10. #include <map>
  11. #include <string>
  12. #include <vector>
  13. #include <iostream>
  14. // default hparams
  15. struct unity_hparams {
  16. int32_t n_text_vocab = 256206;
  17. int32_t n_unit_vocab = 10084;
  18. int32_t n_audio_enc_dim = 1024;
  19. int32_t n_audio_enc_ffn_dim = 4096;
  20. int32_t n_audio_enc_feat_dim = 160;
  21. int32_t n_audio_enc_layer = 24;
  22. int32_t n_audio_enc_head = 16;
  23. int32_t ftype = 1;
  24. float eps = 1e-5f;
  25. };
  26. // layer def
  27. struct layer_norm_layer {
  28. struct ggml_tensor * w;
  29. struct ggml_tensor * b;
  30. };
  31. struct audio_enc_layer {
  32. struct layer_norm_layer self_attn_layer_norm;
  33. struct ggml_tensor * self_attn_linear_k_w;
  34. struct ggml_tensor * self_attn_linear_k_b;
  35. struct ggml_tensor * self_attn_linear_q_w;
  36. struct ggml_tensor * self_attn_linear_q_b;
  37. struct ggml_tensor * self_attn_linear_v_w;
  38. struct ggml_tensor * self_attn_linear_v_b;
  39. struct ggml_tensor * self_attn_linear_out_w;
  40. struct ggml_tensor * self_attn_linear_out_b;
  41. struct ggml_tensor * self_attn_linear_pos_w;
  42. struct ggml_tensor * self_attn_pos_bias_u;
  43. struct ggml_tensor * self_attn_pos_bias_v;
  44. struct layer_norm_layer conv_layer_norm;
  45. struct ggml_tensor * conv_pointwise_conv1_w;
  46. struct ggml_tensor * conv_depthwise_conv_w;
  47. struct ggml_tensor * conv_batch_norm_w;
  48. struct ggml_tensor * conv_batch_norm_b;
  49. struct ggml_tensor * conv_batch_norm_running_mean;
  50. struct ggml_tensor * conv_batch_norm_running_var;
  51. struct ggml_tensor * conv_batch_norm_num_batches_tracked;
  52. struct ggml_tensor * conv_pointwise_conv2_w;
  53. struct layer_norm_layer ffn1_layer_norm;
  54. struct ggml_tensor * ffn1_w1;
  55. struct ggml_tensor * ffn1_b1;
  56. struct ggml_tensor * ffn1_w2;
  57. struct ggml_tensor * ffn1_b2;
  58. struct layer_norm_layer ffn2_layer_norm;
  59. struct ggml_tensor * ffn2_w1;
  60. struct ggml_tensor * ffn2_b1;
  61. struct ggml_tensor * ffn2_w2;
  62. struct ggml_tensor * ffn2_b2;
  63. struct layer_norm_layer final_layer_norm;
  64. };
  65. // struct ggml_tensor * conv_ln;
  66. // struct ggml_tensor * conv_pool_1d;
  67. // model def
  68. struct unity_model {
  69. unity_hparams hparams;
  70. // audio encoder
  71. struct ggml_tensor * post_extract_proj_w;
  72. struct ggml_tensor * post_extract_proj_b;
  73. struct ggml_tensor * audio_enc_pos_conv_wg;
  74. struct ggml_tensor * audio_enc_pos_conv_wv;
  75. struct ggml_tensor * audio_enc_pos_conv_b;
  76. struct layer_norm_layer audio_enc_layer_norm;
  77. struct ggml_tensor * audio_enc_pos_enc_w;
  78. struct layer_norm_layer layer_norm;
  79. struct ggml_tensor * memory_k;
  80. struct ggml_tensor * memory_v;
  81. std::vector<audio_enc_layer> audio_enc_layers;
  82. // text encoder
  83. // std::vector<text_enc_layer> text_enc_layers;
  84. // adaptor
  85. // std::vector<adapter_layer> adapter_layers;
  86. // text decoder
  87. // std::vector<text_dec_layer> text_dec_layers;
  88. // unit decoder
  89. // std::vector<unit_dec_layer> unit_dec_layers;
  90. //
  91. struct ggml_context * ctx;
  92. std::map<std::string, struct ggml_tensor *> tensors;
  93. };
  94. extern "C" unity_model* unity_model_alloc() {
  95. return new unity_model;
  96. }
  97. extern "C" void unity_model_free(unity_model* model) {
  98. delete model;
  99. }
  100. extern "C" gpt_vocab* gpt_vocab_alloc() {
  101. return new gpt_vocab;
  102. }
  103. extern "C" void gpt_vocab_free(gpt_vocab* vocab) {
  104. delete vocab;
  105. }
  106. // model load
  107. extern "C" bool unity_model_load(const char* fname, unity_model& model, gpt_vocab& raw_vocab) {
  108. // unity_model& model = *raw_model;
  109. printf("%s: loading model from '%s'\n", __func__, fname);
  110. auto fin = std::ifstream(std::string(fname), std::ios::binary);
  111. if (!fin) {
  112. fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname);
  113. return false;
  114. }
  115. // verify magic
  116. {
  117. uint32_t magic;
  118. fin.read((char *) &magic, sizeof(magic));
  119. if (magic != GGML_FILE_MAGIC) {
  120. fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname);
  121. return false;
  122. }
  123. }
  124. // load hparams
  125. {
  126. auto & hparams = model.hparams;
  127. fin.read((char *) &hparams.n_text_vocab, sizeof(hparams.n_text_vocab));
  128. fin.read((char *) &hparams.n_audio_enc_dim, sizeof(hparams.n_audio_enc_dim));
  129. fin.read((char *) &hparams.n_audio_enc_ffn_dim, sizeof(hparams.n_audio_enc_ffn_dim));
  130. fin.read((char *) &hparams.n_audio_enc_feat_dim, sizeof(hparams.n_audio_enc_feat_dim));
  131. fin.read((char *) &hparams.n_audio_enc_layer, sizeof(hparams.n_audio_enc_layer));
  132. fin.read((char *) &hparams.n_audio_enc_head, sizeof(hparams.n_audio_enc_head));
  133. fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
  134. const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
  135. printf("%s: n_text_vocab = %d\n", __func__, hparams.n_text_vocab);
  136. printf("%s: n_audio_enc_dim = %d\n", __func__, hparams.n_audio_enc_dim);
  137. printf("%s: n_audio_enc_ffn_dim = %d\n", __func__, hparams.n_audio_enc_ffn_dim);
  138. printf("%s: n_audio_enc_feat_dim = %d\n", __func__, hparams.n_audio_enc_feat_dim);
  139. printf("%s: n_audio_enc_layer = %d\n", __func__, hparams.n_audio_enc_layer);
  140. printf("%s: n_audio_enc_head = %d\n", __func__, hparams.n_audio_enc_head);
  141. printf("%s: ftype = %d\n", __func__, hparams.ftype);
  142. printf("%s: qntvr = %d\n", __func__, qntvr);
  143. hparams.ftype %= GGML_QNT_VERSION_FACTOR;
  144. }
  145. // for the big tensors, we have the option to store the data in 16-bit floats or quantized
  146. // in order to save memory and also to speed up the computation
  147. ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
  148. if (wtype == GGML_TYPE_COUNT) {
  149. fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
  150. __func__, fname, model.hparams.ftype);
  151. return false;
  152. }
  153. auto & ctx = model.ctx;
  154. size_t ctx_size = 0;
  155. {
  156. const auto & hparams = model.hparams;
  157. const int n_audio_enc_dim = hparams.n_audio_enc_dim;
  158. const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
  159. const int n_audio_enc_layer = hparams.n_audio_enc_layer;
  160. const int n_ctx = 4096; // 20ms * 4096 = 80s
  161. // const int n_text_vocab = hparams.n_text_vocab;
  162. const int kernel_size = 31;
  163. ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // self_attn_layer_norm.w
  164. ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // self_attn_layer_norm.b
  165. ctx_size += n_audio_enc_layer*(5*n_audio_enc_dim*n_audio_enc_dim*ggml_type_sizef(wtype)); // self_attn_w
  166. ctx_size += n_audio_enc_layer*(4*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // self_attn_b
  167. ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_layer_norm.w
  168. ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_layer_norm.b
  169. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*2*ggml_type_sizef(wtype)); // conv_pointwise_conv1_w
  170. ctx_size += n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_batch_norm_w
  171. ctx_size += n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_batch_norm_b
  172. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*kernel_size*ggml_type_sizef(wtype)); // conv_depthwise_conv_w
  173. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*ggml_type_sizef(wtype)); // conv_pointwise_conv2_w
  174. ctx_size += 2 * n_audio_enc_layer * (n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_layer_norm.w
  175. ctx_size += 2 * n_audio_enc_layer * (n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_layer_norm.b
  176. ctx_size += 2 * n_audio_enc_layer * (2 * n_audio_enc_dim * n_audio_enc_ffn_dim * ggml_type_sizef(wtype)); // ffn{1,2}_w{1,2}
  177. ctx_size += 2 * n_audio_enc_layer * (2 * n_audio_enc_dim * ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_b{1,2}
  178. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // final_layer_norm.w
  179. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // final_layer_norm.b
  180. ctx_size += n_ctx*n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // memory_k
  181. ctx_size += n_ctx*n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // memory_v
  182. // Adaptor
  183. // ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // conv_ln
  184. // ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // conv_pool_1d
  185. // object overhead might differ depending on the structure and other miscellaneous factors
  186. ctx_size += (6 + 12*n_audio_enc_layer)*512; // updated object overhead
  187. printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
  188. printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
  189. }
  190. // create the ggml context
  191. {
  192. struct ggml_init_params params = {
  193. /*.mem_size =*/ ctx_size,
  194. /*.mem_buffer =*/ NULL,
  195. /*.no_alloc =*/ false,
  196. };
  197. model.ctx = ggml_init(params);
  198. if (!model.ctx) {
  199. fprintf(stderr, "%s: ggml_init() failed\n", __func__);
  200. return false;
  201. }
  202. }
  203. // prepare memory for the weights
  204. {
  205. const auto & hparams = model.hparams;
  206. const int n_audio_enc_dim = hparams.n_audio_enc_dim;
  207. const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
  208. const int n_audio_enc_feat_dim = hparams.n_audio_enc_feat_dim;
  209. const int n_audio_enc_layer = hparams.n_audio_enc_layer;
  210. const int n_audio_enc_head = hparams.n_audio_enc_head;
  211. const int n_ctx = 4096; // 20ms * 4096 = 80s
  212. const int pos_conv_kernel_size = 128;
  213. // const int n_text_vocab = hparams.n_text_vocab;
  214. model.audio_enc_layers.resize(n_audio_enc_layer);
  215. model.audio_enc_pos_enc_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_ctx * 2 - 1);
  216. model.tensors["model/enc/pos_enc/w"] = model.audio_enc_pos_enc_w;
  217. model.post_extract_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_feat_dim, n_audio_enc_dim);
  218. model.post_extract_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  219. model.tensors["model/post_extract_proj/w"] = model.post_extract_proj_w;
  220. model.tensors["model/post_extract_proj/b"] = model.post_extract_proj_b;
  221. model.audio_enc_pos_conv_wg = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, pos_conv_kernel_size);
  222. model.audio_enc_pos_conv_wv = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, pos_conv_kernel_size, 64, n_audio_enc_dim);
  223. model.audio_enc_pos_conv_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  224. model.tensors["model/enc/pos_conv/w_g"] = model.audio_enc_pos_conv_wg;
  225. model.tensors["model/enc/pos_conv/w_v"] = model.audio_enc_pos_conv_wv;
  226. model.tensors["model/enc/pos_conv/b"] = model.audio_enc_pos_conv_b;
  227. model.audio_enc_layer_norm.w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  228. model.audio_enc_layer_norm.b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  229. model.tensors["model/enc/layer_norm/w"] = model.audio_enc_layer_norm.w;
  230. model.tensors["model/enc/layer_norm/b"] = model.audio_enc_layer_norm.b;
  231. model.layer_norm.w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_feat_dim);
  232. model.layer_norm.b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_feat_dim);
  233. model.tensors["model/layer_norm/w"] = model.layer_norm.w;
  234. model.tensors["model/layer_norm/b"] = model.layer_norm.b;
  235. for (int i = 0; i < n_audio_enc_layer; ++i) {
  236. auto & layer = model.audio_enc_layers[i];
  237. layer.self_attn_layer_norm.w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  238. layer.self_attn_layer_norm.b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  239. layer.self_attn_linear_k_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  240. layer.self_attn_linear_k_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  241. layer.self_attn_linear_q_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  242. layer.self_attn_linear_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  243. layer.self_attn_linear_v_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  244. layer.self_attn_linear_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  245. layer.self_attn_linear_out_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  246. layer.self_attn_linear_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  247. layer.self_attn_linear_pos_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  248. layer.self_attn_pos_bias_u = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim / n_audio_enc_head, n_audio_enc_head);
  249. layer.self_attn_pos_bias_v = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim / n_audio_enc_head, n_audio_enc_head);
  250. layer.conv_layer_norm.w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  251. layer.conv_layer_norm.b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  252. layer.conv_pointwise_conv1_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, 2*n_audio_enc_dim);
  253. layer.conv_depthwise_conv_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 31, n_audio_enc_dim);
  254. layer.conv_batch_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  255. layer.conv_batch_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  256. layer.conv_batch_norm_running_mean = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  257. layer.conv_batch_norm_running_var = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  258. layer.conv_batch_norm_num_batches_tracked = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  259. layer.conv_pointwise_conv2_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  260. layer.ffn1_layer_norm.w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  261. layer.ffn1_layer_norm.b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  262. layer.ffn1_w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_ffn_dim);
  263. layer.ffn1_b1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim);
  264. layer.ffn1_w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim, n_audio_enc_dim);
  265. layer.ffn1_b2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  266. layer.ffn2_layer_norm.w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  267. layer.ffn2_layer_norm.b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  268. layer.ffn2_w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_ffn_dim);
  269. layer.ffn2_b1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim);
  270. layer.ffn2_w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim, n_audio_enc_dim);
  271. layer.ffn2_b2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  272. layer.final_layer_norm.w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  273. layer.final_layer_norm.b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  274. // map by name
  275. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_layer_norm/w"] = layer.self_attn_layer_norm.w;
  276. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_layer_norm/b"] = layer.self_attn_layer_norm.b;
  277. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_k/w"] = layer.self_attn_linear_k_w;
  278. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_k/b"] = layer.self_attn_linear_k_b;
  279. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_q/w"] = layer.self_attn_linear_q_w;
  280. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_q/b"] = layer.self_attn_linear_q_b;
  281. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_v/w"] = layer.self_attn_linear_v_w;
  282. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_v/b"] = layer.self_attn_linear_v_b;
  283. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_out/w"] = layer.self_attn_linear_out_w;
  284. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_out/b"] = layer.self_attn_linear_out_b;
  285. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_pos/w"] = layer.self_attn_linear_pos_w;
  286. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_pos_bias/u"] = layer.self_attn_pos_bias_u;
  287. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_pos_bias/v"] = layer.self_attn_pos_bias_v;
  288. model.tensors["model/enc/h" + std::to_string(i) + "/conv_layer_norm/w"] = layer.conv_layer_norm.w;
  289. model.tensors["model/enc/h" + std::to_string(i) + "/conv_layer_norm/b"] = layer.conv_layer_norm.b;
  290. model.tensors["model/enc/h" + std::to_string(i) + "/conv_pointwise_conv1/w"] = layer.conv_pointwise_conv1_w;
  291. model.tensors["model/enc/h" + std::to_string(i) + "/conv_depthwise_conv/w"] = layer.conv_depthwise_conv_w;
  292. model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/w"] = layer.conv_batch_norm_w;
  293. model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/b"] = layer.conv_batch_norm_b;
  294. model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/m"] = layer.conv_batch_norm_running_mean;
  295. model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/v"] = layer.conv_batch_norm_running_var;
  296. model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/n"] = layer.conv_batch_norm_num_batches_tracked;
  297. model.tensors["model/enc/h" + std::to_string(i) + "/conv_pointwise_conv2/w"] = layer.conv_pointwise_conv2_w;
  298. model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_layer_norm/w"] = layer.ffn1_layer_norm.w;
  299. model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_layer_norm/b"] = layer.ffn1_layer_norm.b;
  300. model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_1/w"] = layer.ffn1_w1;
  301. model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_1/b"] = layer.ffn1_b1;
  302. model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_2/w"] = layer.ffn1_w2;
  303. model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_2/b"] = layer.ffn1_b2;
  304. model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_layer_norm/w"] = layer.ffn2_layer_norm.w;
  305. model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_layer_norm/b"] = layer.ffn2_layer_norm.b;
  306. model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_1/w"] = layer.ffn2_w1;
  307. model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_1/b"] = layer.ffn2_b1;
  308. model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_2/w"] = layer.ffn2_w2;
  309. model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_2/b"] = layer.ffn2_b2;
  310. model.tensors["model/enc/h" + std::to_string(i) + "/final_layer_norm/w"] = layer.final_layer_norm.w;
  311. model.tensors["model/enc/h" + std::to_string(i) + "/final_layer_norm/b"] = layer.final_layer_norm.b;
  312. }
  313. }
  314. // load weights
  315. {
  316. size_t total_size = 0;
  317. while (true) {
  318. int32_t n_dims;
  319. int32_t length;
  320. int32_t ttype;
  321. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  322. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  323. fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
  324. if (fin.eof()) {
  325. break;
  326. }
  327. int32_t nelements = 1;
  328. int32_t ne[3] = { 1, 1, 1};
  329. for (int i = 0; i < n_dims; ++i) {
  330. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  331. nelements *= ne[i];
  332. }
  333. std::string name(length, 0);
  334. fin.read(&name[0], length);
  335. std::cout << "loading " << name << " " << n_dims << std::endl;
  336. if (model.tensors.find(name) == model.tensors.end()) {
  337. fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
  338. return false;
  339. }
  340. auto tensor = model.tensors[name];
  341. if (ggml_nelements(tensor) != nelements) {
  342. std::cout << ggml_nelements(tensor) << std::endl;
  343. std::cout << nelements << std::endl;
  344. fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
  345. return false;
  346. }
  347. if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
  348. fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
  349. __func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
  350. // return false;
  351. }
  352. // for debugging
  353. if (0) {
  354. printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
  355. }
  356. const size_t bpe = ggml_type_size(ggml_type(ttype));
  357. if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
  358. fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
  359. __func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe);
  360. return false;
  361. }
  362. fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
  363. // for (int i = 0; i < 10; ++i) {
  364. // std::cout << ((float *)(tensor->data))[i] << std::endl;
  365. // } // debug
  366. total_size += ggml_nbytes(tensor);
  367. }
  368. printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
  369. }
  370. fin.close();
  371. return true;
  372. }
  373. extern "C" ggml_tensor* unity_layer_norm(
  374. ggml_context* ctx,
  375. ggml_tensor* cur,
  376. const layer_norm_layer& layer,
  377. const unity_hparams& hparams
  378. ) {
  379. cur = ggml_norm(ctx, cur, hparams.eps);
  380. return ggml_add(
  381. ctx,
  382. ggml_mul(ctx, ggml_repeat(ctx, layer.w, cur), cur),
  383. ggml_repeat(ctx, layer.b, cur)
  384. );
  385. }
  386. // build the computation graph
  387. extern "C" ggml_cgraph* unity_audio_encoder_graph(
  388. const unity_model & model,
  389. ggml_tensor* input
  390. ) {
  391. const auto & hparams = model.hparams;
  392. const int n_audio_enc_dim = hparams.n_audio_enc_dim;
  393. const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
  394. const int n_audio_enc_layer = hparams.n_audio_enc_layer;
  395. // const int n_text_vocab = hparams.n_text_vocab;
  396. const int kernel_size = 31;
  397. // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data
  398. static size_t buf_size = ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead();
  399. static std::vector<uint8_t> buf(buf_size);
  400. struct ggml_init_params params = {
  401. /*.mem_size =*/ buf_size,
  402. /*.mem_buffer =*/ buf.data(),
  403. /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
  404. };
  405. struct ggml_context * ctx0 = ggml_init(params);
  406. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  407. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, 1);
  408. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  409. ggml_set_f32(ffn_scale, 0.5f);
  410. ggml_tensor* inpL = input;
  411. for (int il = 0; il < n_audio_enc_layer; ++il) {
  412. struct ggml_tensor * cur = inpL;
  413. struct ggml_tensor * residual = cur;
  414. const audio_enc_layer layer = model.audio_enc_layers[il];
  415. // FFN1: layernorm
  416. cur = ggml_norm(ctx0, cur, hparams.eps);
  417. cur = ggml_add(ctx0,
  418. ggml_mul(ctx0,
  419. ggml_repeat(ctx0, layer.ffn1_layer_norm.w, cur),
  420. cur),
  421. ggml_repeat(ctx0, layer.ffn1_layer_norm.b, cur));
  422. // FFN1: proj
  423. cur = ggml_mul_mat(ctx0, layer.ffn1_w1, cur);
  424. cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.ffn1_b1, cur), cur);
  425. cur = ggml_silu(ctx0, cur);
  426. cur = ggml_mul_mat(ctx0, layer.ffn1_w2, cur);
  427. cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.ffn1_b2, cur), cur);
  428. // FFN1: * 0.5
  429. cur = ggml_mul(ctx0, ggml_repeat(ctx0, ffn_scale, cur), cur);
  430. // FFN1: + residual
  431. cur = ggml_add(ctx0, cur, residual);
  432. // TODO: Opportunity to optimize attn calculation (1) For num_threads > 1 (2) Flash attn. See https://github.com/ggerganov/ggml/blob/main/examples/gpt-2/main.cpp
  433. // self_attn: layernorm
  434. // unity_layer_norm
  435. cur = ggml_norm(ctx0, cur, hparams.eps);
  436. cur = ggml_add(ctx0,
  437. ggml_mul(ctx0,
  438. ggml_repeat(ctx0, layer.self_attn_layer_norm.w, cur),
  439. cur),
  440. ggml_repeat(ctx0, layer.self_attn_layer_norm.b, cur));
  441. // self_attn: qkv
  442. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0,
  443. layer.self_attn_linear_q_w,
  444. cur);
  445. Qcur = ggml_add(ctx0,
  446. ggml_repeat(ctx0,
  447. layer.self_attn_linear_q_b,
  448. Qcur),
  449. Qcur);
  450. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0,
  451. layer.self_attn_linear_k_w,
  452. cur);
  453. Kcur = ggml_add(ctx0,
  454. ggml_repeat(ctx0,
  455. layer.self_attn_linear_k_b,
  456. Kcur),
  457. Kcur);
  458. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0,
  459. layer.self_attn_linear_v_w,
  460. cur);
  461. Vcur = ggml_add(ctx0,
  462. ggml_repeat(ctx0,
  463. layer.self_attn_linear_v_b,
  464. Vcur),
  465. Vcur);
  466. // self_attn: rel_pos SDPA (WIP)
  467. int32_t start_index = 4096 - 137;
  468. int32_t end_index = 4096 + 136;
  469. int num_indices = end_index - start_index + 1;
  470. struct ggml_tensor *rows = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_indices);
  471. rows->data = malloc(ggml_nbytes(rows));
  472. for (int i = 0; i < num_indices; i++) {
  473. ((int32_t *)rows->data)[i] = start_index + i;
  474. }
  475. // Load positional encoding weights
  476. struct ggml_tensor * pos_enc = ggml_get_rows(ctx0, model.audio_enc_pos_enc_w, rows);
  477. // conv
  478. // ffn2
  479. // norm
  480. inpL = cur;
  481. break; // debug
  482. }
  483. ggml_build_forward_expand(gf, inpL);
  484. ggml_free(ctx0);
  485. return gf;
  486. }
  487. extern "C" struct ggml_cgraph* unity_eval(
  488. ggml_allocr* allocr,
  489. const unity_model& model,
  490. ggml_tensor* input,
  491. const int n_threads) {
  492. // const auto & hparams = model.hparams;
  493. // reset the allocator to free all the memory allocated during the previous inference
  494. ggml_allocr_reset(allocr);
  495. struct ggml_cgraph * gf = unity_audio_encoder_graph(model, input);
  496. // allocate tensors
  497. ggml_allocr_alloc_graph(allocr, gf);
  498. // run the computation
  499. struct ggml_cplan plan = ggml_graph_plan(gf, n_threads);
  500. static std::vector<uint8_t> work_buffer;
  501. work_buffer.resize(plan.work_size);
  502. plan.work_data = work_buffer.data();
  503. ggml_graph_compute(gf, &plan);
  504. // in this case, the output tensor is the last one in the graph
  505. struct ggml_tensor * inpL = gf->nodes[gf->n_nodes - 1];
  506. printf("gf: %p, gf.nodes: %p, gf.n_nodes: %p", (void *)gf, (void *)gf->nodes, (void *)&(gf->n_nodes));
  507. for (int i = 0; i < 10; ++i) {
  508. printf("%8.4f ", ((float *)(inpL->data))[i]);
  509. }
  510. printf("\n");
  511. return gf;
  512. }
  513. int main(int argc, char ** argv) {
  514. // ggml_time_init();
  515. // const int64_t t_main_start_us = ggml_time_us();
  516. gpt_params params;
  517. if (gpt_params_parse(argc, argv, params) == false) {
  518. return 1;
  519. }
  520. if (params.seed < 0) {
  521. params.seed = time(NULL);
  522. }
  523. printf("%s: seed = %d\n", __func__, params.seed);
  524. std::mt19937 rng(params.seed);
  525. if (params.prompt.empty()) {
  526. params.prompt = gpt_random_prompt(rng);
  527. }
  528. gpt_vocab vocab;
  529. unity_model model;
  530. // load the model
  531. {
  532. if (!unity_model_load(params.model.c_str(), model, vocab)) {
  533. fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
  534. return 1;
  535. }
  536. }
  537. /// For dev, load an example input before conformer blocks
  538. auto file = std::ifstream("/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/dev/seqs_before_conformer_block.bin", std::ios::binary);
  539. if (!file) {
  540. file = std::ifstream("/home/guw/github/seamless_communication/ggml/examples/unity/models/unity-large/seqs_before_conformer_block.bin", std::ios::binary);
  541. if (!file) {
  542. std::cerr << "Failed to open binary file." << std::endl;
  543. exit(1);
  544. }
  545. }
  546. struct ggml_tensor * input = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, 1024, 137);
  547. input->data = malloc(ggml_nbytes(input));
  548. file.read(reinterpret_cast<char *>(input->data), ggml_nbytes(input));
  549. // keep this buffer alive while evaluating the model
  550. std::vector<uint8_t> compute_buffer;
  551. struct ggml_allocr * allocr = NULL;
  552. // allocate the compute buffer
  553. {
  554. allocr = ggml_allocr_new_measure(GGML_MEM_ALIGN);
  555. struct ggml_cgraph * gf = unity_audio_encoder_graph(model, input);
  556. // compute the required memory
  557. size_t mem_size = ggml_allocr_alloc_graph(allocr, gf) + GGML_MEM_ALIGN;
  558. // recreate the allocator with the required memory
  559. ggml_allocr_free(allocr);
  560. compute_buffer.resize(mem_size);
  561. allocr = ggml_allocr_new(compute_buffer.data(), mem_size, GGML_MEM_ALIGN);
  562. fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0/1024.0);
  563. }
  564. if (!unity_eval(allocr, model, input, 1)) {
  565. printf("Failed to predict\n");
  566. return 1;
  567. }
  568. ggml_free(model.ctx);
  569. return 0;
  570. }