fairseq2.cpp 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396
  1. #include <math.h>
  2. #include "kaldi-native-fbank/csrc/feature-fbank.h"
  3. #include "kaldi-native-fbank/csrc/feature-window.h"
  4. #include "ggml.h"
  5. #include "fairseq2.h"
  6. #include <unordered_map>
  7. #include <algorithm>
  8. #include <iostream>
  9. #include <fnmatch.h>
  10. void ggml_detach(ggml_tensor* a) {
  11. a->op = GGML_OP_NONE;
  12. std::fill(a->src, a->src + GGML_MAX_SRC, nullptr);
  13. }
  14. /// allocate the fairseq2 model and hyperparameters
  15. extern "C" fairseq2_model* fairseq2_model_alloc() {
  16. // pre-allocate some memory to write hyperparameters and tensors pointers
  17. auto* model = new fairseq2_model;
  18. model->tensors_ctx = nullptr;
  19. return model;
  20. }
  21. extern "C" void fairseq2_kv_cache_alloc(const fairseq2_model& model, int beam_size, int max_seq_len) {
  22. // Note: we only allocate the cache for the decoder attention.
  23. // For encoder attention since we compute it all at once,
  24. // the allocation is delayed to the first forward pass, to not over allocate.
  25. auto layer_glob_c = "*decoder.*attn.k_proj.weight";
  26. ggml_tensor* self_attn_mask = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, max_seq_len, max_seq_len);
  27. self_attn_mask = ggml_diag_mask_inf(model.ctx, self_attn_mask, 0);
  28. for (auto named_tensor : model.tensors) {
  29. const std::string& name = named_tensor.first;
  30. if (::fnmatch(layer_glob_c, name.c_str(), 0) == FNM_NOMATCH)
  31. continue;
  32. ggml_tensor* k_proj = named_tensor.second;
  33. int model_dim = k_proj->ne[0];
  34. // remove the ".k_proj.weight" suffix
  35. model.kv_cache[name.substr(0, name.size() - 14)] = KeyValueTensor {
  36. ggml_new_tensor_3d(model.ctx, k_proj->type, model_dim, max_seq_len, beam_size),
  37. ggml_new_tensor_3d(model.ctx, k_proj->type, model_dim, max_seq_len, beam_size),
  38. self_attn_mask,
  39. 0,
  40. };
  41. }
  42. }
  43. bool has_kv_cache(const fairseq2_model& model) {
  44. return model.kv_cache.size() > 0;
  45. }
  46. // copy k and v to kv cache
  47. // kv.full_k[step_nr] = k;
  48. // kv.full_v[step_nr] = v;
  49. void append_to_prev_kv(const fairseq2_model& model, const std::string& prefix, ggml_tensor** k, ggml_tensor** v, ggml_tensor** self_attn_mask) {
  50. KeyValueTensor& kv = model.kv_cache[prefix];
  51. int step_nr = kv.step_nr;
  52. ggml_tensor* full_k = kv.full_k;
  53. ggml_tensor* full_v = kv.full_v;
  54. // (N, S_kv, K_proj)
  55. GGML_ASSERT((*k)->ne[1] == 1); // TODO I think we could handle adding a full prefix sequence
  56. ggml_tensor* updated_k = ggml_set_2d_inplace(model.ctx, full_k, *k, full_k->nb[2], full_k->nb[1] * step_nr);
  57. ggml_tensor* updated_v = ggml_set_2d_inplace(model.ctx, full_v, *v, full_v->nb[2], full_v->nb[1] * step_nr);
  58. *k = ggml_slice(model.ctx, updated_k, 1, 0, step_nr + 1);
  59. *v = ggml_slice(model.ctx, updated_v, 1, 0, step_nr + 1);
  60. // qk is (B * H, Sq, Sk) == (B*H, 1, Sk) in incremental mode
  61. // we return the Sq slice of the (Sq, Sk) attention mask
  62. *self_attn_mask = ggml_slice(
  63. model.ctx,
  64. ggml_slice(model.ctx, kv.self_attn_mask, 0, 0, step_nr + 1),
  65. 1,
  66. step_nr,
  67. step_nr + 1
  68. );
  69. kv.step_nr = step_nr + 1;
  70. }
  71. // variant of ggml_get_rows that allows for a with more than 2 dims.
  72. ggml_tensor* ggml_get_rows2(ggml_context* ctx, ggml_tensor* a, ggml_tensor* b) {
  73. int flattened = 0;
  74. GGML_ASSERT(a->n_dims <= 3);
  75. if (a->n_dims == 3) {
  76. flattened = a->ne[0];
  77. a = ggml_flatten_1d(ctx, a, 0);
  78. }
  79. a = ggml_get_rows(ctx, a, b);
  80. if (flattened) {
  81. a = ggml_unflatten_1d(ctx, a, 0, flattened);
  82. }
  83. return a;
  84. }
  85. void _reorder_kv_cache(ggml_context* ctx, ggml_cgraph* gf, KeyValueTensor& kv, ggml_tensor* new_order) {
  86. ggml_detach(kv.full_k);
  87. kv.full_k = ggml_get_rows2(ctx, kv.full_k, new_order);
  88. ggml_build_forward_expand(gf, kv.full_k);
  89. ggml_detach(kv.full_v);
  90. kv.full_v = ggml_get_rows2(ctx, kv.full_v, new_order);
  91. ggml_build_forward_expand(gf, kv.full_v);
  92. }
  93. void reorder_kv_cache(const fairseq2_model& model, ggml_cgraph* gf, ggml_tensor* new_order) {
  94. ggml_context* ctx = model.ctx;
  95. for (auto& named_kv : model.kv_cache) {
  96. _reorder_kv_cache(ctx, gf, named_kv.second, new_order);
  97. }
  98. }
  99. inline double model_layer_config_d(const fairseq2_model& model, std::string name) {
  100. const std::int64_t* data = &model.layer_config.at(name);
  101. double val = *(const double*)data;
  102. return val;
  103. }
  104. extern "C" double fairseq2_model_layer_config_double(const fairseq2_model& model, const char* name) {
  105. return model_layer_config_d(model, std::string(name));
  106. }
  107. extern "C" std::int64_t fairseq2_model_layer_config_int(const fairseq2_model& model, const char* name) {
  108. return model.layer_config.at(std::string(name));
  109. }
  110. extern "C" void fairseq2_model_free(fairseq2_model* model) {
  111. if (model->tensors_ctx) ggml_free(model->tensors_ctx);
  112. delete model;
  113. }
  114. extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
  115. model->ctx = ctx;
  116. }
  117. extern "C" std::string* std_string_alloc(char* c_str) {
  118. return new std::string(c_str);
  119. }
  120. extern "C" void std_string_free(std::string* str) {
  121. delete str;
  122. }
  123. bool has_layer(fairseq2_model& model, const std::string& name) {
  124. return model.tensors.find(name) != model.tensors.end();
  125. }
  126. extern "C" ggml_tensor* Linear_forward(
  127. fairseq2_model& model,
  128. const std::string &prefix,
  129. ggml_tensor* input // (d_in)
  130. ) {
  131. // Note: for now we assumed un-batched input
  132. ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
  133. GGML_ASSERT(weight != nullptr);
  134. ggml_tensor* out = ggml_mul_mat(model.ctx, weight, input); // (d_out)
  135. ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
  136. if (bias == nullptr) return out;
  137. return ggml_add_inplace(model.ctx, out, bias);
  138. }
  139. extern "C" ggml_tensor* LayerNorm_forward(
  140. fairseq2_model& model,
  141. const std::string &prefix,
  142. ggml_tensor* input
  143. ) {
  144. ggml_tensor* weight = model.tensors[prefix + ".weight"];
  145. GGML_ASSERT(weight != nullptr);
  146. ggml_tensor* bias = model.tensors[prefix + ".bias"];
  147. GGML_ASSERT(bias != nullptr);
  148. auto ctx = model.ctx;
  149. double eps = model_layer_config_d(model, prefix + ".eps");
  150. input = ggml_norm(ctx, input, /*eps*/eps);
  151. return ggml_add_inplace(
  152. ctx,
  153. ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),
  154. ggml_repeat(ctx, bias, input)
  155. );
  156. }
  157. extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
  158. fairseq2_model& model,
  159. const std::string& prefix,
  160. ggml_tensor* seqs
  161. ) {
  162. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  163. // inner_activation = ReLu // TODO: allow other activation
  164. seqs = ggml_relu_inplace(model.ctx, seqs);
  165. if (has_layer(model, prefix + ".inner_layer_norm")) {
  166. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  167. }
  168. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  169. return seqs;
  170. }
  171. extern "C" ggml_tensor* SiluFeedForwardNetwork_forward(
  172. fairseq2_model& model,
  173. const std::string& prefix,
  174. ggml_tensor* seqs
  175. ) {
  176. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  177. seqs = ggml_silu(model.ctx, seqs);
  178. if (has_layer(model, prefix + ".inner_layer_norm")) {
  179. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  180. }
  181. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  182. return seqs;
  183. }
  184. ggml_tensor* ggml_flatten_1d(ggml_context* ctx, ggml_tensor* x, int dim) {
  185. int n_dims = x->n_dims;
  186. GGML_ASSERT(dim >= 0);
  187. GGML_ASSERT(dim < n_dims);
  188. GGML_ASSERT(ggml_is_contiguous(x));
  189. // Nothing to do
  190. if (dim == n_dims - 1) return x;
  191. if (n_dims == 2) {
  192. return ggml_reshape_1d(ctx, x, x->ne[0] * x->ne[1]);
  193. } else if (n_dims == 3) {
  194. if (dim == 0) {
  195. return ggml_reshape_2d(ctx, x, x->ne[0] * x->ne[1], x->ne[2]);
  196. } else { // dim == 1
  197. return ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2]);
  198. }
  199. } else { // n_dims == 4
  200. if (dim == 0) {
  201. return ggml_reshape_3d(ctx, x, x->ne[0] * x->ne[1], x->ne[2], x->ne[3]);
  202. } else if (dim == 1) {
  203. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1] * x->ne[2], x->ne[3]);
  204. } else { // dim == 2
  205. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2] * x->ne[3]);
  206. }
  207. }
  208. }
  209. ggml_tensor* ggml_unflatten_1d(ggml_context* ctx, ggml_tensor* x, int dim, int num_el) {
  210. int n_dims = x->n_dims;
  211. GGML_ASSERT(dim >= 0);
  212. GGML_ASSERT(dim < n_dims);
  213. GGML_ASSERT(n_dims < 4);
  214. GGML_ASSERT(x->ne[dim] % num_el == 0);
  215. GGML_ASSERT(x->nb[dim + 1] == x->nb[dim] * x->ne[dim]); // `x` isn't contiguous along `dim`
  216. if (n_dims == 1) {
  217. return ggml_view_2d(ctx, x, num_el, x->ne[0] / num_el, x->nb[0] * num_el, 0);
  218. } else if (n_dims == 2) {
  219. if (dim == 0) {
  220. return ggml_view_3d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->nb[0] * num_el, x->nb[1], 0);
  221. } else { // dim == 1
  222. return ggml_view_3d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->nb[1], num_el * x->nb[1], 0);
  223. }
  224. } else { // (n_dims == 3)
  225. if (dim == 0) {
  226. return ggml_view_4d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->ne[2], x->nb[0] * num_el, x->nb[1], x->nb[2], 0);
  227. } else if (dim == 1) {
  228. return ggml_view_4d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->ne[2], x->nb[1], num_el * x->nb[1], x->nb[2], 0);
  229. } else { // dim == 2
  230. return ggml_view_4d(ctx, x, x->ne[0], x->ne[1], num_el, x->ne[2] / num_el, x->nb[1], x->nb[2], num_el * x->nb[2], 0);
  231. }
  232. }
  233. }
  234. ggml_tensor* _reshape_num_head(ggml_context* ctx, ggml_tensor* x, int head_dim) {
  235. // (B, S, dim) -> (B, S, H, H_dim)
  236. x = ggml_unflatten_1d(ctx, x, 0, head_dim);
  237. x = ggml_permute(ctx, x, 0, 2, 1, 3); // (B, H, S, H_dim)
  238. x = ggml_cont(ctx, x);
  239. x = ggml_flatten_1d(ctx, x, 2); // (B * H, S, H_dim)
  240. return x;
  241. }
  242. /// (B, Sk, dim) -> // (B?, H, H_dim, Sk)
  243. ggml_tensor* _reshape_num_head_values(ggml_context* ctx, ggml_tensor* v, int head_dim ) {
  244. // (B, Sk, dim) -> (B, Sk, H, H_dim)
  245. v = ggml_unflatten_1d(ctx, v, 0, head_dim);
  246. v = ggml_permute(ctx, v, 1, 2, 0, 3); // (B?, H, H_dim, Sk)
  247. v = ggml_cont(ctx, v);
  248. v = ggml_flatten_1d(ctx, v, 2); // (B * H, S, H_dim)
  249. return v;
  250. }
  251. // flash_attn doesn't work for cross attention because it assumes Q <= K
  252. // and it seems to yield slightly different scores than expected, and thus a different beam search
  253. # define UNITY_FLASH_ATTN 0
  254. extern "C" ggml_tensor* MultiheadAttention_forward(
  255. fairseq2_model& model,
  256. const std::string &prefix,
  257. ggml_tensor* queries, // (slen, d_in)
  258. ggml_tensor* keys, // (klen, d_in)
  259. ggml_tensor* values, // (klen, d_out)
  260. ggml_tensor* attn_mask // (klen, slen)
  261. ) {
  262. int model_dim = queries->ne[0];
  263. int num_heads = model.layer_config.at(prefix + ".num_heads");
  264. int head_dim = model_dim / num_heads;
  265. GGML_ASSERT(model_dim % num_heads == 0);
  266. ggml_context* ctx = model.ctx;
  267. ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries); // (B, S, H * H_dim)
  268. ggml_set_name(q, "q");
  269. q = _reshape_num_head(ctx, q, head_dim); // (B * H, S, H_dim)
  270. ggml_tensor *k, *v;
  271. if (!has_kv_cache(model)) {
  272. k = Linear_forward(model, prefix + ".k_proj", keys);
  273. ggml_set_name(k, "k");
  274. v = Linear_forward(model, prefix + ".v_proj", values);
  275. ggml_set_name(v, "v");
  276. } else {
  277. bool encoder_decoder_attn = keys == values && keys != queries;
  278. if (encoder_decoder_attn) {
  279. // The K and V tensors of an encoder-decoder attention (i.e. the
  280. // projected encoder outputs) remain static during evaluation.
  281. KeyValueTensor& kv_cache = model.kv_cache[prefix];
  282. if (kv_cache.step_nr == 0) {
  283. k = Linear_forward(model, prefix + ".k_proj", keys);
  284. ggml_set_name(k, "k");
  285. v = Linear_forward(model, prefix + ".v_proj", values);
  286. ggml_set_name(v, "v");
  287. model.kv_cache[prefix] = KeyValueTensor{k, v, nullptr, 1};
  288. } else {
  289. k = kv_cache.full_k;
  290. v = kv_cache.full_v;
  291. }
  292. } else { // self attention
  293. // (1, K) -> (N, 1, K_proj)
  294. k = Linear_forward(model, prefix + ".k_proj", keys);
  295. // (1, V) -> (N, 1, V_proj)
  296. v = Linear_forward(model, prefix + ".v_proj", values);
  297. append_to_prev_kv(model, prefix, &k, &v, &attn_mask);
  298. }
  299. }
  300. k = _reshape_num_head(ctx, k, head_dim); // (B * H, Sk, H_dim)
  301. v = _reshape_num_head_values(ctx, v, head_dim); // (B * H, H_dim, Sk)
  302. v = ggml_cont(ctx, v);
  303. #if UNITY_FLASH_ATTN
  304. // For flash_attn, we assume either no masks, or triangular masks.
  305. ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/attn_mask != nullptr); // (B * H, S, H_dim)
  306. ggml_set_name(attn, "attn");
  307. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  308. attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (B, S, H, H_dim)
  309. #else
  310. // (B * H, Sk, H_dim) x (B * H, S, H_dim) -> (B * H, S, Sk)
  311. ggml_tensor* qk = ggml_mul_mat(ctx, k, q);
  312. ggml_set_name(qk, "qk");
  313. ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);
  314. ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
  315. qk = ggml_scale(ctx, qk, qk_scale);
  316. ggml_set_name(qk, "qk_scaled");
  317. // TODO: Should we replace this by ggml_diag_mask_inf ?
  318. if (attn_mask) qk = ggml_add_inplace(ctx, qk, attn_mask);
  319. // TODO: upgrade qk to float32 if needed
  320. ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (B * H, S, Sk)
  321. ggml_set_name(attn_weights, "attn_weights");
  322. // (B * H, S, Sk) x (B * H, H_dim, Sk) -> (B * H, H_dim, S)
  323. ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);
  324. ggml_set_name(attn, "attn");
  325. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  326. attn = ggml_permute(ctx, attn, 2, 0, 1, 3); // (B, S, H, H_dim)
  327. #endif // UNITY_FLASH_ATTN
  328. attn = ggml_cont(ctx, attn);
  329. attn = ggml_flatten_1d(ctx, attn, 0); // (B, S, H * H_dim)
  330. // out -> (B, S, d_out)
  331. ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
  332. ggml_set_name(out, "out");
  333. return out;
  334. }
  335. extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
  336. fairseq2_model& model,
  337. const std::string& prefix,
  338. ggml_tensor* seqs,
  339. ggml_tensor* padding_mask
  340. ) {
  341. ggml_context* ctx = model.ctx;
  342. auto norm_order = model.layer_config.at(prefix + ".norm_order");
  343. // _forward_self_attn(seqs, padding_mask)
  344. auto residual = seqs;
  345. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  346. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  347. // TODO: add padding_mask to MultiheadAttention_forward
  348. GGML_ASSERT(padding_mask == nullptr);
  349. seqs = MultiheadAttention_forward(
  350. model,
  351. prefix + ".self_attn",
  352. seqs,
  353. seqs,
  354. seqs,
  355. /*attn_mask=*/nullptr
  356. );
  357. if (has_layer(model, prefix + ".self_attn_norm"))
  358. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  359. seqs = ggml_add(ctx, seqs, residual);
  360. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  361. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  362. // _forward_ffn(seqs)
  363. residual = seqs;
  364. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  365. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  366. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  367. // TODO: if self.residual_scale is not None:
  368. // residual = self.residual_scale * residual
  369. seqs = ggml_add(ctx, seqs, residual);
  370. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  371. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  372. return seqs;
  373. }
  374. extern "C" ggml_tensor* WaveformToFbank_forward(
  375. fairseq2_model& model,
  376. const std::string &prefix,
  377. ggml_tensor* waveform
  378. ) {
  379. // Hardcoding: num_bins 80, sample rate 16k, always standardize
  380. ggml_context* ctx = model.ctx;
  381. knf::MelBanksOptions mel_opts{};
  382. mel_opts.num_bins = 80;
  383. knf::FrameExtractionOptions frame_opts{};
  384. frame_opts.samp_freq = 16000;
  385. knf::FbankOptions opts{};
  386. opts.frame_opts = frame_opts;
  387. opts.mel_opts = mel_opts;
  388. std::vector<float_t> signal_frame{};
  389. std::int32_t num_frames = knf::NumFrames(/*num_samples=*/waveform->ne[0], frame_opts);
  390. struct ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 80, num_frames);
  391. knf::FbankComputer native_(opts);
  392. knf::FeatureWindowFunction window_fn_(native_.GetFrameOptions());
  393. for (std::int32_t frame_nr = 0; frame_nr < num_frames; ++frame_nr) {
  394. signal_frame.resize(0);
  395. // Extract the frame from the waveform tensor.
  396. knf::ExtractWindow(
  397. /*sample_offset=*/0,
  398. (float *)(waveform->data),
  399. waveform->ne[0],
  400. frame_nr,
  401. frame_opts,
  402. window_fn_,
  403. &signal_frame);
  404. native_.Compute(
  405. /*signal_raw_log_energy=*/0, /*vtln_warp=*/1.0, &signal_frame, ((float *)(output->data) + frame_nr * 80));
  406. }
  407. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  408. output = ggml_norm(ctx, output, 1e-5);
  409. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  410. if (output->ne[1] % 2 == 1) {
  411. struct ggml_tensor * remove_last = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, output->ne[1]-1);
  412. for (int i = 0; i < output->ne[1]-1; ++i) {
  413. ((int32_t *) remove_last->data)[i] = i;
  414. }
  415. output = ggml_get_rows(ctx, output, remove_last);
  416. }
  417. output = ggml_reshape_2d(ctx, output, output->ne[0] * 2, output->ne[1] / 2);
  418. return output;
  419. }
  420. // TODO: Check if it's possible to merge with standard MHA
  421. extern "C" ggml_tensor* RelativePositionMHA_forward(
  422. fairseq2_model& model,
  423. const std::string& prefix,
  424. ggml_tensor* seqs
  425. ) {
  426. ggml_context* ctx = model.ctx;
  427. ggml_tensor* residual = seqs;
  428. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  429. // self_attn: qkv
  430. struct ggml_tensor * Qcur = Linear_forward(model, prefix + ".q_proj", seqs);
  431. struct ggml_tensor * Kcur = Linear_forward(model, prefix + ".k_proj", seqs);
  432. struct ggml_tensor * Vcur = Linear_forward(model, prefix + ".v_proj", seqs);
  433. // self_attn: rel_pos SDPA
  434. int32_t S = seqs->ne[1];
  435. int32_t H = 16; // TODO: Make this configurable
  436. int32_t n_ctx = 4096;
  437. int32_t K_h = seqs->ne[0] / H;
  438. int32_t start_index = n_ctx - S;
  439. int32_t end_index = n_ctx + S - 1;
  440. int num_indices = end_index - start_index;
  441. struct ggml_tensor *rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, num_indices);
  442. rows->data = malloc(ggml_nbytes(rows));
  443. for (int i = 0; i < num_indices; i++) {
  444. ((int32_t *)rows->data)[i] = start_index + i;
  445. }
  446. // self_attn: load pos_enc weights & compute_r
  447. // In fairseq2 pos_enc weights are calculated on the fly, since some more custom operators might be needed to enable this,
  448. // we store the results (fixed) in checkpoint as model.audio_enc_pos_enc_w and load directly.
  449. struct ggml_tensor * r = ggml_get_rows(ctx, model.tensors["speech_encoder.pos_enc"], rows);
  450. r = ggml_mul_mat(ctx, model.tensors[prefix + ".sdpa.r_proj.weight"], r);
  451. r = ggml_dup(ctx, ggml_permute(ctx,
  452. ggml_cpy(ctx,
  453. r,
  454. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S*2-1)),
  455. 0, 2, 1, 3));
  456. struct ggml_tensor * u_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.u_bias"], K_h, 1, H);
  457. struct ggml_tensor * v_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.v_bias"], K_h, 1, H);
  458. // self_attn: Permute QKV
  459. struct ggml_tensor * Q =
  460. ggml_dup(ctx, ggml_permute(ctx,
  461. ggml_cpy(ctx,
  462. Qcur,
  463. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  464. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  465. struct ggml_tensor * K =
  466. ggml_dup(ctx, ggml_permute(ctx,
  467. ggml_cpy(ctx,
  468. Kcur,
  469. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  470. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  471. struct ggml_tensor * V =
  472. ggml_dup(ctx, ggml_permute(ctx,
  473. ggml_cpy(ctx,
  474. Vcur,
  475. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  476. 1, 2, 0, 3)); // (H * K_h, S) -> (K_h, H, S) -> (H, S, K_h)
  477. struct ggml_tensor * q_with_u_bias = ggml_add(ctx, Q, u_bias); // (K_h, S, H)
  478. struct ggml_tensor * q_with_v_bias = ggml_add(ctx, Q, v_bias); // (K_h, S, H)
  479. struct ggml_tensor * ac = ggml_mul_mat(ctx, K, q_with_u_bias);
  480. struct ggml_tensor * bd = ggml_mul_mat(ctx, r, q_with_v_bias);
  481. // self_attn: shift_bd. Logic follows https://github.com/facebookresearch/fairseq2/blob/main/src/fairseq2/nn/transformer/relative_attention.py#L161
  482. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // H, S, 2S-1
  483. struct ggml_tensor * pad = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, H, S, 1);
  484. pad->data = malloc(ggml_nbytes(pad));
  485. pad = ggml_set_f32(pad, 0.0);
  486. bd = ggml_concat(ctx, pad, bd); // bd[i][j][0] == 0, (H, S, 2S)
  487. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // (2S, S, H)
  488. bd = ggml_dup(ctx, ggml_reshape_3d(ctx, bd, S, 2*S, H)); // (S, 2S, H)
  489. bd = ggml_remove_head_row(ctx, bd); // A custom operator introduced to reduce 1st row (in the 2nd dim)
  490. bd = ggml_reshape_3d(ctx, bd, 2*S-1, S, H);
  491. bd = ggml_get_first_cols_by_rows(ctx, bd); // A custom operator introduced to get first #rows cols.
  492. // self_attn: compute attn / weights
  493. struct ggml_tensor * attn_weights = ggml_add(ctx, ac, bd);
  494. struct ggml_tensor * attn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  495. attn_scale->data = malloc(ggml_nbytes(attn_scale));
  496. ggml_set_f32(attn_scale, 1.0 / pow(K_h, 0.5));
  497. attn_weights = ggml_mul(ctx, ggml_repeat(ctx, attn_scale, attn_weights), attn_weights);
  498. attn_weights = ggml_soft_max(ctx, attn_weights);
  499. struct ggml_tensor * attn = ggml_mul_mat(ctx, V, attn_weights); // K_h, S, H
  500. attn = ggml_dup(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3));
  501. struct ggml_tensor * attn_2d = ggml_reshape_2d(ctx, attn, K_h * H, S);
  502. struct ggml_tensor * attn_out = ggml_mul_mat(ctx, model.tensors[prefix + ".output_proj.weight"], attn_2d);
  503. attn_out = ggml_add(ctx,
  504. ggml_repeat(ctx,
  505. model.tensors[prefix + ".output_proj.bias"],
  506. attn_out),
  507. attn_out);
  508. attn_out = ggml_add(ctx, residual, attn_out);
  509. return attn_out;
  510. }
  511. extern "C" ggml_tensor* ConvModule_forward(
  512. fairseq2_model& model,
  513. const std::string& prefix,
  514. ggml_tensor* seqs
  515. ) {
  516. ggml_context* ctx = model.ctx;
  517. ggml_tensor* residual = seqs;
  518. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  519. // conv: Use matmul for pointwise conv 1 - kernel_size=1, no padding case
  520. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv1.weight"], seqs);
  521. // conv: GLU
  522. seqs = ggml_glu(ctx, seqs);
  523. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  524. // S x C -> (S+K-1) x C -> K x S x C -> S x C
  525. seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".depthwise_conv.weight"], seqs, 1, 15, 1);
  526. // conv: Custom implementation of batch norm
  527. seqs = ggml_batch_norm(ctx, seqs, model.tensors[prefix + ".batch_norm.weight"], model.tensors[prefix + ".batch_norm.bias"], model.tensors[prefix + ".batch_norm.running_mean"], model.tensors[prefix + ".batch_norm.running_var"], 1e-5);
  528. // conv: SiLU actvation
  529. seqs = ggml_silu(ctx, seqs);
  530. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  531. // conv: Use matmul for pointwise conv 2 - kernel_size=1, no padding case
  532. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv2.weight"], seqs);
  533. // conv: + residual
  534. seqs = ggml_add(ctx, seqs, residual);
  535. return seqs;
  536. }
  537. extern "C" ggml_tensor* StandardConformerEncoderLayer_forward(
  538. fairseq2_model& model,
  539. const std::string& prefix,
  540. ggml_tensor* seqs,
  541. ggml_tensor* padding_mask
  542. ) {
  543. ggml_context* ctx = model.ctx;
  544. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  545. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  546. ggml_set_f32(ffn_scale, 0.5f);
  547. struct ggml_tensor * residual = seqs;
  548. seqs = LayerNorm_forward(model, prefix + ".ffn1_layer_norm", seqs);
  549. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn1", seqs);
  550. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  551. seqs = ggml_add(ctx, seqs, residual);
  552. seqs = RelativePositionMHA_forward(model, prefix + ".self_attn", seqs);
  553. seqs = ConvModule_forward(model, prefix + ".conv", seqs);
  554. residual = seqs;
  555. seqs = LayerNorm_forward(model, prefix + ".ffn2_layer_norm", seqs);
  556. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn2", seqs);
  557. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  558. seqs = ggml_add(ctx, seqs, residual);
  559. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  560. return seqs;
  561. }
  562. extern "C" ggml_tensor* StandardConformerEncoder_forward(
  563. fairseq2_model& model,
  564. const std::string& prefix,
  565. ggml_tensor* seqs,
  566. ggml_tensor* padding_mask
  567. ) { // TODO: Implement this!
  568. ggml_context* ctx = model.ctx;
  569. seqs = WaveformToFbank_forward(model, prefix, seqs);
  570. seqs = LayerNorm_forward(model, prefix + "_frontend.post_extract_layer_norm", seqs);
  571. seqs = Linear_forward(model, prefix + "_frontend.model_dim_proj", seqs);
  572. int layer_idx = 0;
  573. std::string layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  574. while (has_layer(model, layer_name)) {
  575. seqs = StandardConformerEncoderLayer_forward(
  576. model, layer_name, seqs, padding_mask
  577. );
  578. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  579. layer_idx += 1;
  580. layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  581. }
  582. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  583. ggml_tensor* residual = seqs;
  584. seqs = Linear_forward(model, prefix + ".proj1", seqs);
  585. seqs = ggml_relu_inplace(ctx, seqs);
  586. seqs = Linear_forward(model, prefix + ".proj2", seqs);
  587. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  588. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  589. ggml_set_f32(ffn_scale, 0.5f);
  590. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  591. seqs = ggml_add(ctx, seqs, residual);
  592. layer_idx = 0;
  593. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  594. while (has_layer(model, layer_name)) {
  595. seqs = StandardConformerEncoderAdaptorLayer_forward(
  596. model, layer_name, seqs, padding_mask
  597. );
  598. ggml_set_name(seqs, ("x_ada_" + std::to_string(layer_idx)).c_str());
  599. layer_idx += 1;
  600. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  601. }
  602. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  603. return seqs;
  604. }
  605. extern "C" ggml_tensor* StandardConformerEncoderAdaptorLayer_forward(
  606. fairseq2_model& model,
  607. const std::string& prefix,
  608. ggml_tensor* seqs,
  609. ggml_tensor* padding_mask
  610. ) {
  611. ggml_context* ctx = model.ctx;
  612. struct ggml_tensor * residual = seqs;
  613. residual = LayerNorm_forward(model, prefix + ".residual_layer_norm", residual);
  614. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  615. residual = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".residual_conv.weight"], residual, 8, 4, 1);
  616. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  617. residual = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".residual_conv.bias"], residual), residual);
  618. residual = ggml_glu(ctx, residual);
  619. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  620. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  621. seqs = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".self_attn_conv.weight"], seqs, 8, 4, 1);
  622. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  623. seqs = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".self_attn_conv.bias"], seqs), seqs);
  624. seqs = ggml_glu(ctx, seqs);
  625. seqs = MultiheadAttention_forward(
  626. model,
  627. prefix + ".self_attn",
  628. seqs,
  629. seqs,
  630. seqs,
  631. /*attention masks=*/nullptr
  632. );
  633. seqs = ggml_add(ctx, seqs, residual);
  634. residual = seqs;
  635. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  636. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  637. seqs = ggml_add(ctx, seqs, residual);
  638. return seqs;
  639. }
  640. /// ggml_slice(X, -1, start, end) is equivalent to X[start:end]
  641. /// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]
  642. struct ggml_tensor * ggml_slice(
  643. struct ggml_context * ctx,
  644. struct ggml_tensor * a,
  645. int axis,
  646. int64_t start,
  647. int64_t end
  648. ) {
  649. int64_t ne[4];
  650. std::copy(a->ne, a->ne + 4, ne);
  651. if (axis < 0) axis = a->n_dims + axis;
  652. if (start < 0) start = ne[axis] + start;
  653. if (end < 0) end = ne[axis] + end;
  654. GGML_ASSERT(0 <= start);
  655. GGML_ASSERT(start <= end);
  656. GGML_ASSERT(end <= ne[axis]);
  657. ne[axis] = end - start;
  658. size_t offset = a->nb[axis] * start;
  659. size_t* nb = a->nb;
  660. ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
  661. result->n_dims = a->n_dims;
  662. return result;
  663. }
  664. extern "C" ggml_tensor* PositionalEmbedding_forward(
  665. fairseq2_model& model,
  666. const std::string& prefix,
  667. ggml_tensor* embeds
  668. ) {
  669. // This only work with the simple pos encoders
  670. int seq_len = embeds->ne[1];
  671. ggml_tensor* full_pos_embeds = model.tensors[prefix];
  672. ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, 0, seq_len);
  673. return ggml_add(model.ctx, embeds, pos_embeds);
  674. }
  675. extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
  676. fairseq2_model& model,
  677. const std::string& prefix,
  678. ggml_tensor* seqs
  679. // TODO: state_bag
  680. ) {
  681. GGML_ASSERT(seqs->n_dims < GGML_MAX_DIMS);
  682. ggml_context* ctx = model.ctx;
  683. ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
  684. GGML_ASSERT(embed_weights != nullptr);
  685. ggml_tensor* embeds;
  686. if (seqs->n_dims == 1) {
  687. embeds = ggml_get_rows(ctx, embed_weights, seqs);
  688. } else {
  689. // ggml_get_rows isn't very flexible, we have to handle the reshape ourselves.
  690. ggml_tensor* flat_seqs = seqs;
  691. if (!ggml_is_contiguous(seqs)) {
  692. flat_seqs->type = GGML_TYPE_F32;
  693. flat_seqs = ggml_cont(ctx, flat_seqs);
  694. }
  695. flat_seqs = ggml_reshape_1d(ctx, flat_seqs, ggml_nelements(seqs));
  696. flat_seqs->type = GGML_TYPE_I32;
  697. embeds = ggml_get_rows(ctx, embed_weights, flat_seqs);
  698. embeds = ggml_reshape_4d(ctx, embeds, embed_weights->ne[0], seqs->ne[0], seqs->ne[1], seqs->ne[2]);
  699. embeds->n_dims = seqs->n_dims + 1;
  700. }
  701. // padding mask ?
  702. // padding_mask = to_padding_mask(embeds, seq_lens)
  703. if (has_layer(model, prefix + ".pos_encoder")) {
  704. embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);
  705. }
  706. if (has_layer(model, prefix + ".layer_norm")) {
  707. embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
  708. }
  709. return embeds;
  710. }
  711. extern "C" ggml_tensor* StandardTransformerEncoder_forward(
  712. fairseq2_model& model,
  713. const std::string& prefix,
  714. ggml_tensor* seqs,
  715. ggml_tensor* padding_mask
  716. ) {
  717. int layer_idx = 0;
  718. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  719. while (has_layer(model, layer_name)) {
  720. seqs = StandardTransformerEncoderLayer_forward(
  721. model, layer_name, seqs, padding_mask
  722. );
  723. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  724. layer_idx += 1;
  725. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  726. }
  727. if (has_layer(model, prefix + ".layer_norm"))
  728. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  729. return seqs;
  730. }
  731. extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
  732. fairseq2_model& model,
  733. const std::string& prefix,
  734. ggml_tensor* seqs,
  735. ggml_tensor* self_attn_mask,
  736. ggml_tensor* encoder_output,
  737. ggml_tensor* encoder_padding_mask
  738. ) {
  739. ggml_context* ctx = model.ctx;
  740. auto norm_order = model.layer_config.at(prefix + ".norm_order");
  741. // _forward_self_attn(seqs, padding_mask)
  742. auto residual = seqs;
  743. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  744. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  745. seqs = MultiheadAttention_forward(
  746. model,
  747. prefix + ".self_attn",
  748. seqs,
  749. seqs,
  750. seqs,
  751. /*attn_mask=*/self_attn_mask
  752. );
  753. if (has_layer(model, prefix + ".self_attn_norm"))
  754. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  755. seqs = ggml_add(ctx, seqs, residual);
  756. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  757. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  758. // _forward_encoder_decoder_attn
  759. if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
  760. // `encoder_output` must be `None` for decoder-only attention.
  761. GGML_ASSERT(encoder_output == nullptr);
  762. return seqs;
  763. }
  764. // `encoder_output` must not be `None` for encoder-decoder attention.
  765. GGML_ASSERT(encoder_output != nullptr);
  766. residual = seqs;
  767. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  768. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  769. seqs = MultiheadAttention_forward(
  770. model,
  771. prefix + ".encoder_decoder_attn",
  772. seqs,
  773. encoder_output,
  774. encoder_output,
  775. /*attention masks=*/encoder_padding_mask
  776. );
  777. seqs = ggml_add(ctx, seqs, residual);
  778. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  779. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  780. // _forward_ffn(seqs)
  781. residual = seqs;
  782. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  783. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  784. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  785. // TODO:
  786. // if self.residual_scale is not None:
  787. // residual = self.residual_scale * residual
  788. seqs = ggml_add(ctx, seqs, residual);
  789. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  790. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  791. return seqs;
  792. }
  793. extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
  794. auto seq_len = seqs->ne[1];
  795. // TODO: allow other ggml_type
  796. ggml_tensor* mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
  797. return ggml_diag_mask_inf(ctx, mask, 0);
  798. }
  799. extern "C" ggml_tensor* StandardTransformerDecoder_forward(
  800. fairseq2_model& model,
  801. const std::string& prefix,
  802. ggml_tensor* seqs,
  803. ggml_tensor* padding_mask,
  804. ggml_tensor* encoder_output,
  805. ggml_tensor* encoder_padding_mask
  806. ) {
  807. int layer_idx = 0;
  808. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  809. ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
  810. while (has_layer(model, layer_name)) {
  811. seqs = StandardTransformerDecoderLayer_forward(
  812. model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
  813. );
  814. ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
  815. layer_idx += 1;
  816. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  817. }
  818. if (has_layer(model, prefix + ".layer_norm"))
  819. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  820. return seqs;
  821. }
  822. int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
  823. auto opts = job.opts;
  824. int max_seq_len = -1;
  825. if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
  826. max_seq_len = opts.hard_max_seq_len;
  827. } else {
  828. max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len) + opts.soft_max_seq_len_b);
  829. }
  830. if (opts.min_seq_len > max_seq_len) {
  831. printf(
  832. "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
  833. opts.min_seq_len,
  834. max_seq_len
  835. );
  836. GGML_ASSERT(opts.min_seq_len <= max_seq_len);
  837. }
  838. int prefix_seq_len = job.prefix_seq->ne[0];
  839. if (prefix_seq_len >= max_seq_len) {
  840. printf(
  841. "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
  842. prefix_seq_len,
  843. max_seq_len
  844. );
  845. GGML_ASSERT(prefix_seq_len < max_seq_len);
  846. }
  847. return max_seq_len;
  848. }
  849. void _fan_out_encoder_output(
  850. ggml_context* ctx,
  851. ggml_tensor** encoder_output_out,
  852. ggml_tensor** encoder_padding_mask_out,
  853. int beam_size
  854. ) {
  855. // (S_enc, M)
  856. ggml_tensor* encoder_output = *encoder_output_out;
  857. ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
  858. // (B, S_enc, M)
  859. ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
  860. // (S_enc, M) -> (B, S_enc, M)
  861. *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
  862. // (S_enc) -> (B, S_enc)
  863. if (encoder_padding_mask != nullptr) {
  864. ggml_tensor* shape_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], 1, beam_size);
  865. *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
  866. }
  867. }
  868. ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
  869. // TODO: this isn't the most precise way of doing this
  870. return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));
  871. }
  872. ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {
  873. ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);
  874. ggml_type true_type = x->type;
  875. x->type = GGML_TYPE_F32;
  876. ggml_tensor* y = ggml_repeat(ctx, x, shape);
  877. y->type = true_type;
  878. return y;
  879. }
  880. extern "C" void _bootstrap_seqs_and_scores(
  881. fairseq2_model& model,
  882. const SequenceGeneratorJob& job,
  883. ggml_tensor* full_seqs,
  884. ggml_tensor* scores,
  885. ggml_tensor* encoder_output,
  886. ggml_tensor* encoder_padding_mask
  887. ) {
  888. int prefix_seq_len = job.prefix_seq->ne[0];
  889. int max_seq_len = scores->ne[0];
  890. int beam_size = scores->ne[1];
  891. GGML_ASSERT(prefix_seq_len > 0);
  892. if (prefix_seq_len == 1)
  893. return;
  894. ggml_context* ctx = model.ctx;
  895. // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
  896. full_seqs->type = GGML_TYPE_F32;
  897. job.prefix_seq->type = GGML_TYPE_F32;
  898. ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
  899. seqs = ggml_cpy(ctx, ggml_repeat(ctx, job.prefix_seq, seqs), seqs);
  900. // We have to bootstrap the model with the already fanned-out encoder
  901. // output to correctly initialize its incremental state.
  902. // Note: we don't start decoding the last prefix token just yet.
  903. seqs = ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1);
  904. seqs->type = GGML_TYPE_I32;
  905. // Bootstrap the model state with prefix sequence.
  906. seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
  907. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  908. model,
  909. "text_decoder",
  910. seqs,
  911. /*padding_mask*/ nullptr,
  912. encoder_output,
  913. encoder_padding_mask
  914. );
  915. // TODO state_bag.increment_step(prefix_seq_len - 1)
  916. // logits, lprobs: (N, S_pfx - 1, V)
  917. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
  918. int vocab_size = logits->ne[0];
  919. ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
  920. ggml_cgraph gf = ggml_build_forward(lprobs);
  921. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  922. full_seqs->type = GGML_TYPE_I32;
  923. job.prefix_seq->type = GGML_TYPE_I32;
  924. // Fetch scores of next steps from "lprobs"
  925. float p_score = 0;
  926. for (int i = 1; i < prefix_seq_len; ++i) {
  927. int p = ggml_get_i32_1d(job.prefix_seq, i);
  928. p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
  929. for (int b = 0; b < beam_size; ++b) {
  930. // scores: (N, S)
  931. // Note: First step (e.g. BOS)'s score is always 0.
  932. ggml_set_f32_1d(scores, b * max_seq_len + i, p_score);
  933. }
  934. }
  935. }
  936. /// Finds the topk indices, and write the winning indices in "candidate_indices" array.
  937. int topk(
  938. ggml_tensor* lprobs, // (B, V)
  939. std::int64_t k,
  940. ggml_tensor* candidate_indices
  941. ) {
  942. // Take the best 2 x `beam_size` predictions. We'll choose the first
  943. // `beam_size` of these which don't predict EOS to continue with.
  944. // (N, 2 x B)
  945. // `vocab_size` - 1 to never select PAD.
  946. std::int64_t K = std::min(k, ggml_nelements(lprobs));
  947. auto comp = [lprobs](std::int32_t a, std::int32_t b) {
  948. return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);
  949. };
  950. GGML_ASSERT(ggml_nelements(candidate_indices) >= k);
  951. auto cand = (std::int32_t*)candidate_indices->data;
  952. std::partial_sort(cand, cand + K, cand + ggml_nelements(lprobs), comp);
  953. return K;
  954. }
  955. /// Copies the sequence and scores of a given candidate beam.
  956. void _finalize_hypothesis(
  957. const SequenceGeneratorJob& job,
  958. ggml_context* ctx,
  959. int step_nr,
  960. std::int32_t beam,
  961. std::int32_t token,
  962. float eos_score,
  963. ggml_tensor* seqs, // (beam_size, seq_len)
  964. ggml_tensor* scores, // (beam_size, seq_len)
  965. Hypothesis* hypothesis
  966. ) {
  967. ggml_tensor* seq = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
  968. hypothesis->seq = seq;
  969. ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
  970. hypothesis->step_scores = step_scores;
  971. auto tok = (std::int32_t*)seq->data;
  972. for (int i = 0; i < step_nr + 1; ++i) {
  973. tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
  974. }
  975. tok[step_nr + 1] = token;
  976. // Convert from cumulative to per-step scores.
  977. auto sc = (float*)step_scores->data;
  978. float last_score = eos_score;
  979. for (int i = step_nr; i >= 0; --i) {
  980. float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);
  981. sc[i + 1] = last_score - sc0;
  982. last_score = sc0;
  983. }
  984. sc[0] = 0;
  985. if (job.opts.normalize_scores)
  986. // Skip first EOS since it is always 0 and skews normalization.
  987. eos_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
  988. hypothesis->score = eos_score;
  989. }
  990. // Uses ggml_context to store any object.
  991. #define GGML_CTX_ALLOC(ctx, Type, n) \
  992. (Type*)(ggml_new_tensor_1d(ctx, GGML_TYPE_I8, sizeof(Type) * n)->data);
  993. /// Generates a translation for a single sequence
  994. // TODO: add IncrementalStateBag support to avoid a O(N^3) generation.
  995. // TODO: clean ups
  996. // * replace manual tensor tweaking with ggml_set_*d (a ggml_set_slice could be useful)
  997. extern "C" Hypothesis* generate_sequence(
  998. fairseq2_model& model,
  999. const SequenceGeneratorJob& job,
  1000. ggml_tensor* encoder_output,
  1001. ggml_tensor* encoder_padding_mask,
  1002. ggml_context* result_ctx
  1003. ) {
  1004. ggml_context* ctx = model.ctx;
  1005. size_t eos_idx = job.eos_idx;
  1006. auto pad_idx = job.pad_idx;
  1007. ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
  1008. size_t vocab_size = embed->ne[1];
  1009. std::size_t beam_size = job.opts.beam_size;
  1010. int source_seq_len = encoder_output->ne[1];
  1011. int max_seq_len = _determine_max_seq_len(job, source_seq_len);
  1012. fairseq2_kv_cache_alloc(model, beam_size, max_seq_len);
  1013. // (S_enc, M) -> (B, S_enc, M)
  1014. _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);
  1015. // Allocate results in the context provided by the caller.
  1016. Hypothesis* finished_searches_begin = GGML_CTX_ALLOC(result_ctx, Hypothesis, beam_size);
  1017. Hypothesis* finished_searches = finished_searches_begin;
  1018. for (std::size_t i = 0; i < beam_size; ++i) finished_searches[i] = {nullptr, -INFINITY, nullptr};
  1019. Hypothesis* finished_searches_end = finished_searches + beam_size;
  1020. // Initialize buffers. (B, S)
  1021. ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);
  1022. ggml_set_i32(seqs, 0);
  1023. ggml_set_name(seqs, "seqs_0");
  1024. ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);
  1025. ggml_set_name(scores, "scores_0");
  1026. ggml_set_f32(scores, 0.0);
  1027. _bootstrap_seqs_and_scores(
  1028. model, job, seqs, scores, encoder_output, encoder_padding_mask
  1029. );
  1030. int prefix_seq_len = job.prefix_seq->ne[0];
  1031. int start_step = prefix_seq_len - 1;
  1032. // Holds the indices of beams (a beam can occur more than once) that we
  1033. // should continue with in the next step.
  1034. ggml_tensor* beam_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  1035. ggml_tensor* next_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  1036. ggml_tensor* next_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, beam_size);
  1037. // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore
  1038. ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);
  1039. for (std::size_t i = 0; i < vocab_size * beam_size; ++i)
  1040. ((int32_t *)(candidate_indices->data))[i] = i;
  1041. // TODO: memory management, there should be a per-step ggml_context for intermediary results
  1042. for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
  1043. ggml_tensor* decoder_input = ggml_slice(ctx, seqs, 0, step_nr, step_nr + 1);
  1044. decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", decoder_input);
  1045. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  1046. model,
  1047. "text_decoder",
  1048. decoder_input,
  1049. nullptr, // We never generate PAD.
  1050. encoder_output,
  1051. encoder_padding_mask
  1052. ); // (B, 1, D)
  1053. // Just look at the last token.
  1054. decoder_output = ggml_flatten_1d(ctx, decoder_output, 0); // (B, model_dim)
  1055. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output); // (B, vocab_size)
  1056. ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);
  1057. // Compute lprobs here so we can modify it in place in the lprob tweaking phase
  1058. // TODO: use ggml properly compute the tweaks
  1059. ggml_cgraph gf = ggml_build_forward(lprobs);
  1060. printf("beam search step %d. Graph.n_nodes: %d\n", step_nr, gf.n_nodes);
  1061. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1062. ggml_detach(lprobs);
  1063. // // Do not allow EOS before reaching the minimum sequence length.
  1064. if (step_nr < job.opts.min_seq_len) {
  1065. // lprobs[:, :, self.eos_idx] = -INFINITY;
  1066. for (size_t i = 0; i < beam_size; ++i)
  1067. ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);
  1068. }
  1069. // If we have reached the maximum length, force the last step to be EOS.
  1070. if (step_nr == max_seq_len - 2) {
  1071. // lprobs[:, :, : self.eos_idx] = -torch.inf
  1072. // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
  1073. for (size_t b = 0; b < beam_size; ++b) {
  1074. size_t t = 0;
  1075. for (t = 0; t < eos_idx; ++t)
  1076. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  1077. for (t = eos_idx + 1; t < vocab_size; ++t)
  1078. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  1079. }
  1080. }
  1081. // Never allow PAD.
  1082. for (size_t i = 0; i < beam_size; ++i)
  1083. ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);
  1084. // Apply UNK penalty.
  1085. if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {
  1086. // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
  1087. auto lprobs_raw = ggml_get_data_f32(lprobs);
  1088. for (size_t i = 0; i < beam_size; ++i)
  1089. lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;
  1090. }
  1091. ggml_tensor* last_scores = ggml_slice(ctx, scores, 0, step_nr, step_nr+1);
  1092. if (step_nr == start_step) {
  1093. // At the initial step, all hypotheses are equally likely, so we use
  1094. // only the first beam.
  1095. lprobs = ggml_slice(ctx, lprobs, 1, 0, 1);
  1096. lprobs = ggml_cont(ctx, lprobs);
  1097. // The first step always indicates the beginning of the sequence and has no score.
  1098. if (step_nr > 0) {
  1099. last_scores = ggml_slice(ctx, last_scores, 1, 0, 1);
  1100. lprobs = ggml_add_inplace(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1101. }
  1102. } else {
  1103. // Make probabilities contain cumulative scores for each hypothesis.
  1104. lprobs = ggml_add(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1105. }
  1106. gf = ggml_build_forward(lprobs);
  1107. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1108. // Determine (beam, token) candidates for the next step.
  1109. // (N, 2 x B)
  1110. std::int64_t K = topk(
  1111. lprobs, std::min(2 * beam_size, vocab_size - 1), candidate_indices
  1112. );
  1113. std::size_t ongoing_beams = 0;
  1114. for (std::int32_t i = 0; i < K; ++i) {
  1115. int c = ggml_get_f32_1d(candidate_indices, i);
  1116. std::int32_t beam = c / vocab_size;
  1117. std::int32_t token = c % vocab_size;
  1118. float tok_score = ggml_get_f32_1d(lprobs, c);
  1119. // Detect beams that reached the minimum length and that end with an EOS.
  1120. bool eos = token == job.eos_idx;
  1121. eos &= tok_score != -INFINITY;
  1122. if (eos) {
  1123. _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, finished_searches++);
  1124. if (finished_searches == finished_searches_end)
  1125. goto end_of_beam_search;
  1126. continue;
  1127. }
  1128. ggml_set_f32_1d(beam_indices, ongoing_beams, beam);
  1129. ggml_set_f32_1d(next_tokens, ongoing_beams, token);
  1130. ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);
  1131. ongoing_beams += 1;
  1132. if (ongoing_beams >= beam_size) break;
  1133. }
  1134. // Reorder beams in the `seq` and `score` buffers. The same beam can
  1135. // be selected more than once.
  1136. ggml_tensor* new_seqs = seqs;
  1137. ggml_tensor* new_scores = scores;
  1138. if (step_nr > start_step) {
  1139. // (B, S), (B) -> (B, S)
  1140. // ggml_get_rows and ggml_set only work with floats ...
  1141. new_seqs->type = GGML_TYPE_F32;
  1142. new_seqs = ggml_get_rows(ctx, seqs, beam_indices);
  1143. new_scores = ggml_get_rows(ctx, scores, beam_indices);
  1144. ggml_cgraph gf_reorder = ggml_build_forward(new_seqs);
  1145. ggml_build_forward_expand(&gf_reorder, new_scores);
  1146. reorder_kv_cache(model, &gf_reorder, beam_indices);
  1147. ggml_graph_compute_with_ctx(ctx, &gf_reorder, 1);
  1148. ggml_detach(new_seqs);
  1149. ggml_detach(new_scores);
  1150. new_seqs->type = GGML_TYPE_I32;
  1151. }
  1152. // new_seqs[:, step_nr + 1] = next_tokens
  1153. // new_scores[:, step_nr + 1] = next_scores
  1154. for (std::size_t i = 0; i < beam_size; ++i) {
  1155. ((std::int32_t*)new_seqs->data)[step_nr + 1 + i * max_seq_len] = ggml_get_i32_1d(next_tokens, i);
  1156. ((float*)new_scores->data)[step_nr + 1 + i * max_seq_len] = ggml_get_f32_1d(next_scores, i);
  1157. }
  1158. // TODO the old seqs and score buffers could be reused for next step
  1159. seqs = new_seqs;
  1160. scores = new_scores;
  1161. }
  1162. end_of_beam_search:
  1163. // Ensure that hypotheses are sorted by decreasing scores before returning.
  1164. std::sort(
  1165. finished_searches_begin,
  1166. finished_searches_end,
  1167. [](Hypothesis a, Hypothesis b) { return a.score > b.score; }
  1168. );
  1169. return finished_searches_begin;
  1170. }
  1171. extern "C" Hypothesis* _testing_return_hypothesis_ptr(ggml_context* ctx) {
  1172. Hypothesis* result = GGML_CTX_ALLOC(ctx, struct Hypothesis, 2);
  1173. result[0] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 3.14f, (ggml_tensor*)result};
  1174. ggml_set_i32_1d(result[0].seq, 0, 314);
  1175. result[1] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 4.21f, nullptr};
  1176. ggml_set_i32_1d(result[1].seq, 0, 421);
  1177. return result;
  1178. }