ggml-opencl.cpp 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865
  1. #include "ggml-opencl.h"
  2. #include <array>
  3. #include <atomic>
  4. #include <sstream>
  5. #include <vector>
  6. #include <limits>
  7. #define CL_TARGET_OPENCL_VERSION 110
  8. #include <clblast.h>
  9. #include <stdlib.h>
  10. #include <stdio.h>
  11. #include <string.h>
  12. #include "ggml.h"
  13. #if defined(_MSC_VER)
  14. #pragma warning(disable: 4244 4267) // possible loss of data
  15. #endif
  16. #define CL_DMMV_BLOCK_SIZE 32
  17. #ifndef K_QUANTS_PER_ITERATION
  18. #define K_QUANTS_PER_ITERATION 1
  19. #else
  20. static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
  21. #endif
  22. #define MULTILINE_QUOTE(...) #__VA_ARGS__
  23. static std::string program_source = MULTILINE_QUOTE(
  24. typedef char int8_t;
  25. typedef uchar uint8_t;
  26. typedef short int16_t;
  27. typedef ushort uint16_t;
  28. typedef int int32_t;
  29. typedef uint uint32_t;
  30. struct __attribute__ ((packed)) block_q4_0
  31. {
  32. half d;
  33. uint8_t qs[QK4_0 / 2];
  34. };
  35. struct __attribute__ ((packed)) block_q4_1
  36. {
  37. half d;
  38. half m;
  39. uint8_t qs[QK4_1 / 2];
  40. };
  41. struct __attribute__ ((packed)) block_q5_0
  42. {
  43. half d;
  44. uint32_t qh;
  45. uint8_t qs[QK5_0 / 2];
  46. };
  47. struct __attribute__ ((packed)) block_q5_1
  48. {
  49. half d;
  50. half m;
  51. uint32_t qh;
  52. uint8_t qs[QK5_1 / 2];
  53. };
  54. struct __attribute__ ((packed)) block_q8_0
  55. {
  56. half d;
  57. int8_t qs[QK8_0];
  58. };
  59. struct __attribute__((packed)) block_q2_K
  60. {
  61. uint8_t scales[16];
  62. uint8_t qs[64];
  63. half d;
  64. half dmin;
  65. };
  66. struct __attribute__((packed)) block_q3_K
  67. {
  68. uint8_t hmask[32];
  69. uint8_t qs[64];
  70. uint8_t scales[12];
  71. half d;
  72. };
  73. struct __attribute__((packed)) block_q4_K
  74. {
  75. half d;
  76. half dmin;
  77. uint8_t scales[12];
  78. uint8_t qs[128];
  79. };
  80. struct __attribute__((packed)) block_q5_K
  81. {
  82. half d;
  83. half dmin;
  84. uint8_t scales[12];
  85. uint8_t qh[32];
  86. uint8_t qs[128];
  87. };
  88. struct __attribute__((packed)) block_q6_K
  89. {
  90. uint8_t ql[128];
  91. uint8_t qh[64];
  92. int8_t scales[16];
  93. half d;
  94. };
  95. __kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
  96. const uint i = get_global_id(0);
  97. y[i] = vload_half(0, &x[i]);
  98. }
  99. void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) {
  100. const float d = vload_half(0, &x[ib].d);
  101. const uint8_t vui = x[ib].qs[iqs];
  102. const int8_t vi0 = vui & 0xF;
  103. const int8_t vi1 = vui >> 4;
  104. *v0 = (vi0 - 8)*d;
  105. *v1 = (vi1 - 8)*d;
  106. }
  107. void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) {
  108. const float d = vload_half(0, &x[ib].d);
  109. const float m = vload_half(0, &x[ib].m);
  110. const uint8_t vui = x[ib].qs[iqs];
  111. const int8_t vi0 = vui & 0xF;
  112. const int8_t vi1 = vui >> 4;
  113. *v0 = vi0*d + m;
  114. *v1 = vi1*d + m;
  115. }
  116. void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) {
  117. const float d = vload_half(0, &x[ib].d);
  118. uint32_t qh = x[ib].qh;
  119. const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
  120. const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
  121. const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
  122. const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
  123. *v0 = x0*d;
  124. *v1 = x1*d;
  125. }
  126. void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) {
  127. const float d = vload_half(0, &x[ib].d);
  128. const float m = vload_half(0, &x[ib].m);
  129. uint32_t qh = x[ib].qh;
  130. const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
  131. const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
  132. const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
  133. const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
  134. *v0 = x0*d + m;
  135. *v1 = x1*d + m;
  136. }
  137. void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) {
  138. const float d = vload_half(0, &x[ib].d);
  139. const int8_t vi0 = x[ib].qs[iqs + 0];
  140. const int8_t vi1 = x[ib].qs[iqs + 1];
  141. *v0 = vi0*d;
  142. *v1 = vi1*d;
  143. }
  144. void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){
  145. *v0 = vload_half(0, &x[ib + 0]);
  146. *v1 = vload_half(0, &x[ib + 1]);
  147. }
  148. );
  149. static std::string k_quants_source = MULTILINE_QUOTE(
  150. inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m)
  151. {
  152. if (j < 4)
  153. {
  154. *d = q[j] & 63;
  155. *m = q[j + 4] & 63;
  156. }
  157. else
  158. {
  159. *d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4);
  160. *m = (q[j + 4] >> 4) | ((q[j - 0] >> 6) << 4);
  161. }
  162. }
  163. __kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy)
  164. {
  165. const int i = get_group_id(0);
  166. const int tid = get_local_id(0);
  167. const int n = tid / 32;
  168. const int l = tid - 32 * n;
  169. const int is = 8 * n + l / 16;
  170. const uint8_t q = x[i].qs[32 * n + l];
  171. __global float *y = yy + i * QK_K + 128 * n;
  172. const float dall = vload_half(0, &x[i].d);
  173. const float dmin = vload_half(0, &x[i].dmin);
  174. y[l + 0] = dall * (x[i].scales[is + 0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is + 0] >> 4);
  175. y[l + 32] = dall * (x[i].scales[is + 2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is + 2] >> 4);
  176. y[l + 64] = dall * (x[i].scales[is + 4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is + 4] >> 4);
  177. y[l + 96] = dall * (x[i].scales[is + 6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is + 6] >> 4);
  178. }
  179. __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy)
  180. {
  181. int r = get_local_id(0) / 4;
  182. int i = get_group_id(0);
  183. int tid = r / 2;
  184. int is0 = r % 2;
  185. int l0 = 16 * is0 + 4 * (get_local_id(0) % 4);
  186. int n = tid / 4;
  187. int j = tid - 4 * n;
  188. uint8_t m = 1 << (4 * n + j);
  189. int is = 8 * n + 2 * j + is0;
  190. int shift = 2 * j;
  191. int8_t us = is < 4 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 8] >> 0) & 3) << 4)
  192. : is < 8 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 4] >> 2) & 3) << 4)
  193. : is < 12 ? (x[i].scales[is - 8] >> 4) | (((x[i].scales[is + 0] >> 4) & 3) << 4)
  194. : (x[i].scales[is - 8] >> 4) | (((x[i].scales[is - 4] >> 6) & 3) << 4);
  195. float d_all = vload_half(0, &x[i].d);
  196. float dl = d_all * (us - 32);
  197. __global float *y = yy + i * QK_K + 128 * n + 32 * j;
  198. const __global uint8_t *q = x[i].qs + 32 * n;
  199. const __global uint8_t *hm = x[i].hmask;
  200. for (int l = l0; l < l0 + 4; ++l)
  201. y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
  202. }
  203. __kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy)
  204. {
  205. const int i = get_group_id(0);
  206. const int tid = get_local_id(0);
  207. const int il = tid / 8;
  208. const int ir = tid % 8;
  209. const int is = 2 * il;
  210. const int n = 4;
  211. __global float *y = yy + i * QK_K + 64 * il + n * ir;
  212. const float dall = vload_half(0, &x[i].d);
  213. const float dmin = vload_half(0, &x[i].dmin);
  214. __global const uint8_t *q = x[i].qs + 32 * il + n * ir;
  215. uint8_t sc, m;
  216. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  217. float d1 = dall * sc;
  218. float m1 = dmin * m;
  219. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  220. float d2 = dall * sc;
  221. float m2 = dmin * m;
  222. for (int l = 0; l < n; ++l)
  223. {
  224. y[l + 0] = d1 * (q[l] & 0xF) - m1;
  225. y[l + 32] = d2 * (q[l] >> 4) - m2;
  226. }
  227. }
  228. __kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy)
  229. {
  230. const int i = get_group_id(0);
  231. const int tid = get_local_id(0);
  232. const int il = tid / 16;
  233. const int ir = tid % 16;
  234. const int is = 2 * il;
  235. __global float *y = yy + i * QK_K + 64 * il + 2 * ir;
  236. const float dall = vload_half(0, &x[i].d);
  237. const float dmin = vload_half(0, &x[i].dmin);
  238. __global const uint8_t *ql = x[i].qs + 32 * il + 2 * ir;
  239. __global const uint8_t *qh = x[i].qh + 2 * ir;
  240. uint8_t sc, m;
  241. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  242. const float d1 = dall * sc;
  243. const float m1 = dmin * m;
  244. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  245. const float d2 = dall * sc;
  246. const float m2 = dmin * m;
  247. uint8_t hm = 1 << (2 * il);
  248. y[0] = d1 * ((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0)) - m1;
  249. y[1] = d1 * ((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0)) - m1;
  250. hm <<= 1;
  251. y[32] = d2 * ((ql[0] >> 4) + (qh[0] & hm ? 16 : 0)) - m2;
  252. y[33] = d2 * ((ql[1] >> 4) + (qh[1] & hm ? 16 : 0)) - m2;
  253. }
  254. __kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy)
  255. {
  256. const int i = get_group_id(0);
  257. const int tid = get_local_id(0);
  258. const int ip = tid / 32;
  259. const int il = tid - 32 * ip;
  260. const int is = 8 * ip + il / 16;
  261. __global float *y = yy + i * QK_K + 128 * ip + il;
  262. const float d = vload_half(0, &x[i].d);
  263. __global const uint8_t *ql = x[i].ql + 64 * ip + il;
  264. const uint8_t qh = x[i].qh[32 * ip + il];
  265. __global const int8_t *sc = x[i].scales + is;
  266. y[0] = d * sc[0] * ((int8_t)((ql[0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
  267. y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
  268. y[64] = d * sc[4] * ((int8_t)((ql[0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
  269. y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
  270. }
  271. __kernel void dequantize_mul_mat_vec_q2_K(__global const struct block_q2_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
  272. const int row = get_group_id(0);
  273. const int num_blocks_per_row = ncols / QK_K;
  274. const int ib0 = row*num_blocks_per_row;
  275. __global const struct block_q2_K * x = xx + ib0;
  276. const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
  277. const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1
  278. const int step = 16/K_QUANTS_PER_ITERATION;
  279. const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
  280. const int in = tid - step*im; // 0...15 or 0...7
  281. const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
  282. const int q_offset = 32*im + l0;
  283. const int s_offset = 8*im;
  284. const int y_offset = 128*im + l0;
  285. tmp[16 * ix + tid] = 0;
  286. uint32_t aux[4];
  287. const uint8_t * d = (const uint8_t *)aux;
  288. const uint8_t * m = (const uint8_t *)(aux + 2);
  289. for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
  290. __global const float * y = yy + i * QK_K + y_offset;
  291. __global const uint8_t * q = x[i].qs + q_offset;
  292. const float dall = vload_half(0, &x[i].d);
  293. const float dmin = vload_half(0, &x[i].dmin);
  294. __global const uint32_t * a = (__global const uint32_t *)(x[i].scales + s_offset);
  295. aux[0] = a[0] & 0x0f0f0f0f;
  296. aux[1] = a[1] & 0x0f0f0f0f;
  297. aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
  298. aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
  299. float sum1 = 0, sum2 = 0;
  300. for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
  301. sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
  302. + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
  303. + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
  304. + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
  305. + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
  306. + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
  307. + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
  308. +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
  309. sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
  310. + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
  311. }
  312. tmp[16 * ix + tid] += dall * sum1 - dmin * sum2;
  313. }
  314. // sum up partial sums and write back result
  315. barrier(CLK_LOCAL_MEM_FENCE);
  316. for (int s=16; s>0; s>>=1) {
  317. if (tid < s) {
  318. tmp[tid] += tmp[tid + s];
  319. }
  320. barrier(CLK_LOCAL_MEM_FENCE);
  321. }
  322. if (tid == 0) {
  323. dst[row] = tmp[0];
  324. }
  325. }
  326. __kernel void dequantize_mul_mat_vec_q3_K(__global const struct block_q3_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
  327. const uint16_t kmask1 = 0x0303;
  328. const uint16_t kmask2 = 0x0f0f;
  329. const int row = get_group_id(0);
  330. const int num_blocks_per_row = ncols / QK_K;
  331. const int ib0 = row*num_blocks_per_row;
  332. __global const struct block_q3_K * x = xx + ib0;
  333. const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
  334. const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1
  335. const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
  336. const int step = 16/K_QUANTS_PER_ITERATION;
  337. const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
  338. const int in = tid - step*im; // 0....15 or 0...7
  339. const uint8_t m = 1 << (4*im);
  340. const int l0 = n*in; // 0...15 or 0...14 in steps of 2
  341. const int q_offset = 32*im + l0;
  342. const int y_offset = 128*im + l0;
  343. uint16_t utmp[4];
  344. const int8_t * s = (const int8_t *)utmp;
  345. const uint16_t s_shift = 4*im;
  346. tmp[16 * ix + tid] = 0;
  347. for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
  348. __global const float * y = yy + i * QK_K + y_offset;
  349. __global const uint8_t * q = x[i].qs + q_offset;
  350. __global const uint8_t * h = x[i].hmask + l0;
  351. __global const uint16_t * a = (__global const uint16_t *)x[i].scales;
  352. utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
  353. utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
  354. utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
  355. utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
  356. const float d = vload_half(0, &x[i].d);
  357. float sum = 0;
  358. for (int l = 0; l < n; ++l) {
  359. sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
  360. + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
  361. + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
  362. + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
  363. sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
  364. + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
  365. + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
  366. + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
  367. }
  368. tmp[16 * ix + tid] += d * sum;
  369. }
  370. // sum up partial sums and write back result
  371. barrier(CLK_LOCAL_MEM_FENCE);
  372. for (int s=16; s>0; s>>=1) {
  373. if (tid < s) {
  374. tmp[tid] += tmp[tid + s];
  375. }
  376. barrier(CLK_LOCAL_MEM_FENCE);
  377. }
  378. if (tid == 0) {
  379. dst[row] = tmp[0];
  380. }
  381. }
  382. __kernel void dequantize_mul_mat_vec_q4_K(__global const struct block_q4_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
  383. //to rename it later, just to test now
  384. const uint16_t kmask1 = 0x3f3f;
  385. const uint16_t kmask2 = 0x0f0f;
  386. const uint16_t kmask3 = 0xc0c0;
  387. const int row = get_group_id(0);
  388. const int num_blocks_per_row = ncols / QK_K;
  389. const int ib0 = row*num_blocks_per_row;
  390. const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...15
  391. const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION;
  392. const int step = 8/K_QUANTS_PER_ITERATION;
  393. const int il = tid/step; // 0...3
  394. const int ir = tid - step*il;// 0...3
  395. const int n = 2*K_QUANTS_PER_ITERATION;
  396. const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
  397. const int in = il%2;
  398. const int l0 = n*(2*ir + in);
  399. const int q_offset = 32*im + l0;
  400. const int y_offset = 64*im + l0;
  401. uint16_t aux[4];
  402. const uint8_t * sc = (const uint8_t *)aux;
  403. __global const struct block_q4_K * x = xx + ib0;
  404. tmp[16 * ix + tid] = 0;
  405. for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
  406. __global const uint8_t * q1 = x[i].qs + q_offset;
  407. __global const uint8_t * q2 = q1 + 64;
  408. __global const float * y1 = yy + i*QK_K + y_offset;
  409. __global const float * y2 = y1 + 128;
  410. const float dall = vload_half(0, &x[i].d);
  411. const float dmin = vload_half(0, &x[i].dmin);
  412. __global const uint16_t * a = (__global const uint16_t *)x[i].scales;
  413. aux[0] = a[im+0] & kmask1;
  414. aux[1] = a[im+2] & kmask1;
  415. aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
  416. aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
  417. float4 s = (float4)(0.f);
  418. float smin = 0;
  419. for (int l = 0; l < n; ++l) {
  420. s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4);
  421. s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4);
  422. smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
  423. }
  424. tmp[16 * ix + tid] += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin;
  425. }
  426. // sum up partial sums and write back result
  427. barrier(CLK_LOCAL_MEM_FENCE);
  428. for (int s=16; s>0; s>>=1) {
  429. if (tid < s) {
  430. tmp[tid] += tmp[tid + s];
  431. }
  432. barrier(CLK_LOCAL_MEM_FENCE);
  433. }
  434. if (tid == 0) {
  435. dst[row] = tmp[0];
  436. }
  437. }
  438. __kernel void dequantize_mul_mat_vec_q5_K(__global const struct block_q5_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
  439. const uint16_t kmask1 = 0x3f3f;
  440. const uint16_t kmask2 = 0x0f0f;
  441. const uint16_t kmask3 = 0xc0c0;
  442. const int row = get_group_id(0);
  443. const int num_blocks_per_row = ncols / QK_K;
  444. const int ib0 = row*num_blocks_per_row;
  445. const int tid = get_local_id(0)/2; // 0...15
  446. const int ix = get_local_id(0)%2;
  447. const int il = tid/4; // 0...3
  448. const int ir = tid - 4*il;// 0...3
  449. const int n = 2;
  450. const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
  451. const int in = il%2;
  452. const int l0 = n*(2*ir + in);
  453. const int q_offset = 32*im + l0;
  454. const int y_offset = 64*im + l0;
  455. const uint8_t hm1 = 1 << (2*im);
  456. const uint8_t hm2 = hm1 << 4;
  457. uint16_t aux[4];
  458. const uint8_t * sc = (const uint8_t *)aux;
  459. __global const struct block_q5_K * x = xx + ib0;
  460. tmp[16 * ix + tid] = 0;
  461. for (int i = ix; i < num_blocks_per_row; i += 2) {
  462. __global const uint8_t * ql1 = x[i].qs + q_offset;
  463. __global const uint8_t * ql2 = ql1 + 64;
  464. __global const uint8_t * qh = x[i].qh + l0;
  465. __global const float * y1 = yy + i*QK_K + y_offset;
  466. __global const float * y2 = y1 + 128;
  467. const float dall = vload_half(0, &x[i].d);
  468. const float dmin = vload_half(0, &x[i].dmin);
  469. __global const uint16_t * a = (__global const uint16_t *)x[i].scales;
  470. aux[0] = a[im+0] & kmask1;
  471. aux[1] = a[im+2] & kmask1;
  472. aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
  473. aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
  474. float4 sum = (float4)(0.f);
  475. float smin = 0;
  476. for (int l = 0; l < n; ++l) {
  477. sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
  478. + y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0));
  479. sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
  480. + y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0));
  481. sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
  482. + y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0));
  483. sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
  484. + y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0));
  485. smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
  486. + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
  487. }
  488. tmp[16 * ix + tid] += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
  489. }
  490. // sum up partial sums and write back result
  491. barrier(CLK_LOCAL_MEM_FENCE);
  492. for (int s=16; s>0; s>>=1) {
  493. if (tid < s) {
  494. tmp[tid] += tmp[tid + s];
  495. }
  496. barrier(CLK_LOCAL_MEM_FENCE);
  497. }
  498. if (tid == 0) {
  499. dst[row] = tmp[0];
  500. }
  501. }
  502. __kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx, __local float* tmp, __global const float * yy, __global float * dst, const int ncols) {
  503. const int row = get_group_id(0);
  504. const int num_blocks_per_row = ncols / QK_K;
  505. const int ib0 = row*num_blocks_per_row;
  506. __global const struct block_q6_K * x = xx + ib0;
  507. const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
  508. const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0, 1
  509. const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
  510. const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
  511. const int in = tid - step*im; // 0...15 or 0...7
  512. \n#if K_QUANTS_PER_ITERATION == 1\n
  513. const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
  514. const int is = 0;
  515. \n#else\n
  516. const int l0 = 4 * in; // 0, 4, 8, ..., 28
  517. const int is = in / 4;
  518. \n#endif\n
  519. const int ql_offset = 64*im + l0;
  520. const int qh_offset = 32*im + l0;
  521. const int s_offset = 8*im + is;
  522. const int y_offset = 128*im + l0;
  523. tmp[16 * ix + tid] = 0; // partial sum for thread in warp
  524. for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
  525. __global const float * y = yy + i * QK_K + y_offset;
  526. __global const uint8_t * ql = x[i].ql + ql_offset;
  527. __global const uint8_t * qh = x[i].qh + qh_offset;
  528. __global const int8_t * s = x[i].scales + s_offset;
  529. const float d = vload_half(0, &x[i].d);
  530. \n#if K_QUANTS_PER_ITERATION == 1\n
  531. float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
  532. + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
  533. + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
  534. + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
  535. + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
  536. + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
  537. + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
  538. +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
  539. tmp[16 * ix + tid] += sum;
  540. \n#else\n
  541. float sum = 0;
  542. for (int l = 0; l < 4; ++l) {
  543. sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
  544. + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
  545. + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
  546. + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
  547. }
  548. tmp[16 * ix + tid] += sum;
  549. \n#endif\n
  550. }
  551. // sum up partial sums and write back result
  552. barrier(CLK_LOCAL_MEM_FENCE);
  553. for (int s=16; s>0; s>>=1) {
  554. if (tid < s) {
  555. tmp[tid] += tmp[tid + s];
  556. }
  557. barrier(CLK_LOCAL_MEM_FENCE);
  558. }
  559. if (tid == 0) {
  560. dst[row] = tmp[0];
  561. }
  562. }
  563. );
  564. std::string dequant_template = MULTILINE_QUOTE(
  565. __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
  566. const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
  567. if (i >= get_global_size(0)) {
  568. return;
  569. }
  570. const uint qk = QUANT_K;
  571. const uint qr = QUANT_R;
  572. const int ib = i/qk; // block index
  573. const int iqs = (i%qk)/qr; // quant index
  574. const int iybs = i - i%qk; // y block start index
  575. const int y_offset = qr == 1 ? 1 : qk/2;
  576. // dequantize
  577. float v0, v1;
  578. DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
  579. y[iybs + iqs + 0] = v0;
  580. y[iybs + iqs + y_offset] = v1;
  581. }
  582. );
  583. std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
  584. __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
  585. const int block_size = get_local_size(0);
  586. const int row = get_group_id(0);
  587. const int tid = get_local_id(0);
  588. const uint qk = QUANT_K;
  589. const uint qr = QUANT_R;
  590. const int y_offset = qr == 1 ? 1 : qk/2;
  591. tmp[tid] = 0;
  592. for (int i = 0; i < ncols/block_size; i += 2) {
  593. const int col = i*block_size + 2*tid;
  594. const int ib = (row*ncols + col)/qk; // block index
  595. const int iqs = (col%qk)/qr; // quant index
  596. const int iybs = col - col%qk; // y block start index
  597. // dequantize
  598. float v0, v1;
  599. DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
  600. // matrix multiplication
  601. tmp[tid] += v0 * y[iybs + iqs + 0];
  602. tmp[tid] += v1 * y[iybs + iqs + y_offset];
  603. }
  604. // sum up partial sums and write back result
  605. barrier(CLK_LOCAL_MEM_FENCE);
  606. for (int s=block_size/2; s>0; s>>=1) {
  607. if (tid < s) {
  608. tmp[tid] += tmp[tid + s];
  609. }
  610. barrier(CLK_LOCAL_MEM_FENCE);
  611. }
  612. if (tid == 0) {
  613. dst[row] = tmp[0];
  614. }
  615. }
  616. );
  617. std::string mul_template = MULTILINE_QUOTE(
  618. __kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) {
  619. const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
  620. if (i >= get_global_size(0)) {
  621. return;
  622. }
  623. dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky];
  624. }
  625. );
  626. #define CL_CHECK(err) \
  627. do { \
  628. cl_int err_ = (err); \
  629. if (err_ != CL_SUCCESS) { \
  630. fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
  631. #err, err_, __FILE__, __LINE__); \
  632. exit(1); \
  633. } \
  634. } while (0)
  635. #define CLBLAST_CHECK(err) \
  636. do { \
  637. CLBlastStatusCode err_ = (err); \
  638. if (err_ != CLBlastSuccess) { \
  639. fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
  640. #err, err_, __FILE__, __LINE__); \
  641. exit(1); \
  642. } \
  643. } while (0)
  644. std::array<std::string, 5> dequant_str_keys = {
  645. "KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC"
  646. };
  647. std::array<std::string, 30> dequant_str_values = {
  648. "dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
  649. "dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
  650. "dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
  651. "dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
  652. "dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
  653. "convert_row_f16", "half", "1", "1", "convert_f16"
  654. };
  655. std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
  656. "dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
  657. "dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
  658. "dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
  659. "dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
  660. "dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
  661. "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
  662. };
  663. std::array<std::string, 2> mul_str_keys = {
  664. "KERNEL_NAME", "TYPE"
  665. };
  666. std::array<std::string, 2> mul_str_values = {
  667. "mul_f32", "float"
  668. };
  669. std::string& replace(std::string& s, const std::string& from, const std::string& to) {
  670. size_t pos = 0;
  671. while ((pos = s.find(from, pos)) != std::string::npos) {
  672. s.replace(pos, from.length(), to);
  673. pos += to.length();
  674. }
  675. return s;
  676. }
  677. std::string generate_kernels() {
  678. std::stringstream src;
  679. src << program_source << '\n';
  680. src << k_quants_source << '\n';
  681. for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) {
  682. std::string dequant_kernel = dequant_template;
  683. std::string dmmv_kernel = dequant_mul_mat_vec_template;
  684. for (size_t j = 0; j < dequant_str_keys.size(); j++) {
  685. replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]);
  686. replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]);
  687. }
  688. src << dequant_kernel << '\n';
  689. src << dmmv_kernel << '\n';
  690. }
  691. for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) {
  692. std::string mul_kernel = mul_template;
  693. for (size_t j = 0; j < mul_str_keys.size(); j++) {
  694. replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]);
  695. }
  696. src << mul_kernel << '\n';
  697. }
  698. return src.str();
  699. }
  700. static cl_platform_id platform;
  701. static cl_device_id device;
  702. static cl_context context;
  703. static cl_command_queue queue;
  704. static cl_program program;
  705. static cl_kernel convert_row_f16_cl;
  706. static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
  707. static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
  708. static cl_kernel dequantize_block_q2_k_cl, dequantize_block_q3_k_cl, dequantize_block_q4_k_cl, dequantize_block_q5_k_cl, dequantize_block_q6_k_cl;
  709. static cl_kernel dequantize_mul_mat_vec_q2_K_cl, dequantize_mul_mat_vec_q3_K_cl, dequantize_mul_mat_vec_q4_K_cl, dequantize_mul_mat_vec_q5_K_cl, dequantize_mul_mat_vec_q6_K_cl;
  710. static cl_kernel mul_f32_cl;
  711. static bool fp16_support;
  712. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
  713. cl_program p;
  714. char *program_log;
  715. size_t program_size;
  716. size_t log_size;
  717. int err;
  718. program_size = strlen(program_buffer);
  719. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  720. if(err < 0) {
  721. fprintf(stderr, "OpenCL error creating program");
  722. exit(1);
  723. }
  724. std::string compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math "
  725. "-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1 "
  726. "-DQK_K=256 -DK_QUANTS_PER_ITERATION=" + std::to_string(K_QUANTS_PER_ITERATION);
  727. err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
  728. if(err < 0) {
  729. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  730. program_log = (char*) malloc(log_size + 1);
  731. program_log[log_size] = '\0';
  732. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  733. fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  734. free(program_log);
  735. exit(1);
  736. }
  737. return p;
  738. }
  739. void ggml_cl_init(void) {
  740. cl_int err;
  741. struct cl_device;
  742. struct cl_platform {
  743. cl_platform_id id;
  744. unsigned number;
  745. char name[128];
  746. char vendor[128];
  747. struct cl_device * devices;
  748. unsigned n_devices;
  749. struct cl_device * default_device;
  750. };
  751. struct cl_device {
  752. struct cl_platform * platform;
  753. cl_device_id id;
  754. unsigned number;
  755. cl_device_type type;
  756. char name[128];
  757. };
  758. enum { NPLAT = 16, NDEV = 16 };
  759. struct cl_platform platforms[NPLAT];
  760. unsigned n_platforms = 0;
  761. struct cl_device devices[NDEV];
  762. unsigned n_devices = 0;
  763. struct cl_device * default_device = NULL;
  764. platform = NULL;
  765. device = NULL;
  766. cl_platform_id platform_ids[NPLAT];
  767. CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms));
  768. for (unsigned i = 0; i < n_platforms; i++) {
  769. struct cl_platform * p = &platforms[i];
  770. p->number = i;
  771. p->id = platform_ids[i];
  772. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  773. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  774. cl_device_id device_ids[NDEV];
  775. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  776. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  777. p->n_devices = 0;
  778. } else {
  779. CL_CHECK(clGetDeviceIDsError);
  780. }
  781. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  782. p->default_device = NULL;
  783. for (unsigned j = 0; j < p->n_devices; j++) {
  784. struct cl_device * d = &devices[n_devices];
  785. d->number = n_devices++;
  786. d->id = device_ids[j];
  787. d->platform = p;
  788. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  789. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  790. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  791. p->default_device = d;
  792. }
  793. }
  794. if (default_device == NULL && p->default_device != NULL) {
  795. default_device = p->default_device;
  796. }
  797. }
  798. if (n_devices == 0) {
  799. fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n");
  800. exit(1);
  801. }
  802. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  803. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  804. int user_platform_number = -1;
  805. int user_device_number = -1;
  806. unsigned n;
  807. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  808. user_platform_number = (int)n;
  809. }
  810. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  811. user_device_number = (int)n;
  812. }
  813. if (user_platform_number != -1 && user_device_number != -1) {
  814. cl_platform* platform = &platforms[user_platform_number];
  815. if ((unsigned)user_device_number >= platform->n_devices) {
  816. fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number);
  817. exit(1);
  818. }
  819. default_device = &platform->devices[user_device_number];
  820. } else {
  821. struct cl_device * selected_devices = devices;
  822. unsigned n_selected_devices = n_devices;
  823. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  824. for (unsigned i = 0; i < n_platforms; i++) {
  825. struct cl_platform * p = &platforms[i];
  826. if (strstr(p->name, user_platform_string) != NULL ||
  827. strstr(p->vendor, user_platform_string) != NULL) {
  828. user_platform_number = (int)i;
  829. break;
  830. }
  831. }
  832. if (user_platform_number == -1) {
  833. fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  834. exit(1);
  835. }
  836. }
  837. if (user_platform_number != -1) {
  838. struct cl_platform * p = &platforms[user_platform_number];
  839. selected_devices = p->devices;
  840. n_selected_devices = p->n_devices;
  841. default_device = p->default_device;
  842. if (n_selected_devices == 0) {
  843. fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  844. exit(1);
  845. }
  846. }
  847. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  848. for (unsigned i = 0; i < n_selected_devices; i++) {
  849. struct cl_device * d = &selected_devices[i];
  850. if (strstr(d->name, user_device_string) != NULL) {
  851. user_device_number = d->number;
  852. break;
  853. }
  854. }
  855. if (user_device_number == -1) {
  856. fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  857. exit(1);
  858. }
  859. }
  860. if (user_device_number != -1) {
  861. selected_devices = &devices[user_device_number];
  862. n_selected_devices = 1;
  863. default_device = &selected_devices[0];
  864. }
  865. GGML_ASSERT(n_selected_devices > 0);
  866. if (default_device == NULL) {
  867. default_device = &selected_devices[0];
  868. }
  869. }
  870. fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
  871. fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name);
  872. if (default_device->type != CL_DEVICE_TYPE_GPU) {
  873. fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
  874. }
  875. platform = default_device->platform->id;
  876. device = default_device->id;
  877. size_t ext_str_size;
  878. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  879. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  880. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  881. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  882. // Check if ext_buffer contains cl_khr_fp16
  883. fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  884. fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false");
  885. cl_context_properties properties[] = {
  886. (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0
  887. };
  888. CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
  889. CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  890. (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  891. (queue = clCreateCommandQueue(context, device, 0, &err), err)
  892. )));
  893. const std::string kernel_src = generate_kernels();
  894. program = build_program_from_source(context, device, kernel_src.c_str());
  895. // FP16 to FP32 kernel
  896. CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err));
  897. // Dequantize kernels
  898. CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err));
  899. CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err));
  900. CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err));
  901. CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err));
  902. CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
  903. CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
  904. CL_CHECK((dequantize_block_q2_k_cl = clCreateKernel(program, "dequantize_block_q2_K", &err), err));
  905. CL_CHECK((dequantize_block_q3_k_cl = clCreateKernel(program, "dequantize_block_q3_K", &err), err));
  906. CL_CHECK((dequantize_block_q4_k_cl = clCreateKernel(program, "dequantize_block_q4_K", &err), err));
  907. CL_CHECK((dequantize_block_q5_k_cl = clCreateKernel(program, "dequantize_block_q5_K", &err), err));
  908. CL_CHECK((dequantize_block_q6_k_cl = clCreateKernel(program, "dequantize_block_q6_K", &err), err));
  909. // dequant mul mat kernel
  910. CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err));
  911. CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err));
  912. CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err));
  913. CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
  914. CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
  915. CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
  916. CL_CHECK((dequantize_mul_mat_vec_q2_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q2_K", &err), err));
  917. CL_CHECK((dequantize_mul_mat_vec_q3_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q3_K", &err), err));
  918. CL_CHECK((dequantize_mul_mat_vec_q4_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_K", &err), err));
  919. CL_CHECK((dequantize_mul_mat_vec_q5_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_K", &err), err));
  920. CL_CHECK((dequantize_mul_mat_vec_q6_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q6_K", &err), err));
  921. // mul kernel
  922. CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err));
  923. }
  924. static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
  925. switch (type) {
  926. case GGML_TYPE_Q4_0:
  927. return &dequantize_row_q4_0_cl;
  928. case GGML_TYPE_Q4_1:
  929. return &dequantize_row_q4_1_cl;
  930. case GGML_TYPE_Q5_0:
  931. return &dequantize_row_q5_0_cl;
  932. case GGML_TYPE_Q5_1:
  933. return &dequantize_row_q5_1_cl;
  934. case GGML_TYPE_Q8_0:
  935. return &dequantize_row_q8_0_cl;
  936. case GGML_TYPE_Q2_K:
  937. return &dequantize_block_q2_k_cl;
  938. case GGML_TYPE_Q3_K:
  939. return &dequantize_block_q3_k_cl;
  940. case GGML_TYPE_Q4_K:
  941. return &dequantize_block_q4_k_cl;
  942. case GGML_TYPE_Q5_K:
  943. return &dequantize_block_q5_k_cl;
  944. case GGML_TYPE_Q6_K:
  945. return &dequantize_block_q6_k_cl;
  946. case GGML_TYPE_F16:
  947. return &convert_row_f16_cl;
  948. default:
  949. return nullptr;
  950. }
  951. }
  952. static size_t ggml_cl_global_denom(ggml_type type) {
  953. switch (type) {
  954. case GGML_TYPE_Q4_0:
  955. case GGML_TYPE_Q4_1:
  956. case GGML_TYPE_Q5_0:
  957. case GGML_TYPE_Q5_1:
  958. case GGML_TYPE_Q8_0:
  959. return 1;
  960. case GGML_TYPE_Q2_K:
  961. case GGML_TYPE_Q3_K:
  962. return 4;
  963. case GGML_TYPE_Q4_K:
  964. return 8;
  965. case GGML_TYPE_Q5_K:
  966. case GGML_TYPE_Q6_K:
  967. return 4;
  968. case GGML_TYPE_F16:
  969. default:
  970. return 1;
  971. }
  972. }
  973. static size_t ggml_cl_local_size(ggml_type type) {
  974. switch (type) {
  975. case GGML_TYPE_Q4_0:
  976. case GGML_TYPE_Q4_1:
  977. case GGML_TYPE_Q5_0:
  978. case GGML_TYPE_Q5_1:
  979. case GGML_TYPE_Q8_0:
  980. return 0;
  981. case GGML_TYPE_Q2_K:
  982. case GGML_TYPE_Q3_K:
  983. return 64;
  984. case GGML_TYPE_Q4_K:
  985. return 32;
  986. case GGML_TYPE_Q5_K:
  987. case GGML_TYPE_Q6_K:
  988. return 64;
  989. case GGML_TYPE_F16:
  990. default:
  991. return 0;
  992. }
  993. }
  994. static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
  995. switch (type) {
  996. case GGML_TYPE_Q4_0:
  997. return &dequantize_mul_mat_vec_q4_0_cl;
  998. case GGML_TYPE_Q4_1:
  999. return &dequantize_mul_mat_vec_q4_1_cl;
  1000. case GGML_TYPE_Q5_0:
  1001. return &dequantize_mul_mat_vec_q5_0_cl;
  1002. case GGML_TYPE_Q5_1:
  1003. return &dequantize_mul_mat_vec_q5_1_cl;
  1004. case GGML_TYPE_Q8_0:
  1005. return &dequantize_mul_mat_vec_q8_0_cl;
  1006. case GGML_TYPE_F16:
  1007. return &convert_mul_mat_vec_f16_cl;
  1008. case GGML_TYPE_Q2_K:
  1009. return &dequantize_mul_mat_vec_q2_K_cl;
  1010. case GGML_TYPE_Q3_K:
  1011. return &dequantize_mul_mat_vec_q3_K_cl;
  1012. case GGML_TYPE_Q4_K:
  1013. return &dequantize_mul_mat_vec_q4_K_cl;
  1014. case GGML_TYPE_Q5_K:
  1015. return &dequantize_mul_mat_vec_q5_K_cl;
  1016. case GGML_TYPE_Q6_K:
  1017. return &dequantize_mul_mat_vec_q6_K_cl;
  1018. default:
  1019. return nullptr;
  1020. }
  1021. }
  1022. // buffer pool for cl
  1023. #define MAX_CL_BUFFERS 256
  1024. struct scoped_spin_lock {
  1025. std::atomic_flag& lock;
  1026. scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
  1027. while (lock.test_and_set(std::memory_order_acquire)) {
  1028. ; // spin
  1029. }
  1030. }
  1031. ~scoped_spin_lock() {
  1032. lock.clear(std::memory_order_release);
  1033. }
  1034. scoped_spin_lock(const scoped_spin_lock&) = delete;
  1035. scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
  1036. };
  1037. struct cl_buffer {
  1038. cl_mem mem;
  1039. size_t size = 0;
  1040. };
  1041. static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
  1042. static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
  1043. static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) {
  1044. scoped_spin_lock lock(g_cl_pool_lock);
  1045. cl_int err;
  1046. int best_i = -1;
  1047. size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
  1048. int worst_i = -1;
  1049. size_t worst_size = 0; //largest unused buffer seen so far
  1050. for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
  1051. cl_buffer &b = g_cl_buffer_pool[i];
  1052. if (b.size > 0 && b.size >= size && b.size < best_size)
  1053. {
  1054. best_i = i;
  1055. best_size = b.size;
  1056. }
  1057. if (b.size > 0 && b.size > worst_size)
  1058. {
  1059. worst_i = i;
  1060. worst_size = b.size;
  1061. }
  1062. }
  1063. if(best_i!=-1) //found the smallest buffer that fits our needs
  1064. {
  1065. cl_buffer& b = g_cl_buffer_pool[best_i];
  1066. cl_mem mem = b.mem;
  1067. *actual_size = b.size;
  1068. b.size = 0;
  1069. return mem;
  1070. }
  1071. if(worst_i!=-1) //no buffer that fits our needs, resize largest one to save memory
  1072. {
  1073. cl_buffer& b = g_cl_buffer_pool[worst_i];
  1074. cl_mem mem = b.mem;
  1075. b.size = 0;
  1076. clReleaseMemObject(mem);
  1077. }
  1078. cl_mem mem;
  1079. CL_CHECK((mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err));
  1080. *actual_size = size;
  1081. return mem;
  1082. }
  1083. static void ggml_cl_pool_free(cl_mem mem, size_t size) {
  1084. scoped_spin_lock lock(g_cl_pool_lock);
  1085. for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
  1086. cl_buffer& b = g_cl_buffer_pool[i];
  1087. if (b.size == 0) {
  1088. b.mem = mem;
  1089. b.size = size;
  1090. return;
  1091. }
  1092. }
  1093. fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
  1094. clReleaseMemObject(mem);
  1095. }
  1096. void ggml_cl_free_data(const struct ggml_tensor* tensor) {
  1097. if (tensor->backend != GGML_BACKEND_GPU) {
  1098. return;
  1099. }
  1100. cl_mem mem = (cl_mem)tensor->extra;
  1101. clReleaseMemObject(mem);
  1102. }
  1103. static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
  1104. cl_int err;
  1105. const uint64_t ne0 = src->ne[0];
  1106. const uint64_t ne1 = src->ne[1];
  1107. const uint64_t nb0 = src->nb[0];
  1108. const uint64_t nb1 = src->nb[1];
  1109. const uint64_t nb2 = src->nb[2];
  1110. const uint64_t nb3 = src->nb[3];
  1111. const enum ggml_type type = src->type;
  1112. const size_t ts = ggml_type_size(type);
  1113. const size_t bs = ggml_blck_size(type);
  1114. const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
  1115. if (nb0 == ts && nb1 == ts*ne0/bs) {
  1116. err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev);
  1117. return err;
  1118. }
  1119. if (nb0 == ts) {
  1120. const size_t buffer_origin[3] = { offset, 0, 0 };
  1121. const size_t host_origin[3] = { 0, 0, 0 };
  1122. const size_t region[3] = { ts*ne0/bs, ne1, 1 };
  1123. err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev);
  1124. return err;
  1125. }
  1126. for (uint64_t i1 = 0; i1 < ne1; i1++) {
  1127. // pretend the row is a matrix with cols=1
  1128. const size_t buffer_origin[3] = { offset, i1, 0 };
  1129. const size_t host_origin[3] = { 0, 0, 0 };
  1130. const size_t region[3] = { ts/bs, ne0, 1 };
  1131. err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev);
  1132. if (err != CL_SUCCESS) {
  1133. break;
  1134. }
  1135. }
  1136. return err;
  1137. }
  1138. static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1139. GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
  1140. const int64_t ne00 = src0->ne[0];
  1141. const int64_t ne01 = src0->ne[1];
  1142. const int64_t ne02 = src0->ne[2];
  1143. const int64_t ne03 = src0->ne[3];
  1144. const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
  1145. const int64_t ne10 = src1->ne[0];
  1146. const int64_t ne11 = src1->ne[1];
  1147. const int64_t ne12 = src1->ne[2];
  1148. const int64_t ne13 = src1->ne[3];
  1149. const int64_t nb10 = src1->nb[0];
  1150. const int nb2 = dst->nb[2];
  1151. const int nb3 = dst->nb[3];
  1152. size_t x_size;
  1153. size_t d_size;
  1154. cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
  1155. cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
  1156. cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
  1157. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1158. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1159. const int i0 = i03*ne02 + i02;
  1160. cl_event ev;
  1161. // copy src0 to device
  1162. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev));
  1163. if (nb10 == sizeof(float)) {
  1164. // Contiguous, avoid overhead from queueing many kernel runs
  1165. const int64_t i13 = i03%ne13;
  1166. const int64_t i12 = i02%ne12;
  1167. const int i1 = i13*ne12*ne11 + i12*ne11;
  1168. cl_int x_offset = 0;
  1169. cl_int y_offset = i1*ne10;
  1170. cl_int d_offset = 0;
  1171. size_t global = ne00 * ne01;
  1172. cl_int ky = ne10;
  1173. CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
  1174. CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
  1175. CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
  1176. CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
  1177. CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
  1178. CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
  1179. CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
  1180. CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
  1181. } else {
  1182. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1183. const int64_t i13 = i03%ne13;
  1184. const int64_t i12 = i02%ne12;
  1185. const int64_t i11 = i01%ne11;
  1186. const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
  1187. cl_int x_offset = i01*ne00;
  1188. cl_int y_offset = i1*ne10;
  1189. cl_int d_offset = i01*ne00;
  1190. // compute
  1191. size_t global = ne00;
  1192. cl_int ky = ne10;
  1193. CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
  1194. CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
  1195. CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
  1196. CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
  1197. CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
  1198. CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
  1199. CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
  1200. CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
  1201. }
  1202. }
  1203. CL_CHECK(clReleaseEvent(ev));
  1204. CL_CHECK(clFinish(queue));
  1205. // copy dst to host
  1206. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  1207. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
  1208. }
  1209. }
  1210. ggml_cl_pool_free(d_X, x_size);
  1211. ggml_cl_pool_free(d_D, d_size);
  1212. }
  1213. void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  1214. GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
  1215. ggml_cl_mul_f32(src0, src1, dst);
  1216. }
  1217. static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1218. const int64_t ne00 = src0->ne[0];
  1219. const int64_t ne01 = src0->ne[1];
  1220. const int64_t ne02 = src0->ne[2];
  1221. const int64_t ne03 = src0->ne[3];
  1222. const int64_t ne10 = src1->ne[0];
  1223. const int64_t ne11 = src1->ne[1];
  1224. const int nb2 = dst->nb[2];
  1225. const int nb3 = dst->nb[3];
  1226. const float alpha = 1.0f;
  1227. const float beta = 0.0f;
  1228. const int x_ne = ne01 * ne00;
  1229. const int y_ne = ne11 * ne10;
  1230. const int d_ne = ne11 * ne01;
  1231. size_t x_size;
  1232. size_t y_size;
  1233. size_t d_size;
  1234. cl_mem d_X;
  1235. if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
  1236. d_X = (cl_mem) src0->extra;
  1237. } else {
  1238. d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
  1239. }
  1240. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
  1241. cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
  1242. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1243. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1244. // copy data to device
  1245. if (src0->backend != GGML_BACKEND_GPU) {
  1246. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
  1247. }
  1248. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
  1249. CL_CHECK(clFinish(queue));
  1250. // compute
  1251. cl_event ev_sgemm;
  1252. clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
  1253. clblast::Transpose::kYes, clblast::Transpose::kNo,
  1254. ne01, ne11, ne10,
  1255. alpha,
  1256. d_X, 0, ne00,
  1257. d_Y, 0, ne10,
  1258. beta,
  1259. d_D, 0, ne01,
  1260. &queue, &ev_sgemm);
  1261. if (status != clblast::StatusCode::kSuccess) {
  1262. GGML_ASSERT(false);
  1263. }
  1264. // copy dst to host
  1265. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  1266. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
  1267. }
  1268. }
  1269. if (src0->backend != GGML_BACKEND_GPU) {
  1270. ggml_cl_pool_free(d_X, x_size);
  1271. }
  1272. ggml_cl_pool_free(d_Y, y_size);
  1273. ggml_cl_pool_free(d_D, d_size);
  1274. }
  1275. static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
  1276. GGML_ASSERT(fp16_support);
  1277. const int64_t ne00 = src0->ne[0];
  1278. const int64_t ne01 = src0->ne[1];
  1279. const int64_t ne02 = src0->ne[2];
  1280. const int64_t ne03 = src0->ne[3];
  1281. const int64_t ne10 = src1->ne[0];
  1282. const int64_t ne11 = src1->ne[1];
  1283. const int nb10 = src1->nb[0];
  1284. const int nb11 = src1->nb[1];
  1285. const int nb12 = src1->nb[2];
  1286. const int nb13 = src1->nb[3];
  1287. const int nb2 = dst->nb[2];
  1288. const int nb3 = dst->nb[3];
  1289. const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
  1290. const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
  1291. const int x_ne = ne01 * ne00;
  1292. const int y_ne = ne11 * ne10;
  1293. const int d_ne = ne11 * ne01;
  1294. size_t x_size;
  1295. size_t y_size;
  1296. size_t d_size;
  1297. cl_mem d_X;
  1298. if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
  1299. d_X = (cl_mem) src0->extra;
  1300. } else {
  1301. d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
  1302. }
  1303. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size);
  1304. cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size);
  1305. bool src1_cont_rows = nb10 == sizeof(float);
  1306. bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
  1307. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1308. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1309. // copy src0 to device
  1310. if (src0->backend != GGML_BACKEND_GPU) {
  1311. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
  1312. }
  1313. // convert src1 to fp16
  1314. // TODO: use multiple threads
  1315. ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
  1316. char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
  1317. if (src1_cont_rows) {
  1318. if (src1_cont_cols) {
  1319. ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
  1320. }
  1321. else {
  1322. for (int64_t i01 = 0; i01 < ne11; i01++) {
  1323. ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
  1324. }
  1325. }
  1326. }
  1327. else {
  1328. for (int64_t i01 = 0; i01 < ne11; i01++) {
  1329. for (int64_t i00 = 0; i00 < ne10; i00++) {
  1330. // very slow due to no inlining
  1331. tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
  1332. }
  1333. }
  1334. }
  1335. // copy src1 to device
  1336. CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
  1337. CL_CHECK(clFinish(queue));
  1338. // compute
  1339. cl_event ev_sgemm;
  1340. clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
  1341. clblast::Transpose::kYes, clblast::Transpose::kNo,
  1342. ne01, ne11, ne10,
  1343. alpha,
  1344. d_X, 0, ne00,
  1345. d_Y, 0, ne10,
  1346. beta,
  1347. d_D, 0, ne01,
  1348. &queue, &ev_sgemm);
  1349. if (status != clblast::StatusCode::kSuccess) {
  1350. GGML_ASSERT(false);
  1351. }
  1352. // copy dst to host, then convert to float
  1353. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
  1354. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  1355. ggml_fp16_to_fp32_row(tmp, d, d_ne);
  1356. }
  1357. }
  1358. if (src0->backend != GGML_BACKEND_GPU) {
  1359. ggml_cl_pool_free(d_X, x_size);
  1360. }
  1361. ggml_cl_pool_free(d_Y, y_size);
  1362. ggml_cl_pool_free(d_D, d_size);
  1363. }
  1364. static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1365. const int64_t ne00 = src0->ne[0];
  1366. const int64_t ne01 = src0->ne[1];
  1367. const int64_t ne02 = src0->ne[2];
  1368. const int64_t ne03 = src0->ne[3];
  1369. const int64_t ne10 = src1->ne[0];
  1370. const int64_t ne11 = src1->ne[1];
  1371. const int nb2 = dst->nb[2];
  1372. const int nb3 = dst->nb[3];
  1373. const ggml_type type = src0->type;
  1374. const bool mul_mat_vec = ne11 == 1;
  1375. const float alpha = 1.0f;
  1376. const float beta = 0.0f;
  1377. const int x_ne = ne01 * ne00;
  1378. const int y_ne = ne11 * ne10;
  1379. const int d_ne = ne11 * ne01;
  1380. const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
  1381. size_t x_size;
  1382. size_t y_size;
  1383. size_t d_size;
  1384. size_t q_size;
  1385. cl_mem d_X;
  1386. if (!mul_mat_vec) {
  1387. d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
  1388. }
  1389. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
  1390. cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
  1391. cl_mem d_Q;
  1392. if (src0->backend == GGML_BACKEND_CPU) {
  1393. d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
  1394. }
  1395. cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type);
  1396. cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
  1397. GGML_ASSERT(to_fp32_cl != nullptr);
  1398. const size_t global_denom = ggml_cl_global_denom(type);
  1399. const size_t local = ggml_cl_local_size(type);
  1400. size_t ev_idx = 0;
  1401. std::vector<cl_event> events;
  1402. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1403. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1404. // copy src0 to device if necessary
  1405. if (src0->backend == GGML_BACKEND_CPU) {
  1406. events.emplace_back();
  1407. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
  1408. } else if (src0->backend == GGML_BACKEND_GPU) {
  1409. d_Q = (cl_mem) src0->extra;
  1410. } else {
  1411. GGML_ASSERT(false);
  1412. }
  1413. if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
  1414. // copy src1 to device
  1415. events.emplace_back();
  1416. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
  1417. // compute
  1418. const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
  1419. const size_t local = CL_DMMV_BLOCK_SIZE;
  1420. const cl_int ncols = ne00;
  1421. events.emplace_back();
  1422. CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
  1423. CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
  1424. CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
  1425. CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
  1426. CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
  1427. CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
  1428. } else { // general dequantization kernel + CLBlast matrix matrix multiplication
  1429. // convert src0 to fp32 on device
  1430. const size_t global = x_ne / global_denom;
  1431. CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
  1432. CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
  1433. CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
  1434. // copy src1 to device
  1435. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
  1436. events.emplace_back();
  1437. // wait for conversion
  1438. CL_CHECK(clFinish(queue));
  1439. // compute
  1440. clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
  1441. clblast::Transpose::kYes, clblast::Transpose::kNo,
  1442. ne01, ne11, ne10,
  1443. alpha,
  1444. d_X, 0, ne00,
  1445. d_Y, 0, ne10,
  1446. beta,
  1447. d_D, 0, ne01,
  1448. &queue, events.data() + ev_idx++);
  1449. if (status != clblast::StatusCode::kSuccess) {
  1450. GGML_ASSERT(false);
  1451. }
  1452. }
  1453. // copy dst to host
  1454. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  1455. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
  1456. for (auto *event : events) {
  1457. clReleaseEvent(event);
  1458. }
  1459. ev_idx = 0;
  1460. events.clear();
  1461. }
  1462. }
  1463. if (!mul_mat_vec) {
  1464. ggml_cl_pool_free(d_X, x_size);
  1465. }
  1466. ggml_cl_pool_free(d_Y, y_size);
  1467. ggml_cl_pool_free(d_D, d_size);
  1468. if (src0->backend == GGML_BACKEND_CPU) {
  1469. ggml_cl_pool_free(d_Q, q_size);
  1470. }
  1471. }
  1472. bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  1473. const int64_t ne10 = src1->ne[0];
  1474. const int64_t ne0 = dst->ne[0];
  1475. const int64_t ne1 = dst->ne[1];
  1476. // TODO: find the optimal values for these
  1477. if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  1478. src1->type == GGML_TYPE_F32 &&
  1479. dst->type == GGML_TYPE_F32 &&
  1480. ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) {
  1481. return true;
  1482. }
  1483. return false;
  1484. }
  1485. bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
  1486. // If device doesn't support FP16
  1487. if (!fp16_support) {
  1488. return false;
  1489. }
  1490. size_t src0_sz = ggml_nbytes(src0);
  1491. size_t src1_sz = ggml_nbytes(src1);
  1492. // mul_mat_q: src0 is converted to fp32 on device
  1493. size_t mul_mat_q_transfer = src0_sz + src1_sz;
  1494. // mul_mat_f16: src1 is converted to fp16 on cpu
  1495. size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1);
  1496. // choose the smaller one to transfer to the device
  1497. // TODO: this is not always the best choice due to the overhead of converting to fp16
  1498. return mul_mat_f16_transfer < mul_mat_q_transfer;
  1499. }
  1500. void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) {
  1501. GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst));
  1502. if (src0->type == GGML_TYPE_F32) {
  1503. ggml_cl_mul_mat_f32(src0, src1, dst);
  1504. }
  1505. else if (src0->type == GGML_TYPE_F16) {
  1506. if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
  1507. ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize);
  1508. }
  1509. else {
  1510. ggml_cl_mul_mat_q_f32(src0, src1, dst);
  1511. }
  1512. }
  1513. else if (ggml_is_quantized(src0->type)) {
  1514. ggml_cl_mul_mat_q_f32(src0, src1, dst);
  1515. }
  1516. else {
  1517. GGML_ASSERT(false);
  1518. }
  1519. }
  1520. size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  1521. if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
  1522. return ggml_nelements(src1) * sizeof(ggml_fp16_t);
  1523. }
  1524. return 0;
  1525. }
  1526. void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
  1527. const int64_t ne0 = tensor->ne[0];
  1528. const int64_t ne1 = tensor->ne[1];
  1529. const int64_t ne2 = tensor->ne[2];
  1530. const int64_t ne3 = tensor->ne[3];
  1531. const ggml_type type = tensor->type;
  1532. const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
  1533. size_t q_size;
  1534. cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
  1535. tensor->data = data;
  1536. // copy tensor to device
  1537. for (int64_t i3 = 0; i3 < ne3; i3++) {
  1538. for (int64_t i2 = 0; i2 < ne2; i2++) {
  1539. int i = i3*ne2 + i2;
  1540. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, i*ne0*ne1, tensor, i3, i2, NULL));
  1541. }
  1542. }
  1543. CL_CHECK(clFinish(queue));
  1544. tensor->extra = dst;
  1545. GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
  1546. }