| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865 |
- #include "ggml-opencl.h"
- #include <array>
- #include <atomic>
- #include <sstream>
- #include <vector>
- #include <limits>
- #define CL_TARGET_OPENCL_VERSION 110
- #include <clblast.h>
- #include <stdlib.h>
- #include <stdio.h>
- #include <string.h>
- #include "ggml.h"
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- #define CL_DMMV_BLOCK_SIZE 32
- #ifndef K_QUANTS_PER_ITERATION
- #define K_QUANTS_PER_ITERATION 1
- #else
- static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
- #endif
- #define MULTILINE_QUOTE(...) #__VA_ARGS__
- static std::string program_source = MULTILINE_QUOTE(
- typedef char int8_t;
- typedef uchar uint8_t;
- typedef short int16_t;
- typedef ushort uint16_t;
- typedef int int32_t;
- typedef uint uint32_t;
- struct __attribute__ ((packed)) block_q4_0
- {
- half d;
- uint8_t qs[QK4_0 / 2];
- };
- struct __attribute__ ((packed)) block_q4_1
- {
- half d;
- half m;
- uint8_t qs[QK4_1 / 2];
- };
- struct __attribute__ ((packed)) block_q5_0
- {
- half d;
- uint32_t qh;
- uint8_t qs[QK5_0 / 2];
- };
- struct __attribute__ ((packed)) block_q5_1
- {
- half d;
- half m;
- uint32_t qh;
- uint8_t qs[QK5_1 / 2];
- };
- struct __attribute__ ((packed)) block_q8_0
- {
- half d;
- int8_t qs[QK8_0];
- };
- struct __attribute__((packed)) block_q2_K
- {
- uint8_t scales[16];
- uint8_t qs[64];
- half d;
- half dmin;
- };
- struct __attribute__((packed)) block_q3_K
- {
- uint8_t hmask[32];
- uint8_t qs[64];
- uint8_t scales[12];
- half d;
- };
- struct __attribute__((packed)) block_q4_K
- {
- half d;
- half dmin;
- uint8_t scales[12];
- uint8_t qs[128];
- };
- struct __attribute__((packed)) block_q5_K
- {
- half d;
- half dmin;
- uint8_t scales[12];
- uint8_t qh[32];
- uint8_t qs[128];
- };
- struct __attribute__((packed)) block_q6_K
- {
- uint8_t ql[128];
- uint8_t qh[64];
- int8_t scales[16];
- half d;
- };
- __kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
- const uint i = get_global_id(0);
- y[i] = vload_half(0, &x[i]);
- }
- void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) {
- const float d = vload_half(0, &x[ib].d);
- const uint8_t vui = x[ib].qs[iqs];
- const int8_t vi0 = vui & 0xF;
- const int8_t vi1 = vui >> 4;
- *v0 = (vi0 - 8)*d;
- *v1 = (vi1 - 8)*d;
- }
- void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) {
- const float d = vload_half(0, &x[ib].d);
- const float m = vload_half(0, &x[ib].m);
- const uint8_t vui = x[ib].qs[iqs];
- const int8_t vi0 = vui & 0xF;
- const int8_t vi1 = vui >> 4;
- *v0 = vi0*d + m;
- *v1 = vi1*d + m;
- }
- void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) {
- const float d = vload_half(0, &x[ib].d);
- uint32_t qh = x[ib].qh;
- const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
- const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
- *v0 = x0*d;
- *v1 = x1*d;
- }
- void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) {
- const float d = vload_half(0, &x[ib].d);
- const float m = vload_half(0, &x[ib].m);
- uint32_t qh = x[ib].qh;
- const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
- const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
- *v0 = x0*d + m;
- *v1 = x1*d + m;
- }
- void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) {
- const float d = vload_half(0, &x[ib].d);
- const int8_t vi0 = x[ib].qs[iqs + 0];
- const int8_t vi1 = x[ib].qs[iqs + 1];
- *v0 = vi0*d;
- *v1 = vi1*d;
- }
- void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){
- *v0 = vload_half(0, &x[ib + 0]);
- *v1 = vload_half(0, &x[ib + 1]);
- }
- );
- static std::string k_quants_source = MULTILINE_QUOTE(
- inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m)
- {
- if (j < 4)
- {
- *d = q[j] & 63;
- *m = q[j + 4] & 63;
- }
- else
- {
- *d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4);
- *m = (q[j + 4] >> 4) | ((q[j - 0] >> 6) << 4);
- }
- }
- __kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy)
- {
- const int i = get_group_id(0);
- const int tid = get_local_id(0);
- const int n = tid / 32;
- const int l = tid - 32 * n;
- const int is = 8 * n + l / 16;
- const uint8_t q = x[i].qs[32 * n + l];
- __global float *y = yy + i * QK_K + 128 * n;
- const float dall = vload_half(0, &x[i].d);
- const float dmin = vload_half(0, &x[i].dmin);
- y[l + 0] = dall * (x[i].scales[is + 0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is + 0] >> 4);
- y[l + 32] = dall * (x[i].scales[is + 2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is + 2] >> 4);
- y[l + 64] = dall * (x[i].scales[is + 4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is + 4] >> 4);
- y[l + 96] = dall * (x[i].scales[is + 6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is + 6] >> 4);
- }
- __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy)
- {
- int r = get_local_id(0) / 4;
- int i = get_group_id(0);
- int tid = r / 2;
- int is0 = r % 2;
- int l0 = 16 * is0 + 4 * (get_local_id(0) % 4);
- int n = tid / 4;
- int j = tid - 4 * n;
- uint8_t m = 1 << (4 * n + j);
- int is = 8 * n + 2 * j + is0;
- int shift = 2 * j;
- int8_t us = is < 4 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 8] >> 0) & 3) << 4)
- : is < 8 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 4] >> 2) & 3) << 4)
- : is < 12 ? (x[i].scales[is - 8] >> 4) | (((x[i].scales[is + 0] >> 4) & 3) << 4)
- : (x[i].scales[is - 8] >> 4) | (((x[i].scales[is - 4] >> 6) & 3) << 4);
- float d_all = vload_half(0, &x[i].d);
- float dl = d_all * (us - 32);
- __global float *y = yy + i * QK_K + 128 * n + 32 * j;
- const __global uint8_t *q = x[i].qs + 32 * n;
- const __global uint8_t *hm = x[i].hmask;
- for (int l = l0; l < l0 + 4; ++l)
- y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
- }
- __kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy)
- {
- const int i = get_group_id(0);
- const int tid = get_local_id(0);
- const int il = tid / 8;
- const int ir = tid % 8;
- const int is = 2 * il;
- const int n = 4;
- __global float *y = yy + i * QK_K + 64 * il + n * ir;
- const float dall = vload_half(0, &x[i].d);
- const float dmin = vload_half(0, &x[i].dmin);
- __global const uint8_t *q = x[i].qs + 32 * il + n * ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
- float d1 = dall * sc;
- float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
- float d2 = dall * sc;
- float m2 = dmin * m;
- for (int l = 0; l < n; ++l)
- {
- y[l + 0] = d1 * (q[l] & 0xF) - m1;
- y[l + 32] = d2 * (q[l] >> 4) - m2;
- }
- }
- __kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy)
- {
- const int i = get_group_id(0);
- const int tid = get_local_id(0);
- const int il = tid / 16;
- const int ir = tid % 16;
- const int is = 2 * il;
- __global float *y = yy + i * QK_K + 64 * il + 2 * ir;
- const float dall = vload_half(0, &x[i].d);
- const float dmin = vload_half(0, &x[i].dmin);
- __global const uint8_t *ql = x[i].qs + 32 * il + 2 * ir;
- __global const uint8_t *qh = x[i].qh + 2 * ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
- const float d1 = dall * sc;
- const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
- const float d2 = dall * sc;
- const float m2 = dmin * m;
- uint8_t hm = 1 << (2 * il);
- y[0] = d1 * ((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0)) - m1;
- y[1] = d1 * ((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0)) - m1;
- hm <<= 1;
- y[32] = d2 * ((ql[0] >> 4) + (qh[0] & hm ? 16 : 0)) - m2;
- y[33] = d2 * ((ql[1] >> 4) + (qh[1] & hm ? 16 : 0)) - m2;
- }
- __kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy)
- {
- const int i = get_group_id(0);
- const int tid = get_local_id(0);
- const int ip = tid / 32;
- const int il = tid - 32 * ip;
- const int is = 8 * ip + il / 16;
- __global float *y = yy + i * QK_K + 128 * ip + il;
- const float d = vload_half(0, &x[i].d);
- __global const uint8_t *ql = x[i].ql + 64 * ip + il;
- const uint8_t qh = x[i].qh[32 * ip + il];
- __global const int8_t *sc = x[i].scales + is;
- y[0] = d * sc[0] * ((int8_t)((ql[0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
- y[64] = d * sc[4] * ((int8_t)((ql[0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
- }
- __kernel void dequantize_mul_mat_vec_q2_K(__global const struct block_q2_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
- const int row = get_group_id(0);
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- __global const struct block_q2_K * x = xx + ib0;
- const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
- const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int s_offset = 8*im;
- const int y_offset = 128*im + l0;
- tmp[16 * ix + tid] = 0;
- uint32_t aux[4];
- const uint8_t * d = (const uint8_t *)aux;
- const uint8_t * m = (const uint8_t *)(aux + 2);
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- __global const float * y = yy + i * QK_K + y_offset;
- __global const uint8_t * q = x[i].qs + q_offset;
- const float dall = vload_half(0, &x[i].d);
- const float dmin = vload_half(0, &x[i].dmin);
- __global const uint32_t * a = (__global const uint32_t *)(x[i].scales + s_offset);
- aux[0] = a[0] & 0x0f0f0f0f;
- aux[1] = a[1] & 0x0f0f0f0f;
- aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
- aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
- + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
- + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
- + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
- + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
- + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
- + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
- +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
- sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
- + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
- }
- tmp[16 * ix + tid] += dall * sum1 - dmin * sum2;
- }
- // sum up partial sums and write back result
- barrier(CLK_LOCAL_MEM_FENCE);
- for (int s=16; s>0; s>>=1) {
- if (tid < s) {
- tmp[tid] += tmp[tid + s];
- }
- barrier(CLK_LOCAL_MEM_FENCE);
- }
- if (tid == 0) {
- dst[row] = tmp[0];
- }
- }
- __kernel void dequantize_mul_mat_vec_q3_K(__global const struct block_q3_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
- const uint16_t kmask1 = 0x0303;
- const uint16_t kmask2 = 0x0f0f;
- const int row = get_group_id(0);
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- __global const struct block_q3_K * x = xx + ib0;
- const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0....15 or 0...7
- const uint8_t m = 1 << (4*im);
- const int l0 = n*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int y_offset = 128*im + l0;
- uint16_t utmp[4];
- const int8_t * s = (const int8_t *)utmp;
- const uint16_t s_shift = 4*im;
- tmp[16 * ix + tid] = 0;
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- __global const float * y = yy + i * QK_K + y_offset;
- __global const uint8_t * q = x[i].qs + q_offset;
- __global const uint8_t * h = x[i].hmask + l0;
- __global const uint16_t * a = (__global const uint16_t *)x[i].scales;
- utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
- utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
- utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
- utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
- const float d = vload_half(0, &x[i].d);
- float sum = 0;
- for (int l = 0; l < n; ++l) {
- sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
- + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
- + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
- + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
- sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
- + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
- + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
- + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
- }
- tmp[16 * ix + tid] += d * sum;
- }
- // sum up partial sums and write back result
- barrier(CLK_LOCAL_MEM_FENCE);
- for (int s=16; s>0; s>>=1) {
- if (tid < s) {
- tmp[tid] += tmp[tid + s];
- }
- barrier(CLK_LOCAL_MEM_FENCE);
- }
- if (tid == 0) {
- dst[row] = tmp[0];
- }
- }
- __kernel void dequantize_mul_mat_vec_q4_K(__global const struct block_q4_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
- //to rename it later, just to test now
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
- const int row = get_group_id(0);
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...15
- const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION;
- const int step = 8/K_QUANTS_PER_ITERATION;
- const int il = tid/step; // 0...3
- const int ir = tid - step*il;// 0...3
- const int n = 2*K_QUANTS_PER_ITERATION;
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
- __global const struct block_q4_K * x = xx + ib0;
- tmp[16 * ix + tid] = 0;
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- __global const uint8_t * q1 = x[i].qs + q_offset;
- __global const uint8_t * q2 = q1 + 64;
- __global const float * y1 = yy + i*QK_K + y_offset;
- __global const float * y2 = y1 + 128;
- const float dall = vload_half(0, &x[i].d);
- const float dmin = vload_half(0, &x[i].dmin);
- __global const uint16_t * a = (__global const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- float4 s = (float4)(0.f);
- float smin = 0;
- for (int l = 0; l < n; ++l) {
- s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4);
- s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4);
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
- }
- tmp[16 * ix + tid] += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin;
- }
- // sum up partial sums and write back result
- barrier(CLK_LOCAL_MEM_FENCE);
- for (int s=16; s>0; s>>=1) {
- if (tid < s) {
- tmp[tid] += tmp[tid + s];
- }
- barrier(CLK_LOCAL_MEM_FENCE);
- }
- if (tid == 0) {
- dst[row] = tmp[0];
- }
- }
- __kernel void dequantize_mul_mat_vec_q5_K(__global const struct block_q5_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
- const int row = get_group_id(0);
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const int tid = get_local_id(0)/2; // 0...15
- const int ix = get_local_id(0)%2;
- const int il = tid/4; // 0...3
- const int ir = tid - 4*il;// 0...3
- const int n = 2;
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
- const uint8_t hm1 = 1 << (2*im);
- const uint8_t hm2 = hm1 << 4;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
- __global const struct block_q5_K * x = xx + ib0;
- tmp[16 * ix + tid] = 0;
- for (int i = ix; i < num_blocks_per_row; i += 2) {
- __global const uint8_t * ql1 = x[i].qs + q_offset;
- __global const uint8_t * ql2 = ql1 + 64;
- __global const uint8_t * qh = x[i].qh + l0;
- __global const float * y1 = yy + i*QK_K + y_offset;
- __global const float * y2 = y1 + 128;
- const float dall = vload_half(0, &x[i].d);
- const float dmin = vload_half(0, &x[i].dmin);
- __global const uint16_t * a = (__global const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- float4 sum = (float4)(0.f);
- float smin = 0;
- for (int l = 0; l < n; ++l) {
- sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
- + y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0));
- sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
- + y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0));
- sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
- + y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0));
- sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
- + y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0));
- smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
- + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
- }
- tmp[16 * ix + tid] += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
- }
- // sum up partial sums and write back result
- barrier(CLK_LOCAL_MEM_FENCE);
- for (int s=16; s>0; s>>=1) {
- if (tid < s) {
- tmp[tid] += tmp[tid + s];
- }
- barrier(CLK_LOCAL_MEM_FENCE);
- }
- if (tid == 0) {
- dst[row] = tmp[0];
- }
- }
- __kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx, __local float* tmp, __global const float * yy, __global float * dst, const int ncols) {
- const int row = get_group_id(0);
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- __global const struct block_q6_K * x = xx + ib0;
- const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0, 1
- const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
- \n#if K_QUANTS_PER_ITERATION == 1\n
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
- const int is = 0;
- \n#else\n
- const int l0 = 4 * in; // 0, 4, 8, ..., 28
- const int is = in / 4;
- \n#endif\n
- const int ql_offset = 64*im + l0;
- const int qh_offset = 32*im + l0;
- const int s_offset = 8*im + is;
- const int y_offset = 128*im + l0;
- tmp[16 * ix + tid] = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- __global const float * y = yy + i * QK_K + y_offset;
- __global const uint8_t * ql = x[i].ql + ql_offset;
- __global const uint8_t * qh = x[i].qh + qh_offset;
- __global const int8_t * s = x[i].scales + s_offset;
- const float d = vload_half(0, &x[i].d);
- \n#if K_QUANTS_PER_ITERATION == 1\n
- float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
- + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
- + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
- + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
- + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
- + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
- + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
- +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
- tmp[16 * ix + tid] += sum;
- \n#else\n
- float sum = 0;
- for (int l = 0; l < 4; ++l) {
- sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
- + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
- + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
- + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
- }
- tmp[16 * ix + tid] += sum;
- \n#endif\n
- }
- // sum up partial sums and write back result
- barrier(CLK_LOCAL_MEM_FENCE);
- for (int s=16; s>0; s>>=1) {
- if (tid < s) {
- tmp[tid] += tmp[tid + s];
- }
- barrier(CLK_LOCAL_MEM_FENCE);
- }
- if (tid == 0) {
- dst[row] = tmp[0];
- }
- }
- );
- std::string dequant_template = MULTILINE_QUOTE(
- __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
- const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
- if (i >= get_global_size(0)) {
- return;
- }
- const uint qk = QUANT_K;
- const uint qr = QUANT_R;
- const int ib = i/qk; // block index
- const int iqs = (i%qk)/qr; // quant index
- const int iybs = i - i%qk; // y block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- float v0, v1;
- DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
- y[iybs + iqs + 0] = v0;
- y[iybs + iqs + y_offset] = v1;
- }
- );
- std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
- __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
- const int block_size = get_local_size(0);
- const int row = get_group_id(0);
- const int tid = get_local_id(0);
- const uint qk = QUANT_K;
- const uint qr = QUANT_R;
- const int y_offset = qr == 1 ? 1 : qk/2;
- tmp[tid] = 0;
- for (int i = 0; i < ncols/block_size; i += 2) {
- const int col = i*block_size + 2*tid;
- const int ib = (row*ncols + col)/qk; // block index
- const int iqs = (col%qk)/qr; // quant index
- const int iybs = col - col%qk; // y block start index
- // dequantize
- float v0, v1;
- DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
- // matrix multiplication
- tmp[tid] += v0 * y[iybs + iqs + 0];
- tmp[tid] += v1 * y[iybs + iqs + y_offset];
- }
- // sum up partial sums and write back result
- barrier(CLK_LOCAL_MEM_FENCE);
- for (int s=block_size/2; s>0; s>>=1) {
- if (tid < s) {
- tmp[tid] += tmp[tid + s];
- }
- barrier(CLK_LOCAL_MEM_FENCE);
- }
- if (tid == 0) {
- dst[row] = tmp[0];
- }
- }
- );
- std::string mul_template = MULTILINE_QUOTE(
- __kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) {
- const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
- if (i >= get_global_size(0)) {
- return;
- }
- dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky];
- }
- );
- #define CL_CHECK(err) \
- do { \
- cl_int err_ = (err); \
- if (err_ != CL_SUCCESS) { \
- fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
- #err, err_, __FILE__, __LINE__); \
- exit(1); \
- } \
- } while (0)
- #define CLBLAST_CHECK(err) \
- do { \
- CLBlastStatusCode err_ = (err); \
- if (err_ != CLBlastSuccess) { \
- fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
- #err, err_, __FILE__, __LINE__); \
- exit(1); \
- } \
- } while (0)
- std::array<std::string, 5> dequant_str_keys = {
- "KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC"
- };
- std::array<std::string, 30> dequant_str_values = {
- "dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
- "dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
- "dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
- "dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
- "dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
- "convert_row_f16", "half", "1", "1", "convert_f16"
- };
- std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
- "dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
- "dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
- "dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
- "dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
- "dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
- "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
- };
- std::array<std::string, 2> mul_str_keys = {
- "KERNEL_NAME", "TYPE"
- };
- std::array<std::string, 2> mul_str_values = {
- "mul_f32", "float"
- };
- std::string& replace(std::string& s, const std::string& from, const std::string& to) {
- size_t pos = 0;
- while ((pos = s.find(from, pos)) != std::string::npos) {
- s.replace(pos, from.length(), to);
- pos += to.length();
- }
- return s;
- }
- std::string generate_kernels() {
- std::stringstream src;
- src << program_source << '\n';
- src << k_quants_source << '\n';
- for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) {
- std::string dequant_kernel = dequant_template;
- std::string dmmv_kernel = dequant_mul_mat_vec_template;
- for (size_t j = 0; j < dequant_str_keys.size(); j++) {
- replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]);
- replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]);
- }
- src << dequant_kernel << '\n';
- src << dmmv_kernel << '\n';
- }
- for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) {
- std::string mul_kernel = mul_template;
- for (size_t j = 0; j < mul_str_keys.size(); j++) {
- replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]);
- }
- src << mul_kernel << '\n';
- }
- return src.str();
- }
- static cl_platform_id platform;
- static cl_device_id device;
- static cl_context context;
- static cl_command_queue queue;
- static cl_program program;
- static cl_kernel convert_row_f16_cl;
- static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
- static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
- static cl_kernel dequantize_block_q2_k_cl, dequantize_block_q3_k_cl, dequantize_block_q4_k_cl, dequantize_block_q5_k_cl, dequantize_block_q6_k_cl;
- static cl_kernel dequantize_mul_mat_vec_q2_K_cl, dequantize_mul_mat_vec_q3_K_cl, dequantize_mul_mat_vec_q4_K_cl, dequantize_mul_mat_vec_q5_K_cl, dequantize_mul_mat_vec_q6_K_cl;
- static cl_kernel mul_f32_cl;
- static bool fp16_support;
- static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
- cl_program p;
- char *program_log;
- size_t program_size;
- size_t log_size;
- int err;
- program_size = strlen(program_buffer);
- p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
- if(err < 0) {
- fprintf(stderr, "OpenCL error creating program");
- exit(1);
- }
- std::string compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math "
- "-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1 "
- "-DQK_K=256 -DK_QUANTS_PER_ITERATION=" + std::to_string(K_QUANTS_PER_ITERATION);
- err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
- if(err < 0) {
- clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
- program_log = (char*) malloc(log_size + 1);
- program_log[log_size] = '\0';
- clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
- fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log);
- free(program_log);
- exit(1);
- }
- return p;
- }
- void ggml_cl_init(void) {
- cl_int err;
- struct cl_device;
- struct cl_platform {
- cl_platform_id id;
- unsigned number;
- char name[128];
- char vendor[128];
- struct cl_device * devices;
- unsigned n_devices;
- struct cl_device * default_device;
- };
- struct cl_device {
- struct cl_platform * platform;
- cl_device_id id;
- unsigned number;
- cl_device_type type;
- char name[128];
- };
- enum { NPLAT = 16, NDEV = 16 };
- struct cl_platform platforms[NPLAT];
- unsigned n_platforms = 0;
- struct cl_device devices[NDEV];
- unsigned n_devices = 0;
- struct cl_device * default_device = NULL;
- platform = NULL;
- device = NULL;
- cl_platform_id platform_ids[NPLAT];
- CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms));
- for (unsigned i = 0; i < n_platforms; i++) {
- struct cl_platform * p = &platforms[i];
- p->number = i;
- p->id = platform_ids[i];
- CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
- CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
- cl_device_id device_ids[NDEV];
- cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
- if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
- p->n_devices = 0;
- } else {
- CL_CHECK(clGetDeviceIDsError);
- }
- p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
- p->default_device = NULL;
- for (unsigned j = 0; j < p->n_devices; j++) {
- struct cl_device * d = &devices[n_devices];
- d->number = n_devices++;
- d->id = device_ids[j];
- d->platform = p;
- CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
- CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
- if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
- p->default_device = d;
- }
- }
- if (default_device == NULL && p->default_device != NULL) {
- default_device = p->default_device;
- }
- }
- if (n_devices == 0) {
- fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n");
- exit(1);
- }
- char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
- char * user_device_string = getenv("GGML_OPENCL_DEVICE");
- int user_platform_number = -1;
- int user_device_number = -1;
- unsigned n;
- if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
- user_platform_number = (int)n;
- }
- if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
- user_device_number = (int)n;
- }
- if (user_platform_number != -1 && user_device_number != -1) {
- cl_platform* platform = &platforms[user_platform_number];
- if ((unsigned)user_device_number >= platform->n_devices) {
- fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number);
- exit(1);
- }
- default_device = &platform->devices[user_device_number];
- } else {
- struct cl_device * selected_devices = devices;
- unsigned n_selected_devices = n_devices;
- if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
- for (unsigned i = 0; i < n_platforms; i++) {
- struct cl_platform * p = &platforms[i];
- if (strstr(p->name, user_platform_string) != NULL ||
- strstr(p->vendor, user_platform_string) != NULL) {
- user_platform_number = (int)i;
- break;
- }
- }
- if (user_platform_number == -1) {
- fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
- exit(1);
- }
- }
- if (user_platform_number != -1) {
- struct cl_platform * p = &platforms[user_platform_number];
- selected_devices = p->devices;
- n_selected_devices = p->n_devices;
- default_device = p->default_device;
- if (n_selected_devices == 0) {
- fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
- exit(1);
- }
- }
- if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
- for (unsigned i = 0; i < n_selected_devices; i++) {
- struct cl_device * d = &selected_devices[i];
- if (strstr(d->name, user_device_string) != NULL) {
- user_device_number = d->number;
- break;
- }
- }
- if (user_device_number == -1) {
- fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string);
- exit(1);
- }
- }
- if (user_device_number != -1) {
- selected_devices = &devices[user_device_number];
- n_selected_devices = 1;
- default_device = &selected_devices[0];
- }
- GGML_ASSERT(n_selected_devices > 0);
- if (default_device == NULL) {
- default_device = &selected_devices[0];
- }
- }
- fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
- fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name);
- if (default_device->type != CL_DEVICE_TYPE_GPU) {
- fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
- }
- platform = default_device->platform->id;
- device = default_device->id;
- size_t ext_str_size;
- clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
- char *ext_buffer = (char *)alloca(ext_str_size + 1);
- clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
- ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
- // Check if ext_buffer contains cl_khr_fp16
- fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
- fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false");
- cl_context_properties properties[] = {
- (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0
- };
- CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
- CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
- (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
- (queue = clCreateCommandQueue(context, device, 0, &err), err)
- )));
- const std::string kernel_src = generate_kernels();
- program = build_program_from_source(context, device, kernel_src.c_str());
- // FP16 to FP32 kernel
- CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err));
- // Dequantize kernels
- CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err));
- CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err));
- CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err));
- CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err));
- CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
- CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
- CL_CHECK((dequantize_block_q2_k_cl = clCreateKernel(program, "dequantize_block_q2_K", &err), err));
- CL_CHECK((dequantize_block_q3_k_cl = clCreateKernel(program, "dequantize_block_q3_K", &err), err));
- CL_CHECK((dequantize_block_q4_k_cl = clCreateKernel(program, "dequantize_block_q4_K", &err), err));
- CL_CHECK((dequantize_block_q5_k_cl = clCreateKernel(program, "dequantize_block_q5_K", &err), err));
- CL_CHECK((dequantize_block_q6_k_cl = clCreateKernel(program, "dequantize_block_q6_K", &err), err));
- // dequant mul mat kernel
- CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err));
- CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err));
- CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err));
- CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
- CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
- CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
- CL_CHECK((dequantize_mul_mat_vec_q2_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q2_K", &err), err));
- CL_CHECK((dequantize_mul_mat_vec_q3_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q3_K", &err), err));
- CL_CHECK((dequantize_mul_mat_vec_q4_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_K", &err), err));
- CL_CHECK((dequantize_mul_mat_vec_q5_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_K", &err), err));
- CL_CHECK((dequantize_mul_mat_vec_q6_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q6_K", &err), err));
- // mul kernel
- CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err));
- }
- static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return &dequantize_row_q4_0_cl;
- case GGML_TYPE_Q4_1:
- return &dequantize_row_q4_1_cl;
- case GGML_TYPE_Q5_0:
- return &dequantize_row_q5_0_cl;
- case GGML_TYPE_Q5_1:
- return &dequantize_row_q5_1_cl;
- case GGML_TYPE_Q8_0:
- return &dequantize_row_q8_0_cl;
- case GGML_TYPE_Q2_K:
- return &dequantize_block_q2_k_cl;
- case GGML_TYPE_Q3_K:
- return &dequantize_block_q3_k_cl;
- case GGML_TYPE_Q4_K:
- return &dequantize_block_q4_k_cl;
- case GGML_TYPE_Q5_K:
- return &dequantize_block_q5_k_cl;
- case GGML_TYPE_Q6_K:
- return &dequantize_block_q6_k_cl;
- case GGML_TYPE_F16:
- return &convert_row_f16_cl;
- default:
- return nullptr;
- }
- }
- static size_t ggml_cl_global_denom(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return 1;
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- return 4;
- case GGML_TYPE_Q4_K:
- return 8;
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- return 4;
- case GGML_TYPE_F16:
- default:
- return 1;
- }
- }
- static size_t ggml_cl_local_size(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return 0;
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- return 64;
- case GGML_TYPE_Q4_K:
- return 32;
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- return 64;
- case GGML_TYPE_F16:
- default:
- return 0;
- }
- }
- static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return &dequantize_mul_mat_vec_q4_0_cl;
- case GGML_TYPE_Q4_1:
- return &dequantize_mul_mat_vec_q4_1_cl;
- case GGML_TYPE_Q5_0:
- return &dequantize_mul_mat_vec_q5_0_cl;
- case GGML_TYPE_Q5_1:
- return &dequantize_mul_mat_vec_q5_1_cl;
- case GGML_TYPE_Q8_0:
- return &dequantize_mul_mat_vec_q8_0_cl;
- case GGML_TYPE_F16:
- return &convert_mul_mat_vec_f16_cl;
- case GGML_TYPE_Q2_K:
- return &dequantize_mul_mat_vec_q2_K_cl;
- case GGML_TYPE_Q3_K:
- return &dequantize_mul_mat_vec_q3_K_cl;
- case GGML_TYPE_Q4_K:
- return &dequantize_mul_mat_vec_q4_K_cl;
- case GGML_TYPE_Q5_K:
- return &dequantize_mul_mat_vec_q5_K_cl;
- case GGML_TYPE_Q6_K:
- return &dequantize_mul_mat_vec_q6_K_cl;
- default:
- return nullptr;
- }
- }
- // buffer pool for cl
- #define MAX_CL_BUFFERS 256
- struct scoped_spin_lock {
- std::atomic_flag& lock;
- scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
- while (lock.test_and_set(std::memory_order_acquire)) {
- ; // spin
- }
- }
- ~scoped_spin_lock() {
- lock.clear(std::memory_order_release);
- }
- scoped_spin_lock(const scoped_spin_lock&) = delete;
- scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
- };
- struct cl_buffer {
- cl_mem mem;
- size_t size = 0;
- };
- static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
- static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
- static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) {
- scoped_spin_lock lock(g_cl_pool_lock);
- cl_int err;
- int best_i = -1;
- size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
- int worst_i = -1;
- size_t worst_size = 0; //largest unused buffer seen so far
- for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
- cl_buffer &b = g_cl_buffer_pool[i];
- if (b.size > 0 && b.size >= size && b.size < best_size)
- {
- best_i = i;
- best_size = b.size;
- }
- if (b.size > 0 && b.size > worst_size)
- {
- worst_i = i;
- worst_size = b.size;
- }
- }
- if(best_i!=-1) //found the smallest buffer that fits our needs
- {
- cl_buffer& b = g_cl_buffer_pool[best_i];
- cl_mem mem = b.mem;
- *actual_size = b.size;
- b.size = 0;
- return mem;
- }
- if(worst_i!=-1) //no buffer that fits our needs, resize largest one to save memory
- {
- cl_buffer& b = g_cl_buffer_pool[worst_i];
- cl_mem mem = b.mem;
- b.size = 0;
- clReleaseMemObject(mem);
- }
- cl_mem mem;
- CL_CHECK((mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err));
- *actual_size = size;
- return mem;
- }
- static void ggml_cl_pool_free(cl_mem mem, size_t size) {
- scoped_spin_lock lock(g_cl_pool_lock);
- for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
- cl_buffer& b = g_cl_buffer_pool[i];
- if (b.size == 0) {
- b.mem = mem;
- b.size = size;
- return;
- }
- }
- fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
- clReleaseMemObject(mem);
- }
- void ggml_cl_free_data(const struct ggml_tensor* tensor) {
- if (tensor->backend != GGML_BACKEND_GPU) {
- return;
- }
- cl_mem mem = (cl_mem)tensor->extra;
- clReleaseMemObject(mem);
- }
- static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
- cl_int err;
- const uint64_t ne0 = src->ne[0];
- const uint64_t ne1 = src->ne[1];
- const uint64_t nb0 = src->nb[0];
- const uint64_t nb1 = src->nb[1];
- const uint64_t nb2 = src->nb[2];
- const uint64_t nb3 = src->nb[3];
- const enum ggml_type type = src->type;
- const size_t ts = ggml_type_size(type);
- const size_t bs = ggml_blck_size(type);
- const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
- if (nb0 == ts && nb1 == ts*ne0/bs) {
- err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev);
- return err;
- }
- if (nb0 == ts) {
- const size_t buffer_origin[3] = { offset, 0, 0 };
- const size_t host_origin[3] = { 0, 0, 0 };
- const size_t region[3] = { ts*ne0/bs, ne1, 1 };
- err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev);
- return err;
- }
- for (uint64_t i1 = 0; i1 < ne1; i1++) {
- // pretend the row is a matrix with cols=1
- const size_t buffer_origin[3] = { offset, i1, 0 };
- const size_t host_origin[3] = { 0, 0, 0 };
- const size_t region[3] = { ts/bs, ne0, 1 };
- err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev);
- if (err != CL_SUCCESS) {
- break;
- }
- }
- return err;
- }
- static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int64_t nb10 = src1->nb[0];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- size_t x_size;
- size_t d_size;
- cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
- cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
- cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const int i0 = i03*ne02 + i02;
- cl_event ev;
- // copy src0 to device
- CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev));
- if (nb10 == sizeof(float)) {
- // Contiguous, avoid overhead from queueing many kernel runs
- const int64_t i13 = i03%ne13;
- const int64_t i12 = i02%ne12;
- const int i1 = i13*ne12*ne11 + i12*ne11;
- cl_int x_offset = 0;
- cl_int y_offset = i1*ne10;
- cl_int d_offset = 0;
- size_t global = ne00 * ne01;
- cl_int ky = ne10;
- CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
- CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
- CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
- CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
- CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
- CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
- CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
- CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
- } else {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const int64_t i13 = i03%ne13;
- const int64_t i12 = i02%ne12;
- const int64_t i11 = i01%ne11;
- const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
- cl_int x_offset = i01*ne00;
- cl_int y_offset = i1*ne10;
- cl_int d_offset = i01*ne00;
- // compute
- size_t global = ne00;
- cl_int ky = ne10;
- CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
- CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
- CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
- CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
- CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
- CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
- CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
- CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
- }
- }
- CL_CHECK(clReleaseEvent(ev));
- CL_CHECK(clFinish(queue));
- // copy dst to host
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
- }
- }
- ggml_cl_pool_free(d_X, x_size);
- ggml_cl_pool_free(d_D, d_size);
- }
- void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cl_mul_f32(src0, src1, dst);
- }
- static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int x_ne = ne01 * ne00;
- const int y_ne = ne11 * ne10;
- const int d_ne = ne11 * ne01;
- size_t x_size;
- size_t y_size;
- size_t d_size;
- cl_mem d_X;
- if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
- d_X = (cl_mem) src0->extra;
- } else {
- d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
- }
- cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
- cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- // copy data to device
- if (src0->backend != GGML_BACKEND_GPU) {
- CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
- }
- CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
- CL_CHECK(clFinish(queue));
- // compute
- cl_event ev_sgemm;
- clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
- clblast::Transpose::kYes, clblast::Transpose::kNo,
- ne01, ne11, ne10,
- alpha,
- d_X, 0, ne00,
- d_Y, 0, ne10,
- beta,
- d_D, 0, ne01,
- &queue, &ev_sgemm);
- if (status != clblast::StatusCode::kSuccess) {
- GGML_ASSERT(false);
- }
- // copy dst to host
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
- }
- }
- if (src0->backend != GGML_BACKEND_GPU) {
- ggml_cl_pool_free(d_X, x_size);
- }
- ggml_cl_pool_free(d_Y, y_size);
- ggml_cl_pool_free(d_D, d_size);
- }
- static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
- GGML_ASSERT(fp16_support);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- const int nb12 = src1->nb[2];
- const int nb13 = src1->nb[3];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
- const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
- const int x_ne = ne01 * ne00;
- const int y_ne = ne11 * ne10;
- const int d_ne = ne11 * ne01;
- size_t x_size;
- size_t y_size;
- size_t d_size;
- cl_mem d_X;
- if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
- d_X = (cl_mem) src0->extra;
- } else {
- d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
- }
- cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size);
- cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size);
- bool src1_cont_rows = nb10 == sizeof(float);
- bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- // copy src0 to device
- if (src0->backend != GGML_BACKEND_GPU) {
- CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
- }
- // convert src1 to fp16
- // TODO: use multiple threads
- ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
- char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
- if (src1_cont_rows) {
- if (src1_cont_cols) {
- ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
- }
- else {
- for (int64_t i01 = 0; i01 < ne11; i01++) {
- ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
- }
- }
- }
- else {
- for (int64_t i01 = 0; i01 < ne11; i01++) {
- for (int64_t i00 = 0; i00 < ne10; i00++) {
- // very slow due to no inlining
- tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
- }
- }
- }
- // copy src1 to device
- CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
- CL_CHECK(clFinish(queue));
- // compute
- cl_event ev_sgemm;
- clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
- clblast::Transpose::kYes, clblast::Transpose::kNo,
- ne01, ne11, ne10,
- alpha,
- d_X, 0, ne00,
- d_Y, 0, ne10,
- beta,
- d_D, 0, ne01,
- &queue, &ev_sgemm);
- if (status != clblast::StatusCode::kSuccess) {
- GGML_ASSERT(false);
- }
- // copy dst to host, then convert to float
- CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- ggml_fp16_to_fp32_row(tmp, d, d_ne);
- }
- }
- if (src0->backend != GGML_BACKEND_GPU) {
- ggml_cl_pool_free(d_X, x_size);
- }
- ggml_cl_pool_free(d_Y, y_size);
- ggml_cl_pool_free(d_D, d_size);
- }
- static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const ggml_type type = src0->type;
- const bool mul_mat_vec = ne11 == 1;
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int x_ne = ne01 * ne00;
- const int y_ne = ne11 * ne10;
- const int d_ne = ne11 * ne01;
- const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
- size_t x_size;
- size_t y_size;
- size_t d_size;
- size_t q_size;
- cl_mem d_X;
- if (!mul_mat_vec) {
- d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
- }
- cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
- cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
- cl_mem d_Q;
- if (src0->backend == GGML_BACKEND_CPU) {
- d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
- }
- cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type);
- cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
- GGML_ASSERT(to_fp32_cl != nullptr);
- const size_t global_denom = ggml_cl_global_denom(type);
- const size_t local = ggml_cl_local_size(type);
- size_t ev_idx = 0;
- std::vector<cl_event> events;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- // copy src0 to device if necessary
- if (src0->backend == GGML_BACKEND_CPU) {
- events.emplace_back();
- CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
- } else if (src0->backend == GGML_BACKEND_GPU) {
- d_Q = (cl_mem) src0->extra;
- } else {
- GGML_ASSERT(false);
- }
- if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
- // copy src1 to device
- events.emplace_back();
- CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
- // compute
- const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
- const size_t local = CL_DMMV_BLOCK_SIZE;
- const cl_int ncols = ne00;
- events.emplace_back();
- CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
- CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
- CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
- CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
- CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
- CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
- } else { // general dequantization kernel + CLBlast matrix matrix multiplication
- // convert src0 to fp32 on device
- const size_t global = x_ne / global_denom;
- CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
- CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
- CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
- // copy src1 to device
- CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
- events.emplace_back();
- // wait for conversion
- CL_CHECK(clFinish(queue));
- // compute
- clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
- clblast::Transpose::kYes, clblast::Transpose::kNo,
- ne01, ne11, ne10,
- alpha,
- d_X, 0, ne00,
- d_Y, 0, ne10,
- beta,
- d_D, 0, ne01,
- &queue, events.data() + ev_idx++);
- if (status != clblast::StatusCode::kSuccess) {
- GGML_ASSERT(false);
- }
- }
- // copy dst to host
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
- for (auto *event : events) {
- clReleaseEvent(event);
- }
- ev_idx = 0;
- events.clear();
- }
- }
- if (!mul_mat_vec) {
- ggml_cl_pool_free(d_X, x_size);
- }
- ggml_cl_pool_free(d_Y, y_size);
- ggml_cl_pool_free(d_D, d_size);
- if (src0->backend == GGML_BACKEND_CPU) {
- ggml_cl_pool_free(d_Q, q_size);
- }
- }
- bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- src1->type == GGML_TYPE_F32 &&
- dst->type == GGML_TYPE_F32 &&
- ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) {
- return true;
- }
- return false;
- }
- bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
- // If device doesn't support FP16
- if (!fp16_support) {
- return false;
- }
- size_t src0_sz = ggml_nbytes(src0);
- size_t src1_sz = ggml_nbytes(src1);
- // mul_mat_q: src0 is converted to fp32 on device
- size_t mul_mat_q_transfer = src0_sz + src1_sz;
- // mul_mat_f16: src1 is converted to fp16 on cpu
- size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1);
- // choose the smaller one to transfer to the device
- // TODO: this is not always the best choice due to the overhead of converting to fp16
- return mul_mat_f16_transfer < mul_mat_q_transfer;
- }
- void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) {
- GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst));
- if (src0->type == GGML_TYPE_F32) {
- ggml_cl_mul_mat_f32(src0, src1, dst);
- }
- else if (src0->type == GGML_TYPE_F16) {
- if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
- ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize);
- }
- else {
- ggml_cl_mul_mat_q_f32(src0, src1, dst);
- }
- }
- else if (ggml_is_quantized(src0->type)) {
- ggml_cl_mul_mat_q_f32(src0, src1, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- }
- size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
- return ggml_nelements(src1) * sizeof(ggml_fp16_t);
- }
- return 0;
- }
- void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
- const int64_t ne0 = tensor->ne[0];
- const int64_t ne1 = tensor->ne[1];
- const int64_t ne2 = tensor->ne[2];
- const int64_t ne3 = tensor->ne[3];
- const ggml_type type = tensor->type;
- const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
- size_t q_size;
- cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
- tensor->data = data;
- // copy tensor to device
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = 0; i2 < ne2; i2++) {
- int i = i3*ne2 + i2;
- CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, i*ne0*ne1, tensor, i3, i2, NULL));
- }
- }
- CL_CHECK(clFinish(queue));
- tensor->extra = dst;
- GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
- }
|