12345678910111213141516171819202122232425 |
- from ggml import lib, ffi
- from ggml.utils import init, copy, numpy
- import numpy as np
- ctx = init(mem_size=12*1024*1024) # automatically freed when pointer is GC'd
- n = 256
- n_threads = 4
- a = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_Q5_K, n)
- b = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_F32, n) # can't both be quantized
- sum = lib.ggml_add(ctx, a, b) # all zeroes for now. Will be quantized too!
- # See cffi's doc on how to allocate native memory: it's very simple!
- # https://cffi.readthedocs.io/en/latest/ref.html#ffi-interface
- gf = ffi.new('struct ggml_cgraph*')
- lib.ggml_build_forward_expand(gf, sum)
- copy(np.array([i for i in range(n)], np.float32), a)
- copy(np.array([i*100 for i in range(n)], np.float32), b)
- lib.ggml_graph_compute_with_ctx(ctx, gf, n_threads)
- print(numpy(a, allow_copy=True))
- print(numpy(b))
- print(numpy(sum, allow_copy=True))
|