unity.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633
  1. #include "ggml/ggml.h"
  2. #include "ggml/ggml-alloc.h"
  3. #include "common.h"
  4. #include "common-ggml.h"
  5. #include <cassert>
  6. #include <cmath>
  7. #include <cstdio>
  8. #include <cstring>
  9. #include <fstream>
  10. #include <map>
  11. #include <string>
  12. #include <vector>
  13. #include <iostream>
  14. // default hparams
  15. struct unity_hparams {
  16. int32_t n_text_vocab = 256206;
  17. int32_t n_unit_vocab = 10084;
  18. int32_t n_audio_enc_dim = 1024;
  19. int32_t n_audio_enc_ffn_dim = 4096;
  20. int32_t n_audio_enc_feat_dim = 160;
  21. int32_t n_audio_enc_layer = 24;
  22. int32_t n_audio_enc_head = 16;
  23. int32_t ftype = 1;
  24. float eps = 1e-5f;
  25. };
  26. // layer def
  27. struct audio_enc_layer {
  28. struct ggml_tensor * self_attn_layer_norm_w;
  29. struct ggml_tensor * self_attn_layer_norm_b;
  30. struct ggml_tensor * self_attn_linear_k_w;
  31. struct ggml_tensor * self_attn_linear_k_b;
  32. struct ggml_tensor * self_attn_linear_q_w;
  33. struct ggml_tensor * self_attn_linear_q_b;
  34. struct ggml_tensor * self_attn_linear_v_w;
  35. struct ggml_tensor * self_attn_linear_v_b;
  36. struct ggml_tensor * self_attn_linear_out_w;
  37. struct ggml_tensor * self_attn_linear_out_b;
  38. struct ggml_tensor * self_attn_linear_pos_w;
  39. struct ggml_tensor * self_attn_pos_bias_u;
  40. struct ggml_tensor * self_attn_pos_bias_v;
  41. struct ggml_tensor * conv_layer_norm_w;
  42. struct ggml_tensor * conv_layer_norm_b;
  43. struct ggml_tensor * conv_pointwise_conv1_w;
  44. struct ggml_tensor * conv_depthwise_conv_w;
  45. struct ggml_tensor * conv_batch_norm_w;
  46. struct ggml_tensor * conv_batch_norm_b;
  47. struct ggml_tensor * conv_batch_norm_running_mean;
  48. struct ggml_tensor * conv_batch_norm_running_var;
  49. struct ggml_tensor * conv_batch_norm_num_batches_tracked;
  50. struct ggml_tensor * conv_pointwise_conv2_w;
  51. struct ggml_tensor * ffn1_layer_norm_w;
  52. struct ggml_tensor * ffn1_layer_norm_b;
  53. struct ggml_tensor * ffn1_w1;
  54. struct ggml_tensor * ffn1_b1;
  55. struct ggml_tensor * ffn1_w2;
  56. struct ggml_tensor * ffn1_b2;
  57. struct ggml_tensor * ffn2_layer_norm_w;
  58. struct ggml_tensor * ffn2_layer_norm_b;
  59. struct ggml_tensor * ffn2_w1;
  60. struct ggml_tensor * ffn2_b1;
  61. struct ggml_tensor * ffn2_w2;
  62. struct ggml_tensor * ffn2_b2;
  63. struct ggml_tensor * final_layer_norm_w;
  64. struct ggml_tensor * final_layer_norm_b;
  65. };
  66. // struct ggml_tensor * conv_ln;
  67. // struct ggml_tensor * conv_pool_1d;
  68. // model def
  69. struct unity_model {
  70. unity_hparams hparams;
  71. // audio encoder
  72. struct ggml_tensor * post_extract_proj;
  73. struct ggml_tensor * audio_enc_pos_conv;
  74. struct ggml_tensor * memory_k;
  75. struct ggml_tensor * memory_v;
  76. std::vector<audio_enc_layer> audio_enc_layers;
  77. // text encoder
  78. // std::vector<text_enc_layer> text_enc_layers;
  79. // adaptor
  80. // std::vector<adapter_layer> adapter_layers;
  81. // text decoder
  82. // std::vector<text_dec_layer> text_dec_layers;
  83. // unit decoder
  84. // std::vector<unit_dec_layer> unit_dec_layers;
  85. //
  86. struct ggml_context * ctx;
  87. std::map<std::string, struct ggml_tensor *> tensors;
  88. };
  89. // model load
  90. bool unity_model_load(const std::string & fname, unity_model & model, gpt_vocab & vocab) {
  91. printf("%s: loading model from '%s'\n", __func__, fname.c_str());
  92. auto fin = std::ifstream(fname, std::ios::binary);
  93. if (!fin) {
  94. fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
  95. return false;
  96. }
  97. // verify magic
  98. {
  99. uint32_t magic;
  100. fin.read((char *) &magic, sizeof(magic));
  101. if (magic != GGML_FILE_MAGIC) {
  102. fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
  103. return false;
  104. }
  105. }
  106. // load hparams
  107. {
  108. auto & hparams = model.hparams;
  109. fin.read((char *) &hparams.n_text_vocab, sizeof(hparams.n_text_vocab));
  110. fin.read((char *) &hparams.n_audio_enc_dim, sizeof(hparams.n_audio_enc_dim));
  111. fin.read((char *) &hparams.n_audio_enc_ffn_dim, sizeof(hparams.n_audio_enc_ffn_dim));
  112. fin.read((char *) &hparams.n_audio_enc_feat_dim, sizeof(hparams.n_audio_enc_feat_dim));
  113. fin.read((char *) &hparams.n_audio_enc_layer, sizeof(hparams.n_audio_enc_layer));
  114. fin.read((char *) &hparams.n_audio_enc_head, sizeof(hparams.n_audio_enc_head));
  115. fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
  116. const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
  117. printf("%s: n_text_vocab = %d\n", __func__, hparams.n_text_vocab);
  118. printf("%s: n_audio_enc_dim = %d\n", __func__, hparams.n_audio_enc_dim);
  119. printf("%s: n_audio_enc_ffn_dim = %d\n", __func__, hparams.n_audio_enc_ffn_dim);
  120. printf("%s: n_audio_enc_feat_dim = %d\n", __func__, hparams.n_audio_enc_feat_dim);
  121. printf("%s: n_audio_enc_layer = %d\n", __func__, hparams.n_audio_enc_layer);
  122. printf("%s: n_audio_enc_head = %d\n", __func__, hparams.n_audio_enc_head);
  123. printf("%s: ftype = %d\n", __func__, hparams.ftype);
  124. printf("%s: qntvr = %d\n", __func__, qntvr);
  125. hparams.ftype %= GGML_QNT_VERSION_FACTOR;
  126. }
  127. // for the big tensors, we have the option to store the data in 16-bit floats or quantized
  128. // in order to save memory and also to speed up the computation
  129. ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
  130. if (wtype == GGML_TYPE_COUNT) {
  131. fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
  132. __func__, fname.c_str(), model.hparams.ftype);
  133. return false;
  134. }
  135. auto & ctx = model.ctx;
  136. size_t ctx_size = 0;
  137. {
  138. const auto & hparams = model.hparams;
  139. const int n_audio_enc_dim = hparams.n_audio_enc_dim;
  140. const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
  141. const int n_audio_enc_layer = hparams.n_audio_enc_layer;
  142. const int n_ctx = 1500; // 20ms * 1500 = 30s
  143. // const int n_text_vocab = hparams.n_text_vocab;
  144. const int kernel_size = 31;
  145. ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // self_attn_layer_norm_w
  146. ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // self_attn_layer_norm_b
  147. ctx_size += n_audio_enc_layer*(5*n_audio_enc_dim*n_audio_enc_dim*ggml_type_sizef(wtype)); // self_attn_w
  148. ctx_size += n_audio_enc_layer*(4*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // self_attn_b
  149. ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_layer_norm_w
  150. ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_layer_norm_b
  151. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*2*ggml_type_sizef(wtype)); // conv_pointwise_conv1_w
  152. ctx_size += n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_batch_norm_w
  153. ctx_size += n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_batch_norm_b
  154. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*kernel_size*ggml_type_sizef(wtype)); // conv_depthwise_conv_w
  155. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*ggml_type_sizef(wtype)); // conv_pointwise_conv2_w
  156. ctx_size += 2 * n_audio_enc_layer * (n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_layer_norm_w
  157. ctx_size += 2 * n_audio_enc_layer * (n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_layer_norm_b
  158. ctx_size += 2 * n_audio_enc_layer * (2 * n_audio_enc_dim * n_audio_enc_ffn_dim * ggml_type_sizef(wtype)); // ffn{1,2}_w{1,2}
  159. ctx_size += 2 * n_audio_enc_layer * (2 * n_audio_enc_dim * ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_b{1,2}
  160. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // final_layer_norm_w
  161. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // final_layer_norm_b
  162. ctx_size += n_ctx*n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // memory_k
  163. ctx_size += n_ctx*n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // memory_v
  164. // Adaptor
  165. // ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // conv_ln
  166. // ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // conv_pool_1d
  167. // object overhead might differ depending on the structure and other miscellaneous factors
  168. ctx_size += (6 + 12*n_audio_enc_layer)*512; // updated object overhead
  169. printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
  170. printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
  171. }
  172. // create the ggml context
  173. {
  174. struct ggml_init_params params = {
  175. /*.mem_size =*/ ctx_size,
  176. /*.mem_buffer =*/ NULL,
  177. /*.no_alloc =*/ false,
  178. };
  179. model.ctx = ggml_init(params);
  180. if (!model.ctx) {
  181. fprintf(stderr, "%s: ggml_init() failed\n", __func__);
  182. return false;
  183. }
  184. }
  185. // prepare memory for the weights
  186. {
  187. const auto & hparams = model.hparams;
  188. const int n_audio_enc_dim = hparams.n_audio_enc_dim;
  189. const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
  190. // const int n_audio_enc_feat_dim = hparams.n_audio_enc_feat_dim;
  191. const int n_audio_enc_layer = hparams.n_audio_enc_layer;
  192. const int n_audio_enc_head = hparams.n_audio_enc_head;
  193. // const int n_text_vocab = hparams.n_text_vocab;
  194. model.audio_enc_layers.resize(n_audio_enc_layer);
  195. // model.post_extract_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_feat_dim);
  196. // model.post_extract_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  197. // model.tensors["model/post_extract_proj/w"] = model.post_extract_proj_w
  198. // model.tensors["model/post_extract_proj/b"] = model.post_extract_proj_b
  199. // model.audio_enc_pos_conv_w = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim, 1);
  200. // model.tensors["model/audio_enc_pos_conv/w"] = model.audio_enc_pos_conv_w;
  201. // model.audio_enc_pos_conv_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  202. // model.tensors["model/audio_enc_pos_conv/b"] = model.audio_enc_pos_conv_b;
  203. for (int i = 0; i < n_audio_enc_layer; ++i) {
  204. auto & layer = model.audio_enc_layers[i];
  205. layer.self_attn_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  206. layer.self_attn_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  207. layer.self_attn_linear_k_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  208. layer.self_attn_linear_k_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  209. layer.self_attn_linear_q_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  210. layer.self_attn_linear_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  211. layer.self_attn_linear_v_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  212. layer.self_attn_linear_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  213. layer.self_attn_linear_out_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  214. layer.self_attn_linear_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  215. layer.self_attn_linear_pos_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  216. layer.self_attn_pos_bias_u = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim / n_audio_enc_head, n_audio_enc_head);
  217. layer.self_attn_pos_bias_v = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim / n_audio_enc_head, n_audio_enc_head);
  218. layer.conv_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  219. layer.conv_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  220. layer.conv_pointwise_conv1_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, 2*n_audio_enc_dim);
  221. layer.conv_depthwise_conv_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 31, n_audio_enc_dim);
  222. layer.conv_batch_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  223. layer.conv_batch_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  224. layer.conv_batch_norm_running_mean = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  225. layer.conv_batch_norm_running_var = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  226. layer.conv_batch_norm_num_batches_tracked = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  227. layer.conv_pointwise_conv2_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  228. layer.ffn1_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  229. layer.ffn1_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  230. layer.ffn1_w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_ffn_dim);
  231. layer.ffn1_b1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim);
  232. layer.ffn1_w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim, n_audio_enc_dim);
  233. layer.ffn1_b2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  234. layer.ffn2_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  235. layer.ffn2_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  236. layer.ffn2_w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_ffn_dim);
  237. layer.ffn2_b1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim);
  238. layer.ffn2_w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim, n_audio_enc_dim);
  239. layer.ffn2_b2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  240. layer.final_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  241. layer.final_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  242. // map by name
  243. model.tensors["model/h" + std::to_string(i) + "/self_attn_layer_norm/w"] = layer.self_attn_layer_norm_w;
  244. model.tensors["model/h" + std::to_string(i) + "/self_attn_layer_norm/b"] = layer.self_attn_layer_norm_b;
  245. model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_k/w"] = layer.self_attn_linear_k_w;
  246. model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_k/b"] = layer.self_attn_linear_k_b;
  247. model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_q/w"] = layer.self_attn_linear_q_w;
  248. model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_q/b"] = layer.self_attn_linear_q_b;
  249. model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_v/w"] = layer.self_attn_linear_v_w;
  250. model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_v/b"] = layer.self_attn_linear_v_b;
  251. model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_out/w"] = layer.self_attn_linear_out_w;
  252. model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_out/b"] = layer.self_attn_linear_out_b;
  253. model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_pos/w"] = layer.self_attn_linear_pos_w;
  254. model.tensors["model/h" + std::to_string(i) + "/self_attn_pos_bias/u"] = layer.self_attn_pos_bias_u;
  255. model.tensors["model/h" + std::to_string(i) + "/self_attn_pos_bias/v"] = layer.self_attn_pos_bias_v;
  256. model.tensors["model/h" + std::to_string(i) + "/conv_layer_norm/w"] = layer.conv_layer_norm_w;
  257. model.tensors["model/h" + std::to_string(i) + "/conv_layer_norm/b"] = layer.conv_layer_norm_b;
  258. model.tensors["model/h" + std::to_string(i) + "/conv_pointwise_conv1/w"] = layer.conv_pointwise_conv1_w;
  259. model.tensors["model/h" + std::to_string(i) + "/conv_depthwise_conv/w"] = layer.conv_depthwise_conv_w;
  260. model.tensors["model/h" + std::to_string(i) + "/conv_batch_norm/w"] = layer.conv_batch_norm_w;
  261. model.tensors["model/h" + std::to_string(i) + "/conv_batch_norm/b"] = layer.conv_batch_norm_b;
  262. model.tensors["model/h" + std::to_string(i) + "/conv_batch_norm/m"] = layer.conv_batch_norm_running_mean;
  263. model.tensors["model/h" + std::to_string(i) + "/conv_batch_norm/v"] = layer.conv_batch_norm_running_var;
  264. model.tensors["model/h" + std::to_string(i) + "/conv_batch_norm/n"] = layer.conv_batch_norm_num_batches_tracked;
  265. model.tensors["model/h" + std::to_string(i) + "/conv_pointwise_conv2/w"] = layer.conv_pointwise_conv2_w;
  266. model.tensors["model/h" + std::to_string(i) + "/ffn1_layer_norm/w"] = layer.ffn1_layer_norm_w;
  267. model.tensors["model/h" + std::to_string(i) + "/ffn1_layer_norm/b"] = layer.ffn1_layer_norm_b;
  268. model.tensors["model/h" + std::to_string(i) + "/ffn1_w_1/w"] = layer.ffn1_w1;
  269. model.tensors["model/h" + std::to_string(i) + "/ffn1_w_1/b"] = layer.ffn1_b1;
  270. model.tensors["model/h" + std::to_string(i) + "/ffn1_w_2/w"] = layer.ffn1_w2;
  271. model.tensors["model/h" + std::to_string(i) + "/ffn1_w_2/b"] = layer.ffn1_b2;
  272. model.tensors["model/h" + std::to_string(i) + "/ffn2_layer_norm/w"] = layer.ffn2_layer_norm_w;
  273. model.tensors["model/h" + std::to_string(i) + "/ffn2_layer_norm/b"] = layer.ffn2_layer_norm_b;
  274. model.tensors["model/h" + std::to_string(i) + "/ffn2_w_1/w"] = layer.ffn2_w1;
  275. model.tensors["model/h" + std::to_string(i) + "/ffn2_w_1/b"] = layer.ffn2_b1;
  276. model.tensors["model/h" + std::to_string(i) + "/ffn2_w_2/w"] = layer.ffn2_w2;
  277. model.tensors["model/h" + std::to_string(i) + "/ffn2_w_2/b"] = layer.ffn2_b2;
  278. model.tensors["model/h" + std::to_string(i) + "/final_layer_norm/w"] = layer.final_layer_norm_w;
  279. model.tensors["model/h" + std::to_string(i) + "/final_layer_norm/b"] = layer.final_layer_norm_b;
  280. }
  281. }
  282. // load weights
  283. {
  284. size_t total_size = 0;
  285. while (true) {
  286. int32_t n_dims;
  287. int32_t length;
  288. int32_t ttype;
  289. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  290. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  291. fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
  292. if (fin.eof()) {
  293. break;
  294. }
  295. int32_t nelements = 1;
  296. int32_t ne[3] = { 1, 1, 1};
  297. for (int i = 0; i < n_dims; ++i) {
  298. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  299. nelements *= ne[i];
  300. }
  301. std::string name(length, 0);
  302. fin.read(&name[0], length);
  303. std::cout << "loading " << name << " " << n_dims << std::endl;
  304. if (model.tensors.find(name) == model.tensors.end()) {
  305. fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
  306. return false;
  307. }
  308. auto tensor = model.tensors[name];
  309. if (ggml_nelements(tensor) != nelements) {
  310. fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
  311. return false;
  312. }
  313. if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
  314. fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
  315. __func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
  316. return false;
  317. }
  318. // for debugging
  319. if (0) {
  320. printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
  321. }
  322. const size_t bpe = ggml_type_size(ggml_type(ttype));
  323. if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
  324. fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
  325. __func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe);
  326. return false;
  327. }
  328. fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
  329. // for (int i = 0; i < 10; ++i) {
  330. // std::cout << ((float *)(tensor->data))[i] << std::endl;
  331. // } // debug
  332. total_size += ggml_nbytes(tensor);
  333. }
  334. printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
  335. }
  336. fin.close();
  337. return true;
  338. }
  339. // build the computation graph
  340. struct ggml_cgraph * unity_graph(
  341. const unity_model & model,
  342. struct ggml_allocr * allocr) {
  343. const auto & hparams = model.hparams;
  344. const int n_audio_enc_dim = hparams.n_audio_enc_dim;
  345. const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
  346. const int n_audio_enc_layer = hparams.n_audio_enc_layer;
  347. // const int n_text_vocab = hparams.n_text_vocab;
  348. const int kernel_size = 31;
  349. // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data
  350. static size_t buf_size = ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead();
  351. static std::vector<uint8_t> buf(buf_size);
  352. struct ggml_init_params params = {
  353. /*.mem_size =*/ buf_size,
  354. /*.mem_buffer =*/ buf.data(),
  355. /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
  356. };
  357. struct ggml_context * ctx0 = ggml_init(params);
  358. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  359. /// For dev, load an example input before conformer blocks
  360. auto file = std::ifstream("/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/dev/seqs_before_conformer_block.bin", std::ios::binary);
  361. if (!file) {
  362. std::cerr << "Failed to open binary file." << std::endl;
  363. }
  364. struct ggml_tensor * inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1024, 137);
  365. inpL->data = malloc(ggml_nbytes(inpL));
  366. file.read(reinterpret_cast<char *>(inpL->data), ggml_nbytes(inpL));
  367. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, 1);
  368. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  369. ggml_set_f32(ffn_scale, 0.5f);
  370. for (int il = 0; il < n_audio_enc_layer; ++il) {
  371. struct ggml_tensor * cur = inpL;
  372. struct ggml_tensor * residual = cur;
  373. const audio_enc_layer layer = model.audio_enc_layers[il];
  374. // FFN1: layernorm
  375. cur = ggml_norm(ctx0, cur, hparams.eps);
  376. cur = ggml_add(ctx0,
  377. ggml_mul(ctx0,
  378. ggml_repeat(ctx0, layer.ffn1_layer_norm_w, cur),
  379. cur),
  380. ggml_repeat(ctx0, layer.ffn1_layer_norm_b, cur));
  381. // FFN1: proj
  382. cur = ggml_mul_mat(ctx0, layer.ffn1_w1, cur);
  383. cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.ffn1_b1, cur), cur);
  384. cur = ggml_silu(ctx0, cur);
  385. cur = ggml_mul_mat(ctx0, layer.ffn1_w2, cur);
  386. cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.ffn1_b2, cur), cur);
  387. // FFN1: * 0.5
  388. cur = ggml_mul(ctx0, ggml_repeat(ctx0, ffn_scale, cur), cur);
  389. // FFN1: + residual
  390. cur = ggml_add(ctx0, cur, residual);
  391. // TODO: Opportunity to optimize attn calculation (1) For num_threads > 1 (2) Flash attn. See https://github.com/ggerganov/ggml/blob/main/examples/gpt-2/main.cpp
  392. // self_attn: layernorm
  393. cur = ggml_norm(ctx0, cur, hparams.eps);
  394. cur = ggml_add(ctx0,
  395. ggml_mul(ctx0,
  396. ggml_repeat(ctx0, layer.self_attn_layer_norm_w, cur),
  397. cur),
  398. ggml_repeat(ctx0, layer.self_attn_layer_norm_b, cur));
  399. // self_attn: qkv
  400. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0,
  401. layer.self_attn_linear_q_w,
  402. cur);
  403. Qcur = ggml_add(ctx0,
  404. ggml_repeat(ctx0,
  405. layer.self_attn_linear_q_b,
  406. Qcur),
  407. Qcur);
  408. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0,
  409. layer.self_attn_linear_k_w,
  410. cur);
  411. Kcur = ggml_add(ctx0,
  412. ggml_repeat(ctx0,
  413. layer.self_attn_linear_k_b,
  414. Kcur),
  415. Kcur);
  416. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0,
  417. layer.self_attn_linear_v_w,
  418. cur);
  419. Vcur = ggml_add(ctx0,
  420. ggml_repeat(ctx0,
  421. layer.self_attn_linear_v_b,
  422. Vcur),
  423. Vcur);
  424. // self_attn: rel_pos SDPA
  425. // conv
  426. // ffn2
  427. // norm
  428. inpL = cur;
  429. break; // debug
  430. }
  431. ggml_build_forward_expand(gf, inpL);
  432. ggml_free(ctx0);
  433. return gf;
  434. }
  435. bool unity_eval(
  436. const unity_model & model,
  437. struct ggml_allocr * allocr,
  438. const int n_threads) {
  439. const auto & hparams = model.hparams;
  440. // reset the allocator to free all the memory allocated during the previous inference
  441. ggml_allocr_reset(allocr);
  442. struct ggml_cgraph * gf = unity_graph(model, allocr);
  443. // allocate tensors
  444. ggml_allocr_alloc_graph(allocr, gf);
  445. // run the computation
  446. struct ggml_cplan plan = ggml_graph_plan(gf, n_threads);
  447. static std::vector<uint8_t> work_buffer;
  448. work_buffer.resize(plan.work_size);
  449. plan.work_data = work_buffer.data();
  450. ggml_graph_compute(gf, &plan);
  451. // in this case, the output tensor is the last one in the graph
  452. struct ggml_tensor * inpL = gf->nodes[gf->n_nodes - 1];
  453. for (int i = 0; i < 10; ++i) {
  454. printf("%8.4f ", ((float *)(inpL->data))[i]);
  455. }
  456. return true;
  457. }
  458. int main(int argc, char ** argv) {
  459. // ggml_time_init();
  460. // const int64_t t_main_start_us = ggml_time_us();
  461. gpt_params params;
  462. if (gpt_params_parse(argc, argv, params) == false) {
  463. return 1;
  464. }
  465. if (params.seed < 0) {
  466. params.seed = time(NULL);
  467. }
  468. printf("%s: seed = %d\n", __func__, params.seed);
  469. std::mt19937 rng(params.seed);
  470. if (params.prompt.empty()) {
  471. params.prompt = gpt_random_prompt(rng);
  472. }
  473. gpt_vocab vocab;
  474. unity_model model;
  475. // load the model
  476. {
  477. if (!unity_model_load(params.model, model, vocab)) {
  478. fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
  479. return 1;
  480. }
  481. }
  482. // keep this buffer alive while evaluating the model
  483. std::vector<uint8_t> compute_buffer;
  484. struct ggml_allocr * allocr = NULL;
  485. // allocate the compute buffer
  486. {
  487. allocr = ggml_allocr_new_measure(GGML_MEM_ALIGN);
  488. struct ggml_cgraph * gf = unity_graph(model, allocr);
  489. // compute the required memory
  490. size_t mem_size = ggml_allocr_alloc_graph(allocr, gf) + GGML_MEM_ALIGN;
  491. // recreate the allocator with the required memory
  492. ggml_allocr_free(allocr);
  493. compute_buffer.resize(mem_size);
  494. allocr = ggml_allocr_new(compute_buffer.data(), mem_size, GGML_MEM_ALIGN);
  495. fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0/1024.0);
  496. }
  497. if (!unity_eval(model, allocr, 1)) {
  498. printf("Failed to predict\n");
  499. return 1;
  500. }
  501. ggml_free(model.ctx);
  502. return 0;
  503. }