123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702 |
- #include "ggml/ggml.h"
- #include "ggml/ggml-alloc.h"
- #include "common.h"
- #include "common-ggml.h"
- #include <cassert>
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <fstream>
- #include <map>
- #include <string>
- #include <vector>
- #include <iostream>
- // default hparams
- struct unity_hparams {
- int32_t n_text_vocab = 256206;
- int32_t n_unit_vocab = 10084;
- int32_t n_audio_enc_dim = 1024;
- int32_t n_audio_enc_ffn_dim = 4096;
- int32_t n_audio_enc_feat_dim = 160;
- int32_t n_audio_enc_layer = 24;
- int32_t n_audio_enc_head = 16;
- int32_t ftype = 1;
- float eps = 1e-5f;
- };
- // layer def
- struct audio_enc_layer {
- struct ggml_tensor * self_attn_layer_norm_w;
- struct ggml_tensor * self_attn_layer_norm_b;
- struct ggml_tensor * self_attn_linear_k_w;
- struct ggml_tensor * self_attn_linear_k_b;
- struct ggml_tensor * self_attn_linear_q_w;
- struct ggml_tensor * self_attn_linear_q_b;
- struct ggml_tensor * self_attn_linear_v_w;
- struct ggml_tensor * self_attn_linear_v_b;
- struct ggml_tensor * self_attn_linear_out_w;
- struct ggml_tensor * self_attn_linear_out_b;
- struct ggml_tensor * self_attn_linear_pos_w;
- struct ggml_tensor * self_attn_pos_bias_u;
- struct ggml_tensor * self_attn_pos_bias_v;
- struct ggml_tensor * conv_layer_norm_w;
- struct ggml_tensor * conv_layer_norm_b;
- struct ggml_tensor * conv_pointwise_conv1_w;
- struct ggml_tensor * conv_depthwise_conv_w;
- struct ggml_tensor * conv_batch_norm_w;
- struct ggml_tensor * conv_batch_norm_b;
- struct ggml_tensor * conv_batch_norm_running_mean;
- struct ggml_tensor * conv_batch_norm_running_var;
- struct ggml_tensor * conv_batch_norm_num_batches_tracked;
- struct ggml_tensor * conv_pointwise_conv2_w;
- struct ggml_tensor * ffn1_layer_norm_w;
- struct ggml_tensor * ffn1_layer_norm_b;
- struct ggml_tensor * ffn1_w1;
- struct ggml_tensor * ffn1_b1;
- struct ggml_tensor * ffn1_w2;
- struct ggml_tensor * ffn1_b2;
- struct ggml_tensor * ffn2_layer_norm_w;
- struct ggml_tensor * ffn2_layer_norm_b;
- struct ggml_tensor * ffn2_w1;
- struct ggml_tensor * ffn2_b1;
- struct ggml_tensor * ffn2_w2;
- struct ggml_tensor * ffn2_b2;
- struct ggml_tensor * final_layer_norm_w;
- struct ggml_tensor * final_layer_norm_b;
- };
- // struct ggml_tensor * conv_ln;
- // struct ggml_tensor * conv_pool_1d;
- // model def
- struct unity_model {
- unity_hparams hparams;
- // audio encoder
- struct ggml_tensor * post_extract_proj_w;
- struct ggml_tensor * post_extract_proj_b;
- struct ggml_tensor * audio_enc_pos_conv_wg;
- struct ggml_tensor * audio_enc_pos_conv_wv;
- struct ggml_tensor * audio_enc_pos_conv_b;
- struct ggml_tensor * audio_enc_layer_norm_w;
- struct ggml_tensor * audio_enc_layer_norm_b;
- struct ggml_tensor * audio_enc_pos_enc_w;
- struct ggml_tensor * layer_norm_w;
- struct ggml_tensor * layer_norm_b;
- struct ggml_tensor * memory_k;
- struct ggml_tensor * memory_v;
- std::vector<audio_enc_layer> audio_enc_layers;
- // text encoder
- // std::vector<text_enc_layer> text_enc_layers;
- // adaptor
- // std::vector<adapter_layer> adapter_layers;
- // text decoder
- // std::vector<text_dec_layer> text_dec_layers;
- // unit decoder
- // std::vector<unit_dec_layer> unit_dec_layers;
- //
- struct ggml_context * ctx;
- std::map<std::string, struct ggml_tensor *> tensors;
- };
- extern "C" unity_model* unity_model_alloc() {
- return new unity_model;
- }
- extern "C" void unity_model_free(unity_model* model) {
- delete model;
- }
- extern "C" gpt_vocab* gpt_vocab_alloc() {
- return new gpt_vocab;
- }
- extern "C" void gpt_vocab_free(gpt_vocab* vocab) {
- delete vocab;
- }
- // model load
- extern "C" bool unity_model_load(const char* fname, unity_model& model, gpt_vocab& raw_vocab) {
- // unity_model& model = *raw_model;
- printf("%s: loading model from '%s'\n", __func__, fname);
- auto fin = std::ifstream(std::string(fname), std::ios::binary);
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname);
- return false;
- }
- // verify magic
- {
- uint32_t magic;
- fin.read((char *) &magic, sizeof(magic));
- if (magic != GGML_FILE_MAGIC) {
- fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname);
- return false;
- }
- }
- // load hparams
- {
- auto & hparams = model.hparams;
- fin.read((char *) &hparams.n_text_vocab, sizeof(hparams.n_text_vocab));
- fin.read((char *) &hparams.n_audio_enc_dim, sizeof(hparams.n_audio_enc_dim));
- fin.read((char *) &hparams.n_audio_enc_ffn_dim, sizeof(hparams.n_audio_enc_ffn_dim));
- fin.read((char *) &hparams.n_audio_enc_feat_dim, sizeof(hparams.n_audio_enc_feat_dim));
- fin.read((char *) &hparams.n_audio_enc_layer, sizeof(hparams.n_audio_enc_layer));
- fin.read((char *) &hparams.n_audio_enc_head, sizeof(hparams.n_audio_enc_head));
- fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
- const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
- printf("%s: n_text_vocab = %d\n", __func__, hparams.n_text_vocab);
- printf("%s: n_audio_enc_dim = %d\n", __func__, hparams.n_audio_enc_dim);
- printf("%s: n_audio_enc_ffn_dim = %d\n", __func__, hparams.n_audio_enc_ffn_dim);
- printf("%s: n_audio_enc_feat_dim = %d\n", __func__, hparams.n_audio_enc_feat_dim);
- printf("%s: n_audio_enc_layer = %d\n", __func__, hparams.n_audio_enc_layer);
- printf("%s: n_audio_enc_head = %d\n", __func__, hparams.n_audio_enc_head);
- printf("%s: ftype = %d\n", __func__, hparams.ftype);
- printf("%s: qntvr = %d\n", __func__, qntvr);
- hparams.ftype %= GGML_QNT_VERSION_FACTOR;
- }
- // for the big tensors, we have the option to store the data in 16-bit floats or quantized
- // in order to save memory and also to speed up the computation
- ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
- if (wtype == GGML_TYPE_COUNT) {
- fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
- __func__, fname, model.hparams.ftype);
- return false;
- }
- auto & ctx = model.ctx;
- size_t ctx_size = 0;
- {
- const auto & hparams = model.hparams;
- const int n_audio_enc_dim = hparams.n_audio_enc_dim;
- const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
- const int n_audio_enc_layer = hparams.n_audio_enc_layer;
- const int n_ctx = 4096; // 20ms * 4096 = 80s
- // const int n_text_vocab = hparams.n_text_vocab;
- const int kernel_size = 31;
- ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // self_attn_layer_norm_w
- ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // self_attn_layer_norm_b
- ctx_size += n_audio_enc_layer*(5*n_audio_enc_dim*n_audio_enc_dim*ggml_type_sizef(wtype)); // self_attn_w
- ctx_size += n_audio_enc_layer*(4*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // self_attn_b
- ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_layer_norm_w
- ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_layer_norm_b
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*2*ggml_type_sizef(wtype)); // conv_pointwise_conv1_w
- ctx_size += n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_batch_norm_w
- ctx_size += n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_batch_norm_b
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*kernel_size*ggml_type_sizef(wtype)); // conv_depthwise_conv_w
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*ggml_type_sizef(wtype)); // conv_pointwise_conv2_w
- ctx_size += 2 * n_audio_enc_layer * (n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_layer_norm_w
- ctx_size += 2 * n_audio_enc_layer * (n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_layer_norm_b
- ctx_size += 2 * n_audio_enc_layer * (2 * n_audio_enc_dim * n_audio_enc_ffn_dim * ggml_type_sizef(wtype)); // ffn{1,2}_w{1,2}
- ctx_size += 2 * n_audio_enc_layer * (2 * n_audio_enc_dim * ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_b{1,2}
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // final_layer_norm_w
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // final_layer_norm_b
- ctx_size += n_ctx*n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // memory_k
- ctx_size += n_ctx*n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // memory_v
- // Adaptor
- // ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // conv_ln
- // ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // conv_pool_1d
- // object overhead might differ depending on the structure and other miscellaneous factors
- ctx_size += (6 + 12*n_audio_enc_layer)*512; // updated object overhead
- printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
- printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
- }
- // create the ggml context
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx_size,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ false,
- };
- model.ctx = ggml_init(params);
- if (!model.ctx) {
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
- return false;
- }
- }
- // prepare memory for the weights
- {
- const auto & hparams = model.hparams;
- const int n_audio_enc_dim = hparams.n_audio_enc_dim;
- const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
- const int n_audio_enc_feat_dim = hparams.n_audio_enc_feat_dim;
- const int n_audio_enc_layer = hparams.n_audio_enc_layer;
- const int n_audio_enc_head = hparams.n_audio_enc_head;
- const int n_ctx = 4096; // 20ms * 4096 = 80s
- const int pos_conv_kernel_size = 128;
- // const int n_text_vocab = hparams.n_text_vocab;
- model.audio_enc_layers.resize(n_audio_enc_layer);
- model.audio_enc_pos_enc_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_ctx * 2 - 1);
- model.tensors["model/enc/pos_enc/w"] = model.audio_enc_pos_enc_w;
- model.post_extract_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_feat_dim, n_audio_enc_dim);
- model.post_extract_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- model.tensors["model/post_extract_proj/w"] = model.post_extract_proj_w;
- model.tensors["model/post_extract_proj/b"] = model.post_extract_proj_b;
- model.audio_enc_pos_conv_wg = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, pos_conv_kernel_size);
- model.audio_enc_pos_conv_wv = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, pos_conv_kernel_size, 64, n_audio_enc_dim);
- model.audio_enc_pos_conv_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- model.tensors["model/enc/pos_conv/w_g"] = model.audio_enc_pos_conv_wg;
- model.tensors["model/enc/pos_conv/w_v"] = model.audio_enc_pos_conv_wv;
- model.tensors["model/enc/pos_conv/b"] = model.audio_enc_pos_conv_b;
- model.audio_enc_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- model.audio_enc_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- model.tensors["model/enc/layer_norm/w"] = model.audio_enc_layer_norm_w;
- model.tensors["model/enc/layer_norm/b"] = model.audio_enc_layer_norm_b;
- model.layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_feat_dim);
- model.layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_feat_dim);
- model.tensors["model/layer_norm/w"] = model.layer_norm_w;
- model.tensors["model/layer_norm/b"] = model.layer_norm_b;
-
- for (int i = 0; i < n_audio_enc_layer; ++i) {
- auto & layer = model.audio_enc_layers[i];
- layer.self_attn_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.self_attn_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.self_attn_linear_k_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
- layer.self_attn_linear_k_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.self_attn_linear_q_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
- layer.self_attn_linear_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.self_attn_linear_v_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
- layer.self_attn_linear_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.self_attn_linear_out_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
- layer.self_attn_linear_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.self_attn_linear_pos_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
- layer.self_attn_pos_bias_u = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim / n_audio_enc_head, n_audio_enc_head);
- layer.self_attn_pos_bias_v = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim / n_audio_enc_head, n_audio_enc_head);
- layer.conv_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.conv_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.conv_pointwise_conv1_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, 2*n_audio_enc_dim);
- layer.conv_depthwise_conv_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 31, n_audio_enc_dim);
- layer.conv_batch_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.conv_batch_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.conv_batch_norm_running_mean = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.conv_batch_norm_running_var = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.conv_batch_norm_num_batches_tracked = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- layer.conv_pointwise_conv2_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
- layer.ffn1_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.ffn1_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.ffn1_w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_ffn_dim);
- layer.ffn1_b1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim);
- layer.ffn1_w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim, n_audio_enc_dim);
- layer.ffn1_b2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.ffn2_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.ffn2_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.ffn2_w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_ffn_dim);
- layer.ffn2_b1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim);
- layer.ffn2_w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim, n_audio_enc_dim);
- layer.ffn2_b2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.final_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.final_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- // map by name
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_layer_norm/w"] = layer.self_attn_layer_norm_w;
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_layer_norm/b"] = layer.self_attn_layer_norm_b;
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_k/w"] = layer.self_attn_linear_k_w;
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_k/b"] = layer.self_attn_linear_k_b;
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_q/w"] = layer.self_attn_linear_q_w;
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_q/b"] = layer.self_attn_linear_q_b;
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_v/w"] = layer.self_attn_linear_v_w;
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_v/b"] = layer.self_attn_linear_v_b;
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_out/w"] = layer.self_attn_linear_out_w;
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_out/b"] = layer.self_attn_linear_out_b;
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_pos/w"] = layer.self_attn_linear_pos_w;
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_pos_bias/u"] = layer.self_attn_pos_bias_u;
- model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_pos_bias/v"] = layer.self_attn_pos_bias_v;
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_layer_norm/w"] = layer.conv_layer_norm_w;
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_layer_norm/b"] = layer.conv_layer_norm_b;
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_pointwise_conv1/w"] = layer.conv_pointwise_conv1_w;
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_depthwise_conv/w"] = layer.conv_depthwise_conv_w;
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/w"] = layer.conv_batch_norm_w;
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/b"] = layer.conv_batch_norm_b;
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/m"] = layer.conv_batch_norm_running_mean;
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/v"] = layer.conv_batch_norm_running_var;
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/n"] = layer.conv_batch_norm_num_batches_tracked;
- model.tensors["model/enc/h" + std::to_string(i) + "/conv_pointwise_conv2/w"] = layer.conv_pointwise_conv2_w;
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_layer_norm/w"] = layer.ffn1_layer_norm_w;
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_layer_norm/b"] = layer.ffn1_layer_norm_b;
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_1/w"] = layer.ffn1_w1;
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_1/b"] = layer.ffn1_b1;
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_2/w"] = layer.ffn1_w2;
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_2/b"] = layer.ffn1_b2;
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_layer_norm/w"] = layer.ffn2_layer_norm_w;
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_layer_norm/b"] = layer.ffn2_layer_norm_b;
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_1/w"] = layer.ffn2_w1;
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_1/b"] = layer.ffn2_b1;
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_2/w"] = layer.ffn2_w2;
- model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_2/b"] = layer.ffn2_b2;
- model.tensors["model/enc/h" + std::to_string(i) + "/final_layer_norm/w"] = layer.final_layer_norm_w;
- model.tensors["model/enc/h" + std::to_string(i) + "/final_layer_norm/b"] = layer.final_layer_norm_b;
- }
- }
-
- // load weights
- {
- size_t total_size = 0;
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ttype;
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
- fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
- if (fin.eof()) {
- break;
- }
- int32_t nelements = 1;
- int32_t ne[3] = { 1, 1, 1};
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- nelements *= ne[i];
- }
- std::string name(length, 0);
- fin.read(&name[0], length);
- std::cout << "loading " << name << " " << n_dims << std::endl;
- if (model.tensors.find(name) == model.tensors.end()) {
- fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
- return false;
- }
- auto tensor = model.tensors[name];
- if (ggml_nelements(tensor) != nelements) {
- std::cout << ggml_nelements(tensor) << std::endl;
- std::cout << nelements << std::endl;
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
- return false;
- }
- if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
- __func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
- // return false;
- }
- // for debugging
- if (0) {
- printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
- }
- const size_t bpe = ggml_type_size(ggml_type(ttype));
- if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
- __func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe);
- return false;
- }
- fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
- // for (int i = 0; i < 10; ++i) {
- // std::cout << ((float *)(tensor->data))[i] << std::endl;
- // } // debug
- total_size += ggml_nbytes(tensor);
- }
- printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
- }
- fin.close();
- return true;
- }
- // build the computation graph
- extern "C" ggml_cgraph* unity_graph(
- const unity_model & model,
- ggml_tensor* input
- ) {
- const auto & hparams = model.hparams;
- const int n_audio_enc_dim = hparams.n_audio_enc_dim;
- const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
- const int n_audio_enc_layer = hparams.n_audio_enc_layer;
- // const int n_text_vocab = hparams.n_text_vocab;
- const int kernel_size = 31;
- // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data
- static size_t buf_size = ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead();
- static std::vector<uint8_t> buf(buf_size);
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_size,
- /*.mem_buffer =*/ buf.data(),
- /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
- };
- struct ggml_context * ctx0 = ggml_init(params);
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, 1);
- ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
- ggml_set_f32(ffn_scale, 0.5f);
-
- ggml_tensor* inpL = input;
- for (int il = 0; il < n_audio_enc_layer; ++il) {
- struct ggml_tensor * cur = inpL;
- struct ggml_tensor * residual = cur;
- const audio_enc_layer layer = model.audio_enc_layers[il];
- // FFN1: layernorm
- cur = ggml_norm(ctx0, cur, hparams.eps);
- cur = ggml_add(ctx0,
- ggml_mul(ctx0,
- ggml_repeat(ctx0, layer.ffn1_layer_norm_w, cur),
- cur),
- ggml_repeat(ctx0, layer.ffn1_layer_norm_b, cur));
- // FFN1: proj
- cur = ggml_mul_mat(ctx0, layer.ffn1_w1, cur);
- cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.ffn1_b1, cur), cur);
- cur = ggml_silu(ctx0, cur);
- cur = ggml_mul_mat(ctx0, layer.ffn1_w2, cur);
- cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.ffn1_b2, cur), cur);
- // FFN1: * 0.5
- cur = ggml_mul(ctx0, ggml_repeat(ctx0, ffn_scale, cur), cur);
- // FFN1: + residual
- cur = ggml_add(ctx0, cur, residual);
- // TODO: Opportunity to optimize attn calculation (1) For num_threads > 1 (2) Flash attn. See https://github.com/ggerganov/ggml/blob/main/examples/gpt-2/main.cpp
- // self_attn: layernorm
- cur = ggml_norm(ctx0, cur, hparams.eps);
- cur = ggml_add(ctx0,
- ggml_mul(ctx0,
- ggml_repeat(ctx0, layer.self_attn_layer_norm_w, cur),
- cur),
- ggml_repeat(ctx0, layer.self_attn_layer_norm_b, cur));
-
- // self_attn: qkv
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0,
- layer.self_attn_linear_q_w,
- cur);
- Qcur = ggml_add(ctx0,
- ggml_repeat(ctx0,
- layer.self_attn_linear_q_b,
- Qcur),
- Qcur);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0,
- layer.self_attn_linear_k_w,
- cur);
- Kcur = ggml_add(ctx0,
- ggml_repeat(ctx0,
- layer.self_attn_linear_k_b,
- Kcur),
- Kcur);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0,
- layer.self_attn_linear_v_w,
- cur);
- Vcur = ggml_add(ctx0,
- ggml_repeat(ctx0,
- layer.self_attn_linear_v_b,
- Vcur),
- Vcur);
- // self_attn: rel_pos SDPA (WIP)
-
- int32_t start_index = 4096 - 137;
- int32_t end_index = 4096 + 136;
- int num_indices = end_index - start_index + 1;
- struct ggml_tensor *rows = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_indices);
- rows->data = malloc(ggml_nbytes(rows));
- for (int i = 0; i < num_indices; i++) {
- ((int32_t *)rows->data)[i] = start_index + i;
- }
- // Load positional encoding weights
- struct ggml_tensor * pos_enc = ggml_get_rows(ctx0, model.audio_enc_pos_enc_w, rows);
- // conv
-
- // ffn2
-
- // norm
- inpL = cur;
- break; // debug
- }
- ggml_build_forward_expand(gf, inpL);
- ggml_free(ctx0);
- return gf;
- }
- extern "C" struct ggml_cgraph* unity_eval(
- ggml_allocr* allocr,
- const unity_model& model,
- ggml_tensor* input,
- const int n_threads) {
- // const auto & hparams = model.hparams;
- // reset the allocator to free all the memory allocated during the previous inference
- ggml_allocr_reset(allocr);
- struct ggml_cgraph * gf = unity_graph(model, input);
- // allocate tensors
- ggml_allocr_alloc_graph(allocr, gf);
- // run the computation
- struct ggml_cplan plan = ggml_graph_plan(gf, n_threads);
- static std::vector<uint8_t> work_buffer;
- work_buffer.resize(plan.work_size);
- plan.work_data = work_buffer.data();
- ggml_graph_compute(gf, &plan);
- // in this case, the output tensor is the last one in the graph
- struct ggml_tensor * inpL = gf->nodes[gf->n_nodes - 1];
- printf("gf: %p, gf.nodes: %p, gf.n_nodes: %p", (void *)gf, (void *)gf->nodes, (void *)&(gf->n_nodes));
- for (int i = 0; i < 10; ++i) {
- printf("%8.4f ", ((float *)(inpL->data))[i]);
- }
- printf("\n");
- return gf;
- }
- int main(int argc, char ** argv) {
- // ggml_time_init();
- // const int64_t t_main_start_us = ggml_time_us();
- gpt_params params;
- if (gpt_params_parse(argc, argv, params) == false) {
- return 1;
- }
- if (params.seed < 0) {
- params.seed = time(NULL);
- }
- printf("%s: seed = %d\n", __func__, params.seed);
- std::mt19937 rng(params.seed);
- if (params.prompt.empty()) {
- params.prompt = gpt_random_prompt(rng);
- }
- gpt_vocab vocab;
- unity_model model;
- // load the model
- {
- if (!unity_model_load(params.model.c_str(), model, vocab)) {
- fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
- return 1;
- }
- }
- /// For dev, load an example input before conformer blocks
- auto file = std::ifstream("/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/dev/seqs_before_conformer_block.bin", std::ios::binary);
- if (!file) {
- file = std::ifstream("/home/guw/github/seamless_communication/ggml/examples/unity/models/unity-large/seqs_before_conformer_block.bin", std::ios::binary);
- if (!file) {
- std::cerr << "Failed to open binary file." << std::endl;
- exit(1);
- }
- }
- struct ggml_tensor * input = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, 1024, 137);
- input->data = malloc(ggml_nbytes(input));
- file.read(reinterpret_cast<char *>(input->data), ggml_nbytes(input));
- // keep this buffer alive while evaluating the model
- std::vector<uint8_t> compute_buffer;
- struct ggml_allocr * allocr = NULL;
- // allocate the compute buffer
- {
- allocr = ggml_allocr_new_measure(GGML_MEM_ALIGN);
- struct ggml_cgraph * gf = unity_graph(model, input);
- // compute the required memory
- size_t mem_size = ggml_allocr_alloc_graph(allocr, gf) + GGML_MEM_ALIGN;
- // recreate the allocator with the required memory
- ggml_allocr_free(allocr);
- compute_buffer.resize(mem_size);
- allocr = ggml_allocr_new(compute_buffer.data(), mem_size, GGML_MEM_ALIGN);
- fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0/1024.0);
- }
- if (!unity_eval(allocr, model, input, 1)) {
- printf("Failed to predict\n");
- return 1;
- }
- ggml_free(model.ctx);
- return 0;
- }
|