unity_model_loader.h 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. // Copyright (c) Meta Platforms, Inc. and affiliates.
  2. // All rights reserved.
  3. //
  4. // This source code is licensed under the license found in the
  5. // LICENSE file in the root directory of this source tree.
  6. #pragma once
  7. #include <vector>
  8. #include "model_loader.h"
  9. // TODO Merge with Ning implementation
  10. struct unity_hparams {
  11. int32_t model_dim;
  12. int32_t w2v2_encoder_config__model_dim;
  13. int32_t w2v2_encoder_config__max_seq_len;
  14. int32_t w2v2_encoder_config__feature_dim;
  15. int32_t w2v2_encoder_config__use_fbank;
  16. float w2v2_encoder_config__first_pass_dropout_p;
  17. int32_t w2v2_encoder_config__layer_norm_features;
  18. int32_t w2v2_encoder_config__feature_extractor_bias;
  19. int32_t w2v2_encoder_config__feature_extractor_layer_norm_convs;
  20. int32_t w2v2_encoder_config__feature_grad_scale;
  21. int32_t w2v2_encoder_config__num_fbank_channels;
  22. int32_t w2v2_encoder_config__fbank_stride;
  23. int32_t w2v2_encoder_config__sample_fbank_every_k;
  24. int32_t w2v2_encoder_config__pos_encoder_depth;
  25. int32_t w2v2_encoder_config__pos_conv_kernel_size;
  26. int32_t w2v2_encoder_config__num_pos_conv_groups;
  27. int32_t w2v2_encoder_config__use_conformer;
  28. int32_t w2v2_encoder_config__num_encoder_layers;
  29. int32_t w2v2_encoder_config__num_encoder_attn_heads;
  30. int32_t w2v2_encoder_config__ffn_inner_dim;
  31. float w2v2_encoder_config__dropout_p;
  32. float w2v2_encoder_config__attn_dropout_p;
  33. float w2v2_encoder_config__layer_drop_p;
  34. int32_t w2v2_encoder_config__norm_order;
  35. int32_t w2v2_encoder_config__depthwise_conv_kernel_size;
  36. int32_t nllb_config__model_dim;
  37. int32_t nllb_config__max_seq_len;
  38. int32_t nllb_config__vocabulary_size;
  39. int32_t nllb_config__pad_idx;
  40. int32_t nllb_config__num_encoder_layers;
  41. int32_t nllb_config__num_decoder_layers;
  42. int32_t nllb_config__num_encoder_attn_heads;
  43. int32_t nllb_config__num_decoder_attn_heads;
  44. int32_t nllb_config__ffn_inner_dim;
  45. float nllb_config__dropout_p;
  46. int32_t t2u_config__model_dim;
  47. int32_t t2u_config__unit_max_seq_len;
  48. int32_t t2u_config__unit_vocabulary_size;
  49. int32_t t2u_config__unit_pad_idx;
  50. int32_t t2u_config__num_encoder_layers;
  51. int32_t t2u_config__num_decoder_layers;
  52. int32_t t2u_config__num_encoder_attn_heads;
  53. int32_t t2u_config__num_decoder_attn_heads;
  54. int32_t t2u_config__ffn_inner_dim;
  55. float t2u_config__dropout_p;
  56. int32_t use_text_encoder;
  57. int32_t use_conformer_adaptor;
  58. int32_t num_adaptor_layers;
  59. int32_t adaptor_kernel_size;
  60. int32_t adaptor_stride;
  61. int32_t adaptor_layer_norm;
  62. float adaptor_dropout_p;
  63. };
  64. // Methods
  65. // Embedding
  66. std::size_t compute_embed_size(int32_t vocab_size, int32_t dim)
  67. {
  68. return vocab_size * dim * ggml_type_size(GGML_TYPE_F32);
  69. };
  70. // Projection
  71. std::size_t compute_projection_size(int32_t in_dim, int32_t out_dim)
  72. {
  73. return (in_dim * out_dim * ggml_type_size(GGML_TYPE_F32)) // weight
  74. + (out_dim * ggml_type_size(GGML_TYPE_F32)); // bias
  75. };
  76. // LayerNorm
  77. std::size_t compute_layer_norm_size(int32_t dim)
  78. {
  79. return 2 * dim * ggml_type_size(GGML_TYPE_F32); // weight and bias
  80. };
  81. // FFN Layer
  82. struct ffn_layer {
  83. struct ggml_tensor* layer_norm_w; // model_dim
  84. struct ggml_tensor* layer_norm_b; // model_dim
  85. struct ggml_tensor* inner_proj_w; // ffn_inner_dim x model_dim
  86. struct ggml_tensor* inner_proj_b; // ffn_inner_dim
  87. struct ggml_tensor* output_proj_w; // model_dim x ffn_inner_dim
  88. struct ggml_tensor* output_proj_b; // model_dim
  89. };
  90. std::size_t compute_ffn_layer_size(int32_t dim, int32_t inner_dim)
  91. {
  92. return compute_layer_norm_size(dim)
  93. + compute_projection_size(dim, inner_dim)
  94. + compute_projection_size(inner_dim, dim);
  95. };
  96. void init_ffn_layer(
  97. ffn_layer *layer,
  98. fairseq2_model<unity_hparams> &model_ctx,
  99. const std::string &prefix)
  100. {
  101. const auto dim = model_ctx.hparams.nllb_config__model_dim;
  102. const auto inner_dim = model_ctx.hparams.nllb_config__ffn_inner_dim;
  103. auto ctx = model_ctx.ctx;
  104. auto &tensor_map = model_ctx.tensors;
  105. layer->layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  106. tensor_map[prefix + "_layer_norm.weight"] = layer->layer_norm_w;
  107. layer->layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  108. tensor_map[prefix + "_layer_norm.bias"] = layer->layer_norm_b;
  109. layer->inner_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, inner_dim, dim);
  110. tensor_map[prefix + ".inner_proj.weight"] = layer->inner_proj_w;
  111. layer->inner_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, inner_dim);
  112. tensor_map[prefix + ".inner_proj.bias"] = layer->inner_proj_b;
  113. layer->output_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, inner_dim);
  114. tensor_map[prefix + ".output_proj.weight"] = layer->output_proj_w;
  115. layer->output_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  116. tensor_map[prefix + ".output_proj.bias"] = layer->output_proj_b;
  117. }
  118. // Attention Layer
  119. struct attention_layer {
  120. struct ggml_tensor* layer_norm_w; // model_dim
  121. struct ggml_tensor* layer_norm_b; // model_dim
  122. struct ggml_tensor* q_proj_w; // model_dim x model_dim
  123. struct ggml_tensor* q_proj_b; // model_dim
  124. struct ggml_tensor* k_proj_w; // model_dim x model_dim
  125. struct ggml_tensor* k_proj_b; // model_dim
  126. struct ggml_tensor* v_proj_w; // model_dim x model_dim
  127. struct ggml_tensor* v_proj_b; // model_dim
  128. struct ggml_tensor* output_proj_w; // model_dim x model_dim
  129. struct ggml_tensor* output_proj_b; // model_dim
  130. };
  131. std::size_t compute_attention_layer_size(int32_t dim)
  132. {
  133. return compute_layer_norm_size(dim)
  134. + 4 * compute_projection_size(dim, dim); // q, k, v, and out
  135. };
  136. void init_attention_layer(
  137. attention_layer *layer,
  138. fairseq2_model<unity_hparams> &model_ctx,
  139. const std::string &prefix)
  140. {
  141. const auto dim = model_ctx.hparams.nllb_config__model_dim;
  142. auto ctx = model_ctx.ctx;
  143. auto &tensor_map = model_ctx.tensors;
  144. layer->layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  145. tensor_map[prefix + "_layer_norm.weight"] = layer->layer_norm_w;
  146. layer->layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  147. tensor_map[prefix + "_layer_norm.bias"] = layer->layer_norm_b;
  148. layer->q_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);
  149. tensor_map[prefix + ".q_proj.weight"] = layer->q_proj_w;
  150. layer->q_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  151. tensor_map[prefix + ".q_proj.bias"] = layer->q_proj_b;
  152. layer->k_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);
  153. tensor_map[prefix + ".k_proj.weight"] = layer->k_proj_w;
  154. layer->k_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  155. tensor_map[prefix + ".k_proj.bias"] = layer->k_proj_b;
  156. layer->v_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);
  157. tensor_map[prefix + ".v_proj.weight"] = layer->v_proj_w;
  158. layer->v_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  159. tensor_map[prefix + ".v_proj.bias"] = layer->v_proj_b;
  160. layer->output_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);
  161. tensor_map[prefix + ".output_proj.weight"] = layer->output_proj_w;
  162. layer->output_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  163. tensor_map[prefix + ".output_proj.bias"] = layer->output_proj_b;
  164. }
  165. // Attention Head
  166. struct attention_head {
  167. struct attention_layer* self_attn; // model_dim
  168. struct attention_layer* encoder_decoder_attn; // model_dim
  169. struct ffn_layer* ffn;
  170. };
  171. std::size_t compute_attention_head_size(int32_t dim, int32_t inner_dim)
  172. {
  173. return 2 * compute_attention_layer_size(dim)
  174. + compute_ffn_layer_size(dim, inner_dim);
  175. };
  176. void init_attention_head(
  177. attention_head *head,
  178. fairseq2_model<unity_hparams> &model_ctx,
  179. const std::string &prefix)
  180. {
  181. init_attention_layer(head->self_attn, model_ctx, prefix + ".self_attn");
  182. init_attention_layer(head->encoder_decoder_attn, model_ctx, prefix + ".encoder_decoder_attn");
  183. init_ffn_layer(head->ffn, model_ctx, prefix + ".ffn");
  184. }
  185. // TODO: attention_head_compute_graph
  186. // Text Decoder
  187. struct text_decoder {
  188. struct ggml_tensor* frontend_embed_w; // vocab_size x model_dim
  189. std::vector<attention_head*> multi_head;
  190. struct ggml_tensor* layer_norm_w;
  191. struct ggml_tensor* layer_norm_b;
  192. };
  193. std::size_t compute_context_size(unity_hparams &hparams)
  194. {
  195. const auto vocab_size = hparams.nllb_config__vocabulary_size;
  196. const auto dim = hparams.nllb_config__model_dim;
  197. const auto inner_dim = hparams.nllb_config__ffn_inner_dim;
  198. const auto n_layers = hparams.nllb_config__num_decoder_layers;
  199. const auto overhead = (6 + 12 * n_layers) * 512; // TODO Find out what this is.
  200. return compute_embed_size(vocab_size, dim)
  201. + n_layers * compute_attention_head_size(dim, inner_dim)
  202. + compute_layer_norm_size(dim)
  203. + overhead;
  204. };
  205. void init_model_tensors(
  206. text_decoder &model,
  207. fairseq2_model<unity_hparams> &model_ctx,
  208. const std::string &prefix)
  209. {
  210. const auto ctx = model_ctx.ctx;
  211. const auto hparams = model_ctx.hparams;
  212. auto tensor_map = model_ctx.tensors;
  213. const auto vocab_size = hparams.nllb_config__vocabulary_size;
  214. const auto dim = hparams.nllb_config__model_dim;
  215. const auto n_layers = hparams.nllb_config__num_decoder_layers;
  216. // This can be simplified by adding syntax sugar
  217. // frontend
  218. model.frontend_embed_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, vocab_size, dim);
  219. tensor_map["text_decoder_frontend.embed.weight"] = model.frontend_embed_w;
  220. // layers
  221. model.multi_head.resize(n_layers);
  222. for (int i = 0; i < n_layers; ++i) {
  223. auto head = model.multi_head[i];
  224. auto prefix = "text_decoder.layers." + std::to_string(i);
  225. init_attention_head(head, model_ctx, prefix);
  226. }
  227. // layer_norm
  228. model.layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  229. tensor_map["text_decoder.layer_norm.weight"] = model.layer_norm_w;
  230. model.layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
  231. tensor_map["text_decoder.layer_norm.bias"] = model.layer_norm_b;
  232. };
  233. // Model
  234. class unity_model_loader: public model_loader<unity_hparams> {
  235. protected:
  236. void
  237. load_hparams(std::ifstream &fin, unity_hparams &hparams);
  238. std::size_t
  239. compute_context_size(unity_hparams &hparams) = 0;
  240. void
  241. init_model_tensors(fairseq2_model<unity_hparams> &model);
  242. };